bio 6 – sds-page lab - sds... · a polyacrylamide gel that is subjected to electric current. the...

10
Bio 6 – SDS-PAGE Lab Objectives Upon completion of this laboratory you will understand how to load and run protein samples on an SDS- polyacrylamide gel, stain the gel, and analyze the resulting bands of protein on the gel to estimate the molecular weight of each protein. Introduction SDS-PAGE is a very common laboratory technique used to analyze proteins. The acronym SDS-PAGE stands for sodium dodecyl sulfate – polyacrylamide gel electrophoresis. Sodium dodecyl sulfate or SDS is a detergent commonly used in biology laboratories to denature proteins, i.e., disrupt the 3-dimensional structure of proteins without breaking the polypeptide backbone. Polyacrylamide is a polymer prepared as a gelatinous medium or “gel” through which proteins can be resolved based on molecular weight (MW). Electrophoresis refers to the movement of charged soluble particles such as proteins through a medium during exposure to an electric field. SDS-PAGE is therefore a technique by which proteins move through a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide gel during electrophoresis is dependent on three physical properties – molecular weight, 3-dimensional shape, and net charge. Separation of proteins based solely on the property of MW is possible only if the variables of 3-dimensional shape and net charge are eliminated. This is accomplished by the detergent SDS, which due to its amphiphilic properties of being hydrophobic on one end and charged on the other is able to disrupt all non-covalent interactions in a protein – i.e., denature the protein. This results in unfolded or linear polypeptides that have a net negatively charge as shown below: SDS thus eliminates any differences in shape and overall charge among proteins, leaving one variable physical property – molecular weight – to influence the rate at which a protein moves through the gel. 57

Upload: others

Post on 27-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bio 6 – SDS-PAGE Lab - SDS... · a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide

Bio6–SDS-PAGELab

ObjectivesUponcompletionofthislaboratoryyouwillunderstandhowtoloadandrunproteinsamplesonanSDS-polyacrylamidegel,stainthegel,andanalyzetheresultingbandsofproteinonthegeltoestimatethemolecularweightofeachprotein.

Introduction

SDS-PAGE is a very common laboratory technique used to analyze proteins. The acronym SDS-PAGEstandsforsodiumdodecylsulfate–polyacrylamidegelelectrophoresis.SodiumdodecylsulfateorSDSisadetergentcommonlyusedinbiologylaboratoriestodenatureproteins,i.e.,disruptthe3-dimensionalstructureofproteinswithoutbreakingthepolypeptidebackbone.Polyacrylamideisapolymerpreparedasagelatinousmediumor“gel”throughwhichproteinscanberesolvedbasedonmolecularweight(MW).Electrophoresisreferstothemovementofchargedsolubleparticlessuchasproteinsthroughamediumduringexposuretoanelectricfield.SDS-PAGEisthereforeatechniquebywhichproteinsmovethroughapolyacrylamidegelthatissubjectedtoelectriccurrent.The rate at which a protein moves through the microscopic pores of a polyacrylamide gel duringelectrophoresisisdependentonthreephysicalproperties–molecularweight,3-dimensionalshape,andnetcharge.SeparationofproteinsbasedsolelyonthepropertyofMWispossibleonlyifthevariablesof3-dimensionalshapeandnetchargeareeliminated.ThisisaccomplishedbythedetergentSDS,whichduetoitsamphiphilicpropertiesofbeinghydrophobicononeendandchargedontheotherisabletodisruptallnon-covalentinteractionsinaprotein–i.e.,denaturetheprotein.Thisresultsinunfoldedorlinearpolypeptidesthathaveanetnegativelychargeasshownbelow:

SDS thuseliminatesanydifferences in shapeandoverall chargeamongproteins, leavingonevariablephysicalproperty–molecularweight–toinfluencetherateatwhichaproteinmovesthroughthegel.

57

Page 2: Bio 6 – SDS-PAGE Lab - SDS... · a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide

Asshownbelow,SDS-PAGEisrunverticallyandthegelconsistsofa“stackinggel”ontopofa“resolvinggel”(aka“runninggel”).Bothendsofthegelareincontactwithanelectrolytebuffersolutioncontainingthepositiveandnegativeelectrodeswhichgenerateelectriccurrentthroughthegel.

Thestackinggelcontainscavitiescalledwells intowhichyouwill loadproteinsamples. Whenelectriccurrentisapplied,negativelychargedsolutessuchasSDS-treatedproteinswillexperienceelectromotiveforcetowardtheoppositelychargedpositiveelectrodeandthusmoveintothestackinggel.ThestackinggelhasanacrylamidepercentageandpHthatensuresallproteinsentertheresolvinggelatthesametime.Onceintheresolvinggel,proteinswillmigrateatarateinverselyproportionaltoMW.Whenthegelisfinishedrunning,itisstainedtorevealthepositionofeachproteinonthegelasshownbelow:

+

58

Page 3: Bio 6 – SDS-PAGE Lab - SDS... · a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide

Eachstainedbandonthegelcorrespondstoaoneormoretypesofproteinwith thesamemolecularweight(keepinmindthateachbandcontainsbillionsofproteinsofthatMW).Thelargertheprotein,thesloweritmovesthroughthegelandthusthehigheritsposition.Smallerproteinsmoveatfasterrateandareseenasbandsfurtherdownthegel.AproteinMWstandard(acollectionofproteinsofknownsize)isalwaysrunonthegelandusedtoestimatethesizesofproteinsintheotherlanes.

Part1:RunninganSDS-PAGEgelTobeginthis labyouwilldenatureandloadseveraldifferentproteinsamplesonapolyacrylamidegelafterwhichyouwillrunthegelasdescribed.PreparinganacrylamidegelforSDS-PAGEisabittricky,sothepolyacrylamidegelshavebeenpreparedforyou.Todenatureyourproteinsitisessentialthatyouaddsample loadingbuffer and thenboil the sample. Thesample loadingbuffer contains severalkeycomponentsneededtofullydenaturetheproteinsandhavethemrunthroughthegelproperly:

• SDStodenaturethepolypeptides• Dithiothreitol(DTT)tobreakdisulfidebonds(covalentbondsbetweencysteines)• Glyceroltomakethesampledenseenoughtosinkintothewell• BromophenolBlue,anegativelychargeddyetomonitorgelprogress

Theloadingdyeispreparedata2Xconcentrationsothatitcanbedilutedto1Xwhenmixedwiththeproteinsample.Onceloadingdyehasbeenadded,theheatfromboilingfacilitatesdenaturationoftheproteinsandbreakingofdisulfidebonds.Disulfidebonds(refertochapter5ofyourtextbook)aretheonlycovalentinteractionsformedbetweenaminoacidRgroupsandarenotdisruptedbySDS,thustheneedforDTT.Onlyinthisfullydenaturedstatewilleachproteinsamplemovethroughthegelataratedependentonmolecularweightonly.Loadingsamplesintothewellsofthegelcanbechallengingsincethegelisverythin,toothintoinsert the pipet tip directly into the well. Asshowninthepicture,youwillneedtogentlyrestthepipettipontopoftheinnerplateatananglesothatthepipettipisrestingjustabovethewellyouwanttoload.Itisespeciallyimportantthatyoudonotpressthepipettipdownbetweentheplates,otherwiseyoumayprythemapart.Ifthishappens,evenjustalittlebit,yoursampleswillleakdownbetweenthegelandtheplateandbelost.Beforeyouloadyourproteinsamplesyouwillloadapracticesamplesoyouwillhavesomeexperiencebeforeloadingyourrealsamples.

59

Page 4: Bio 6 – SDS-PAGE Lab - SDS... · a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide

Exercise1–LoadingandrunningyourgelAllofthematerialsyouwillneedcanbefoundoncartsatthesideofthelabwhereyouwillobtainanicebucketandatrayofmaterials.Onceyouhaveallyourmaterials,besuretohalffillthebeakerwithhottapwaterandputitonahotplatesettothemaximumsoboilingwaterwillbereadywhenyouneedit:

1. Each protein sample is 5 µl. Add 2X sample loading buffer to each protein sample so the finalconcentrationis1X(calculatethisasyoudidinthe“MetricSystem”lab).

2. Tapeachtubegentlytomixandboilthesamplesalongwiththemolecularweightmarkerfor5minutes(theproteinmolecularweightmarkeris5µlandalreadycontains1Xsampleloadingbuffer).

3. Identifythewellsyouplantouseforyourproteinsamples(avoidusingdeformedwells),andindicate

inyourlabnotebookhowyouwillloadyourgel.Eachpersonshouldpracticeloading10µlof1Xsampleloadingbufferintheunusedlanes.Yourinstructorwilldemonstratehowtodothis.

4. Loadalloftheproteinmolecularweightmarkerandeachproteinintotheirdesignatedlanes.

5. Placethecoveronthegelapparatusandconnecttheredandblackplugstothecorrespondingcolors

inthepowersupply.NOTE:Ifthebufferlevelintheupperchamberisnotabovetheinnerplateofthegel,therewillbenoflowofelectriccurrent.

6. Besurethepowersupplyispluggedinandsetthetoggleswitchbelowthedigitaldisplayto“Volts”,

theRangeSelectswitchto“Low”andtheVoltageSelectknobto“Min.”

7. Turnonthepower(toggleswitchonupperleft)andadjusttheVoltageSelectknobuntilthedigitaldisplayreadsbetween110and120volts.NOTE:Ifthegelisrunningproperlyyouwillseeacurtainoftinybubblesrisingfromthewireinthe

upperbufferchamber.Youshouldalsoseeamuchloweramountof“bubbling”fromthewireinthelowerbufferchamber.Ifyoudon’tseethis,besuretoconsultyourinstructor.

8. Letthegelrununtilthebromophenolbluedyeis~1cmfromthebottomofthegel(~90minutes).9. Whentheruniscomplete,turntheVoltageSelectknowto“Min.”andturnoffthepower.

60

Page 5: Bio 6 – SDS-PAGE Lab - SDS... · a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide

Part2:STAININGPROTEINSINAPOLYACRYLAMIDEGEL

TovisualizetheproteinsinyourpolyacrylamidegelyouwilluseastaincalledCoomassieBrilliantBlue.Thisisnottheonlyproteinstainonecoulduse,howeveritisaverycommonlyusedstaintoviewproteinsonpolyacrylamidegels.Thestainingprocessmayrequireanovernightincubationsoyoumaynotseetheproteinbandsonyourgeluntilthenextlaboratorysession.Exercise2–Stainingapolyacrylamidegel

Besuretoweargloveswhenyouhandlethegelandstainingsolutions,andtocleanupasindicatedbyyourinstructor:

1. WhenthegelruniscompletebesuretheVoltageSelectknobissetto“Min.”andthepowerisoff,thenremovethecoverofthegelapparatus.

2. Carrythegelapparatustothesinkanddiscardtherunningbufferfrombothchambersintothesink.

3. Loosentheclampsholdingthegelinplace,carefullyremovetheplatescontainingyourgelandlayitona

flatsurfacewiththetallerouterglassplatefacingup.

4. Usetheplasticspatulasuppliedasawedgetocarefullypryapartthe2plates.Thegelshouldsticktooneplateortheotherasyoudoso.Ifitseemstosticktoboth,askforassistancefromyourinstructor.

5. Place~100mloffixativesolutioninthestainingtrayprovided.

6. Gentlyseparateabottomcornerofthegelfromtheglassplateusingthespatula,carefullypeelthegelofftheplate(it’sOKifthestackinggeltearsoff,youwon’tneedit)andplaceitinthefixativesolution.Ifthegelcurlsup,carefullyunravelitwithyourglovedhanduntilitflattensout.

7. PlaceaProteinInstaStaincard(whichcontainsCoomassieBrilliantBluestain)facedowninthefixativesolutionoverthegel,placethelidonthecontainer(besuretolabelthelidwithyourgroupnumber)andplacethecontainerontheslowrockeratthesideofthelab.Leavefor1to3hoursorovernight.

8. Whentheproteinbandsareclearlyvisible,photographyourgelasindicatedbyyourinstructorbeingsuretoincludearuleralignedwiththetopoftheresolvinggel.Storeanimageofthegelinyourlabnotebook.

Part3:ESTIMATINGTHEMOLECULARWEIGHTOFPROTEINSONAPOLYACRYLAMIDEGEL

Youwillusetheproteinmolecularweightstandardyouranonyourgeltoestimatethemolecularweightsoftheotherproteinsonyourgel.Asmentionedearlier,theproteinmolecularweightstandardisasetofproteins of knownmolecular weight. Since the rate at which a denatured proteinmoves through apolyacrylamidegelduringelectrophoresisdependsonly in itsmolecularweight, youcanestimate themolecularweightofaproteinbasedonitspositiononthegelinrelationtothemolecularweightstandardproteins. Intheory, themostaccuratewaytodothis is tocreateastandardcurveonsemi-loggraphpaperbyplottingmolecularweightindaltons(Da)orkilodaltons(kDa)vsdistancetraveledonthegelincm.Thedistancetraveledreferstothedistancefromthemiddleoftheproteinbandtothetopoftheresolvinggel(notthebottomofthewellinthestackinggel).

61

Page 6: Bio 6 – SDS-PAGE Lab - SDS... · a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide

Thegraphaboveshowsasamplestandardcurveconsistingof4knownproteins(NOTE–thestandardproteinsonyourgelaredifferent,thisisanexample).Oncethestandardcurveisdrawn,themolecularweightofanyproteinonthegelcanbeestimatedusingthedistanceittraveledongel.Forexample,ifaproteinonthegelpertainingtothisstandardcurvetraveled7.4cm,identify7.4cmontheX-axisandmoveverticallytofindthecorrespondingpositiononthestandardcurve.ThemolecularweightontheY-axis that corresponds to this point on the standard curvewill be your estimate. In this example themolecularweightestimatewouldbe~45,000daltonsor45kDa.Whilethismethodcanbeveryprecise,itsaccuracydependsonthequalityofthedistancemeasurementsandtheprecisionofthebestfitcurve.Asimplermethodtoestimatemolecularweightistocomparetheproteinbandofinteresttotheproteinmolecularweightstandardandvisuallyestimate itsmolecularweight. Forexample, ifyourproteinofinterestispositionedapproximatelyhalfwaybetweenstandardproteinsthatare40kDaand50kDa,thenyouwouldestimate45kDa.Ifthebandisjustaboveandveryclosetothe40kDastandardproteinthenyoumightestimate41or42kDa.Whilethismaynotseemveryprecise,itcangiveyouavalueverycloseto that obtainedusing a standard curve and formost purposes this shouldbe sufficient. In thenextexerciseyouwillestimatetheMWofproteinsusingbothmethodsdescribedabove.

(Dal

tons

or D

a)

62

Page 7: Bio 6 – SDS-PAGE Lab - SDS... · a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide

Exercise3–EstimatingproteinmolecularweightNOTE:A12%polyacrylamidegelcaneffectivelyresolveorseparateproteinsbetween20kDaand100kDa,sobesureNOTtoincludemolecularweightstandardproteinsoutsidethisrangeinyourstandardcurve.

1. Placeyourstainedgelonawhitetransilluminatoranduseasmallrulertomeasureincmthedistancefromthemiddleofthebandtothetopoftheresolvinggelforeachmolecularweightstandardprotein*between20kDaand100kDa.Recordthesevaluesinyournotebook.

2. Plotthesevaluesonthesemi-loggraphpaperfoundattheendofthislabanddrawthebestfitlinethroughthepoints.Acopyofthisstandardcurveshouldbeplacedinyourlabnotebook.

3. Foreachproteinsampleloadedonyourgel,identifythemostprominentband(thiswillbetheproteinofinterest,theotherbandsarecontaminants),measurethedistancefromthemiddleofthebandtothetopoftheresolvinggel.Recordthesevaluesinyournotebook.

4. Estimatethemolecularweightofeachproteinusingthestandardcurveasshownonthepreviouspageandrecordinyournotebook.

5. Estimatethemolecularweightofeachproteinbyvisualcomparisonwiththeproteinmolecularweightstandardsandrecordinyournotebook.

6. Answerthestudyquestionsassociatedwiththislab.

NOTE:Forthislaboratoryyouwillturninaformallabreport.*Theproteinmolecularweightstandardmostlikelyusedonyourgelisshownbelow.Ifadifferentproteinmolecularweightstandardwasusedyourinstructorwillprovidethedetails.

63

Page 8: Bio 6 – SDS-PAGE Lab - SDS... · a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide

64

Page 9: Bio 6 – SDS-PAGE Lab - SDS... · a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide

SDS-PAGELabStudyQuestions NAME:1.SDS-PAGEisanacronymreferringto3specificcomponents(SDS,PAandGE).Indicatewhat

SDS-PAGEstandsforandbrieflydescribeeachofthese3components.2.Whatdoesitmeanto“denature”aproteinandwhyisthisimportantforSDS-PAGE?3.DescribehowyoudenaturedtheproteinsyouusedforSDS-PAGE.4.Whatsubstanceinsampleloadingbufferisresponsibleforbreakingdisulfidebonds?5.Diagramadisulfidebondunder“BEFORE”andalsodiagramwhatitshouldlooklikeafter

boilinginthepresenceofthesubstancefromthepreviousquestion(“AFTER”).

BEFORE AFTER6.Whatisthepurposeofloading“proteinmolecularweightstandards”onthegel?

65

Page 10: Bio 6 – SDS-PAGE Lab - SDS... · a polyacrylamide gel that is subjected to electric current. The rate at which a protein moves through the microscopic pores of a polyacrylamide

7.Listthemolecularweightsofthestandardproteinsrunonyourgelandchecktheonesthatyouusedtomakeyourstandardcurve.

8.Describeeachofthetwomethodsyouusedtoestimateproteinmolecularweight.9.Whydidyoumeasurethedistanceeachproteintraveledintothegelfromthetopofthe

resolvinggelandnotthebottomofthewell?

66