bio-catalytic conversion of syngas: current and …secure site...

18
BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND POTENTIAL APPLICATIONS FOR BIOFUEL PRODUCTION Mathieu Haddad, Ph.D. [email protected] Department of Microbiology, Immunology and Infectious Diseases

Upload: others

Post on 01-Nov-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND POTENTIAL APPLICATIONS FOR BIOFUEL PRODUCTION

Mathieu Haddad, Ph.D.

[email protected]

Department of Microbiology, Immunology and Infectious Diseases

Page 2: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

INTRODUCTION: WASTE TODAY

• 2012: 3 billion urbanites 1.2 kg MSW / person / day (1.3 billion tonnes per year)

• 2025: 4.3 billion urbanites 1.42 kg MSW / person / day (2.2 billion tonnes per year)

• Public Health and environmental concerns

• Actual (downstream) solid waste management:

• Recycling

• Anaerobic digestion / Composting

• Incineration

• Landfill disposal

Hoornweg, D., Bhada-Tata, P., & Kennedy, C. (2013). Environment: Waste production must peak this century. Nature, 502(7473), 615–617

Page 3: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

INTRODUCTION: GASIFICATION AND SYNGAS

An emerging waste to energy technology: Gasification

Inc.:AlterNRG, Dynamis Energy, Enerkem, InEnTec, Plasco Energy Group...

“Conversion at high temperature (800 – 1800°C) at atmospheric or elevated pressures (up to 33 bar) with limited O2 of any carbonaceous fuel to a gaseous product with a useable heating value: syngas (CO, H2, CO2)”

Higman, C. Van der Burgt, M., 2003. Gasification. Gulf Professional Publishing Higman, C. (2013). Gasification Technologies Conference. In State of the Gasification Industry – the Updated Worldwide Gasification Database. Colorado Springs (CO).

Cumulative Worldwide Gasification Capacity and Growth

Page 4: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

I – CONVENTIONAL GAS TO LIQUID: FISCHER-TROPSCH

The FT process uses metal catalysts (Fe/Co) to thermochemically convert syngas into liquid hydrocarbons:

n CO + 2n H2 CnH2n + n H2O

http://www.altonaenergy.com/project_gasification.php

Page 5: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

I – CONVENTIONAL GAS TO LIQUID: FISCHER-TROPSCH

Daniell J, Köpke M, Simpson SD. Commercial Biomass Syngas Fermentation. Energies. 2012; 5(12):5372-5417.

Griffin, D. W., & Schultz, M. A. (2012). Fuel and chemical products from biomass syngas: A comparison of gas fermentation to thermochemical conversion routes. Environmental Progress & Sustainable Energy, 31(2), 219–224.

Pros:

• Fast process / Low gas retention time

• Known technology

Cons:

• Energy intensive process (7 MPa & 350°C)

• High intolerance to contaminants (H2S, CO2, HCN, HCl): extensive syngas cleaning required

• High CAPEX

• Catalysts require a fixed ratio of gases: low flexibility

• Low catalyst selectivity (45%): undesired products

Energy efficiency

• Feedstock: Woody biomass

• Final product: ethanol

• Energy efficiency: 45%

Page 6: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

II - INNOVATIVE GTL PROCESS: SYNGAS FERMENTATION

Innovative approach: Acetogens as biocatalysts to convert syngas into liquid hydrocarbons.

Müller, Volker, and Frerichs, Janin(Sep 2013) Acetogenic Bacteria. In: eLS. John Wiley & Sons Ltd, Chichester

Daniell J, Köpke M, Simpson SD. Commercial Biomass Syngas Fermentation. Energies. 2012; 5(12):5372-5417

CO /

CO2 + H2

Acetate

M. thermoacetica

A. woodi

C. aceticum

Ethanol

C. autoethanogenum C. ljungdahlii

C. ragsdalei C. carboxydovorans

Butanol

C. carboxidovorans C. drakei

C. scatologenes B. methylotrophicum

2,3 Butanediol

C. autoethanogenum C. ljungdahlii C. ragsdalei

Definition: Anaerobic prokaryotes characterized by the Wood–Ljungdahl pathway of CO2 reduction with the acetyl-CoA synthase as the key enzyme of the pathway.

Page 7: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

II - INNOVATIVE GTL PROCESS: SYNGAS FERMENTATION

Müller, Volker, and Frerichs, Janin(Sep 2013) Acetogenic Bacteria. In: eLS. John Wiley & Sons Ltd, Chichester

Daniell J, Köpke M, Simpson SD. Commercial Biomass Syngas Fermentation. Energies. 2012; 5(12):5372-5417

Griffin, D. W., & Schultz, M. A. (2012). Fuel and chemical products from biomass syngas: A comparison of gas fermentation to thermochemical conversion routes. Environmental Progress & Sustainable Energy, 31(2), 219–224.

Pros:

• Mesophilic conditions (30-40°C), 1 atm

• Tolerance to impurities: fewer gas cleanup required

• High selectivity regardless of syngas composition: products at predetermined ratios

• Low CAPEX / OPEX

Cons:

• Limited mass transfer rate of gases: lower solubility (especially CO and H2)

• Low cell density => low volumetric activity

Energy efficiency

• Feedstock: Woody biomass

• Final product: ethanol

• Energy efficiency: 57%

Page 8: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

II - INNOVATIVE GTL PROCESS: SYNGAS FERMENTATION

http://www.ineos.com/en/businesses/INEOS-Bio/

Daniell J, Köpke M, Simpson SD. Commercial Biomass Syngas Fermentation. Energies. 2012; 5(12):5372-5417

INEOS Bio (Vero Beach, FL)

Start date: November 1st, 2012

Scale: Commercial plant

Feedstock: yard, vegetative and household waste

Biocatalyst: GM Closrtidium ljungdahlii

Products:

• 6 MW (gross) of electricity (unused syngas & recovered heat)

• 8 million gallons of ethanol per year

Capacity: 300 dry tons per day

Page 9: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

II - INNOVATIVE GTL PROCESS: SYNGAS FERMENTATION

http://www.coskata.com/

Daniell J, Köpke M, Simpson SD. Commercial Biomass Syngas Fermentation. Energies. 2012; 5(12):5372-5417

Coskata (Madison, PA)

Start date: October, 2009

Scale: Demonstration plant

Feedstock: wood biomass and municipal solid waste

Biocatalyst: GM Clostridium ragsdalei & Clostridium carboxidivorans

Products: Ethanol

Capacity: ND

Page 10: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

II - INNOVATIVE GTL PROCESS: SYNGAS FERMENTATION

http://www.lanzatech.com/

http://www.biofuelsdigest.com/bdigest/2013/08/14/algae-to-fuel-developers-lanzatech-is-supersizing-our-fries/

Daniell J, Köpke M, Simpson SD. Commercial Biomass Syngas Fermentation. Energies. 2012; 5(12):5372-5417

Lanzatech (New Zealand, USA, India, China)

Start date: October, 2005

Scale: Pilot plant (NZ), Demonstration plant (China),

Feedstock: steel mill off-gases, syngas from wood residues

Biocatalyst: GM Clostridium autoethanogenum

Products: Ethanol, Butanol & and 2,3-Butanediol

Capacity: ND

Page 11: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

III – CONVENTIONAL GTG: THE WATER GAS SHIFT REACTION

CO + H2O(g) = H2 + CO2 ΔG0=-20kJ/mol

Newsome, D.S., 1980. The Water-Gas Shift Reaction. Catalysis Reviews, 21(2), pp.275–318

Torres, W., Pansare, S.S. & Goodwin, J.G., 2007. Hot Gas Removal of Tars, Ammonia, and Hydrogen Sulfide from Biomass Gasification Gas. Catalysis Reviews, 49(4), pp.407–456

Conventional method: catalysts

Two-step process: Cr2O3 – Fe2O3 (≈350°C) and CuO (≈200°C)

Pros:

• Fast process / Low gas retention time

• Known technology

Cons:

• Catalysts need to be regenerated (energy intensive & costly)

• High intolerance to sulfur: need for gas pretreatment (H2S <0.1 ppm)

• High CAPEX

• Catalysts are effective under specific conditions: low flexibility

Page 12: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

CO + H2O(g) = H2 + CO2 ΔG0=-20kJ/mol

Svetlichny, V.A., Sokolova, T.G., Gerhardt, M., Ringpfeil, M. (1991). Carboxydothermus hydrogenoformans gen. nov., sp. Nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. System. Appl. Microbiol. 14, 254-260.

Svetlichny, V.A., Peschel, C., Acker, G., Meyer, O., (2001) Two Membrane‐Associated NiFeS‐ Carbon Monoxide Dehydrogenases from the Anaerobic Carbon‐Monoxide‐Utilizing Eubacterium Carboxydother

mus hydrogenoformans. Journal of Bacteriology. 183(17), 5134– 5144.

Innovative approach: a biological catalyst, Carboxydothermus hydrogenoformans

Pros:

• Hyperthermophilic (70°C) with High duplication time (≈2 hours)

• CO (or pyruvate) as sole source of Carbon & Energy

• High tolerance to sulfur

• High H2 yield (≥95%)

• 5 CODH: Tolerant to 100% CO / 2 bars in the headspace

Cons:

• Low biomass density (planktonic cultures) -> low volumetric activity

• CO mass transfer limitation: Low solubility at 70°C

III – INNOVATIVE GTG: THE BIO-WATER GAS SHIFT REACTION

Page 13: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

Set Up

• 35 L gas-lift reactor, @70°C

• 100% CO & Basal Mineral Medium

Operation

• 3 months

• 2 Phases: unsupported vs. supported (1.0 g.L-1 bacto-peptone) growth

• Gradually augmenting CO loading

Haddad, M., Cimpoia, R., & Guiot, S. R. (2014). Performance of Carboxydothermus hydrogenoformans in a gas-lift reactor for syngas upgrading into hydrogen. International Journal of Hydrogen Energy, 39(6), 2543–2548

Material & Methods

III – INNOVATIVE GTG: THE BIO-WATER GAS SHIFT REACTION

Page 14: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

• Logarithmic relationship between QR:QCO and CO Conversion Efficiency and Specific Activity

• mass transfer limited < QR:QCO=40 < biologically limited

Performance of the gas-lift reactor under

supported growth of C. hydrogenoformans

Unsupported Growth

YH2 constant ≈ 80%

ECO max (79%) obtained at QCO = 0.05 mol.Lrxr

-1.d-1

QCO max = 0.08 mol.Lrxr-1.d-1

If QCO= 0.13 mol.Lrxr-1.d-1

activity drop

and reactor failure (biologically limited)

Supported Growth (peptone)

YH2 constant ≈ 95%

ECO max (90%) obtained at QCO = 0.05 mol.Lrxr

-1.d-1

QCO max = 0.30 mol.Lrxr-1.d-1

If QCO= 0.46 mol.Lrxr-1.d-1

activity drop

and reactor failure (biologically limited)

Results & Discussion

Haddad, M., Cimpoia, R., & Guiot, S. R. (2014). Performance of Carboxydothermus hydrogenoformans in a gas-lift reactor for syngas upgrading into hydrogen. International Journal of Hydrogen Energy, 39(6), 2543–2548

III – INNOVATIVE GTG: THE BIO-WATER GAS SHIFT REACTION

Page 15: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

Haddad, M., Cimpoia, R., & Guiot, S. R. (2014). Performance of Carboxydothermus hydrogenoformans in a gas-lift reactor for syngas upgrading into hydrogen. International Journal of Hydrogen Energy, 39(6), 2543–2548

III – INNOVATIVE GTG: THE BIO-WATER GAS SHIFT REACTION

Conclusion

• Promising technology: high and stable performances (YH2, ECO, A)

• Importance of 2 parameters: bacto-peptone and QR:QCO ratio

• With biomass concentration of 0.106 gVSS.Lrxr-1 and bioactivity of 2.7 molCO.gVSS

-1.d-1 maximal volumetric CO conversion ca. 0.28 molCO.Lrxr

-1.d-1 (8m3.mrxr-3.d-1)

• Low cell density affected the volumetric activity (18x lower than sessile growth)

limitation for higher QCO

Enhanced for possible scale-up

• Sessile growth using physical medium (beads) will allow 18x higher cellular density =>Enhanced volumetric activity => Higher QCO

• Liquid phase renewal and recirculation: maximize cellular activity and enhance mass transfer

Page 16: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

SUMMARY – SYNGAS FERMENTATION – GAS TO LIQUID

Second generation biofuel technology currently in development with many advantages (compared to chemical catalysis):

• low-temperature/pressure

• tolerance to several impurities

• flexible H2/CO ratio feed gas

• higher overall fuel and thermal efficiency

Actual technologies: acetogenic bacteria for the production of acetate, ethanol, butanol & 2,3-butanediol.

Improvement for higher yields / rates made possible using:

• Metabolic engineering

• Reactor design

• Process optimization

Page 17: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

SUMMARY – SYNGAS FERMENTATION – GAS TO GAS

Next-generation syngas fermentation:

• gaseous biofuel (H2, CH4)

• Mixed population: acetogenic and hydrogenogenic bacteria

• Metabolically engineered hydrogenogenic carboxydotrophs with higher yields / hydrogen production rates

Page 18: BIO-CATALYTIC CONVERSION OF SYNGAS: CURRENT AND …Secure Site cdn.revolutionise.com.au/cups/bioenergy/files/gbmkf3iq1kdlufqj.pdf · INTRODUCTION: WASTE TODAY • 2012: 3 billion

QUESTIONS?

ACKNOWLEDGMENT

Doctoral Supervisor: Serge R. Guiot, Ph.D.

Bioengineering Group, NRC-CRNC Montreal

[email protected]