biochem 1 lm03slides_s16

Upload: john

Post on 22-Feb-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Biochem 1 LM03slides_S16

    1/25

    Lecture Notes for

    Chapter 2Aqueous Chemistry

    Essential BiochemistryThird Edition

    Charlotte W. Pratt | Kathleen Cornely

    1

  • 7/24/2019 Biochem 1 LM03slides_S16

    2/25

    +

    !Hydrogen ions or protons combine with H2O to

    form hydronium ions (H3O+)

    ! Probably delocalized

    !Proton jumping

    ! H+relayed through network of water molecules

    ! Mobility greater than simple diffusion

    !

    Like crowd surfing

    (Free) Protons Dont Exist2

  • 7/24/2019 Biochem 1 LM03slides_S16

    3/25

    +

    !

    Ionization of water! H2O"#H

    ++ OH-

    ![H2O] (55.5 M) >> [H+] or [OH-]

    ! DefineKW, ionization constant of water

    The pH Scale3

    K=

    H+!" #$ OH

    %!" #$

    H2O[ ]

    KW = K H

    2O[ ] = H+!" #$ OH

    %!" #$

  • 7/24/2019 Biochem 1 LM03slides_S16

    4/25

    +

    If [H+] is > 10-7M, then [OH-] must be

  • 7/24/2019 Biochem 1 LM03slides_S16

    5/25

    +

    !Concentrations of H+and OH-on very small scale

    !Lets convert to positive whole integers

    !

    pH = power of hydrogen(etymology uncertain)

    pH Scale5

    pH = ! log H+"# $%

  • 7/24/2019 Biochem 1 LM03slides_S16

    6/25

    +

    !What happens if [H+] increases

    above 10-7M?

    !Will the number in the exponent get

    larger or smaller?!So, as solution gets more acidic, pH

    decreases

    pH Scale6

  • 7/24/2019 Biochem 1 LM03slides_S16

    7/25

    +Acid-Base Chemistry

    !Using Brnsted-Lowry definition of acids &

    bases

    !Acid = proton donating

    !HCl + H2O#H3O++ Cl-

    !Base = proton accepting

    !NaOH + H3O+#Na++ 2H2O

    7

  • 7/24/2019 Biochem 1 LM03slides_S16

    8/25

    +Acid-Base Chemistry

    !

    Most biological acids/bases are not strong!CH3COOH + H2O"#CH3COO

    -+ H3O+

    !Ka= acid dissociation constant

    8

    Much larger

    K=

    CH3COO

    !"# $% H3O+"# $%

    CH3COOH[ ] H2O[ ]

    Ka = K H

    2O[ ] =

    CH3COO!"# $% H

    +"# $%

    CH3COOH[ ]

  • 7/24/2019 Biochem 1 LM03slides_S16

    9/25

    +Acid-Base Chemistry

    !Kastill a small numberlets do the whole integer

    thing again

    !The more acidic the compound, the larger the value

    ofKa

    !The larger the value ofKa, the smaller the value of pK

    !As pK$, acid strength%

    ! Greater tendency to donate H+

    9

    pK = pKa= ! logKa

  • 7/24/2019 Biochem 1 LM03slides_S16

    10/25

    +Henderson-Hasselbalch

    !How are pH and pKrelated?

    !Consider the dissociation of a weak acid:

    !HA = acid; A-= conjugate base

    !Expression forKa:

    10

    HA! A"

    + H+

    Ka =

    A!"# $% H

    +"# $%

    HA[ ]

  • 7/24/2019 Biochem 1 LM03slides_S16

    11/25

    + Henderson-Hasselbalch

    !Rearrange:

    !Take the (-) log of both sides

    !Different form:

    11

    !log H+"# $%= ! logKa! logHA[ ]A!"# $%

    pH=pK+ logA!"# $%

    HA[ ]

    H+!" #$= Ka

    HA[ ]A

    %!" #$

    Ka =

    A!"# $% H

    +"# $%

    HA[ ]

  • 7/24/2019 Biochem 1 LM03slides_S16

    12/25

    +Henderson-Hasselbalch

    !

    What happens when [A-] = [HA]?

    !pH = pK

    !So the pKis the pH at which!of the groups

    are deprotonated (ionized)

    12

    Conjugate base

    Acid

    Different forms

    of same grouppH=pK+ logA!"# $%

    HA[ ]

  • 7/24/2019 Biochem 1 LM03slides_S16

    13/25

    +Henderson-Hasselbalch

    !Many groups on biological molecules candonate or accept H+

    !Act as acids and bases

    ! E.g. NH2/NH3+ and COO-/COOH on amino

    acids

    13

    pH=pK+ logA!"# $%

    HA[ ]

  • 7/24/2019 Biochem 1 LM03slides_S16

    14/25

    +Polyprotic acids ionize more than

    once and have multiple pK

    s!H3PO4= phosphoric acid pK1= 2.15

    !H2PO4-= monobasic pK2= 6.82

    !HPO42- = dibasic pK3= 12.38

    !PO43-= tribasic

    H3PO4 H2PO4- HPO4

    2- PO43-

    +

    H+

    +

    H++

    H+

    pK1 pK2 pK3

    14

  • 7/24/2019 Biochem 1 LM03slides_S16

    15/25

    +Determining Protonation State

    !When pH = pK, [HA] = [A-]; group is!protonated

    !When pH < pK:

    !So if pH < pK, the group is more protonated

    15

    pH - pK = logA!"# $%

    HA[ ]

    If pH < pK, then pH - pK= (-) = logA!"# $%

    HA[ ]

    A!"# $%

    HA[ ] A

    !"# $%

  • 7/24/2019 Biochem 1 LM03slides_S16

    16/25

    +Determining Protonation State

    !When pH = pK, [HA] = [A-]

    !When pH > pK:

    !So if pH > pK, the group is more deprotonated

    16

    pH - pK = logA!"# $%

    HA[ ]

    If pH > pK, then pH - pK= (+) = logA!"# $%

    HA[ ]

    A!"# $%

    HA[ ]>1 and A

    !"# $% > [HA]

  • 7/24/2019 Biochem 1 LM03slides_S16

    17/25

    +Aqueous Buffers

    !When you add a strong acid to water, all of the acid

    contributes to pH$

    ! HCl#H++ Cl-

    !

    When you mix a strong acid with a weak acid(conjugate base), the pH change is less

    ! HCl + A-#HA + Cl-

    ! The conjugate base of the weak acid can accept some

    of the H+

    !Acid neutralized

    17

  • 7/24/2019 Biochem 1 LM03slides_S16

    18/25

    +Aqueous Buffers

    !Same thing goes for strong base + weak acid

    ! NaOH + HA#Na++ A-+ H2O

    ! Weak acid donates H+to some of the OH-

    !

    Base neutralized

    !Buffers resist pH changes

    ! Buffers: acid (HA) + conjugate base (A-)

    18

  • 7/24/2019 Biochem 1 LM03slides_S16

    19/25

    +Buffering Capacity

    !

    Titration curve for acetic acid

    !Rapid change in pH at the start and end points

    !More gradual change in-between

    19

    !Best buffering capacity in

    flat area of curve

    !

    ~1 pH unit on either side ofmidpoint (pK)

  • 7/24/2019 Biochem 1 LM03slides_S16

    20/25

    +Convenient Rule of Thumb

    pH (range) = pK 1

    ! This means [A] = 10 [HA]

    ! This means [A] = 1/10 [HA] or [HA] = 10 [A-]

    10

    0.1

    Buffers tend to resist changes in pH when [HA] and [A]

    differ by no more than a factor of 10.

    20

  • 7/24/2019 Biochem 1 LM03slides_S16

    21/25

    +Maintaining pH in Blood

    !

    Normal internal pH is 6.9-7.4

    !Metabolic reactions generate acid

    ! How can the pH be adjusted?

    !

    CO2(g) in blood forms carbonic acid (H2CO3):! CO2+ H2O"#H2CO3"#H

    ++ HCO3-

    21

    pK~3.6

  • 7/24/2019 Biochem 1 LM03slides_S16

    22/25

    +Maintaining pH in Blood

    !

    CO2(g) in blood forms carbonic acid (H2CO3):! CO2+ H2O"#H2CO3"#H

    ++ HCO3-

    ! Occurs spontaneously, but carbonic anhydrase helps

    ! Lungs expel CO2(g), pulls equilibrium away from low pH

    !

    Law of mass action

    ! Changes in lung function adjust blood pH in min or hours

    !What about a more long term way of adjusting pH?

    22

  • 7/24/2019 Biochem 1 LM03slides_S16

    23/25

    +Maintaining pH Homeostasis

    23

    !Kidneys play major role in buffering metabolic acids! Filter HCO3

    - from bloodstream into kidney filtrate

    ! Need way to reclaim HCO3- for buffering acids inside the

    kidney cell

    1) Antiporter moves H+

    out of cell and Na+

    in (ionexchanger)

    From

    bloodstream

    2) H+combines with HCO3-to

    form CO2! CO2diffuses across membrane

  • 7/24/2019 Biochem 1 LM03slides_S16

    24/25

    +Maintaining pH Homeostasis

    24

    3) Converted back to HCO3- to

    neutralize acids in the cell

    ! (H+pumped out)

    Frombloodstream

    Metabolites are in

    constant motion

  • 7/24/2019 Biochem 1 LM03slides_S16

    25/25

    +Maintaining pH Homeostasis

    !How do you replenish bicarbonate in the bloodstream?

    !Metabolic processes generate CO2

    !

    Use carbonic anhydrase to regenerate H++ HCO3-

    !Pump H+out into filtrate (urine) and HCO3-into blood

    25