bioetanol generalitati ppt.pdf

Upload: anne-smith

Post on 02-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    1/134

    Bio-Ethanol Production Processes

    NC STATE UNIVERSITY BAE 590G 2007

    Sugar Platformsugarcanesweet sorghumsugar beet

    Extraction

    Sugars

    FermentationBeer

    (~15% EtOH)

    Starch Platformcorn, potatosweet potato

    Saccharification

    Cellulose Platform

    wood, grassesagri. residues

    Hydrolysis

    Pretreatment

    Cellulose

    > 90% Ethanol

    Distillation

    > 99% Ethanol

    Dehydration

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    2/134

    Starch-to-Ethanol Process

    Hydrolysis

    (C6H10O5) n + n H 2O n C 6H12O6Starch Glucose

    Fermentation

    C6H12O6 2 C 2H5OH + 2 CO 2Glucose Ethanol

    Microbes

    Amylases

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    3/134

    Starch-to-Ethanol Process

    Starch-rich biomass: Corn, wheat, barley, sorghum, rice, potato, sweet potato

    Chemical composition:

    Water Starch Proteins Fat Fiber Minerals

    % % % % % %

    Corn 7-16 65-70 8-10 3-5 1-1.5 1.5-2

    Potato 68-85 9-25 1-3.5 0.5-1.8

    SweetPotato

    60-80 10-30Sugar

    5%

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    4/134

    Corn-to-Ethanol ProcessNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    5/134

    MaterialsCorn

    Enzymes: -amylase, glucoamylase

    Yeast

    Water: Effect of ions

    Ca 2+Mg 2+

    Na +

    H+

    Fe3+ , Fe 2+Cu 2+

    Mn 2+

    Zn 2+

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    6/134

    Starch

    200 1000 GDissolve in water at 70-80 oCIodine - Blue

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    7/134

    Starch

    ~ 25 G/branch

    Iodine - Purple

    Dissolve at ~130 oC

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    8/134

    Starch

    -amylase Glucoamylase

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    9/134

    Starch expansion and solubilization

    Temperature

    V i s c o

    s i t y

    20oC

    70oC

    130 oC

    50oC

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    10/134

    Liquefaction

    Starch Oligosaccharides + Dextrins -amylase

    -amylase

    - Optimum conditions:

    Temperature: 60 65 oC(140 - 150 oF)

    - Sources:Grain malt

    Bacteria Bacillus subtilis

    pH 5.0 6.5

    from Fungi from Bacteria

    65 70 oC(150 - 158 oF)

    6.0 7.5

    Fungi Aspergillus spp.

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    11/134

    Liquefaction

    Sensitivity of -amylase to pH

    4.0 5.0 10.09.08.07.06.0

    pH

    40oC

    70oC

    E n z y m e a c t

    i v i t y ,

    %

    25

    50

    75

    100

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    12/134

    Liquefaction

    Sensitivity of -amylase to temperature

    50 10090807060

    Temperature, oC

    E n z y m e a c t

    i v i t y ,

    %

    25

    50

    75

    100

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    13/134

    Saccharification

    OligosaccharidesDextrins

    Glucoamylase

    - Optimum conditions:Temperature: 58 60 oC

    pH 4.0 4.5

    GlucoamylaseGlucose

    * Saccharification can be combined with fermentation.

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    14/134

    Saccharification

    Effect of pH to Glucoamylase

    2.0 3.0 8.07.06.05.04.0

    pH

    60oC

    E n z y m e a c t

    i v i t y ,

    %

    25

    50

    75

    100

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    15/134

    Saccharification

    Effect of temperature to Glucoamylase

    20 30 8070605040

    Temperature, oC

    E n z y m e a c t

    i v i t y ,

    %

    25

    50

    75

    100

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    16/134

    Fermentation

    Glucose

    Yeast

    - Growth conditions:

    Temperature: -5 38 oC

    pH 2.0 8.0

    YeastEthanol + CO 2

    Optimum

    ~ 30 oC

    4.8 5.0

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    17/134

    Summary of Corn-to-EtOH Process

    Mashing

    Mix w/ water

    Temperature pH Time

    ~ 60 oC ~ 6.0 5-10 min

    Liquefaction -amylase100-200 U/g corn

    70-80o

    C ~ 6.0 ~ 120 min

    SaccharificationGlucoamylase~120 U/g corn

    60-65 oC ~ 5.0 ~ 30 min

    FermentationYeast

    > 1.5 x 108/ml

    30-32 oC ~ 5.0 60-72 h

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    18/134

    Energy Balance

    Energy input for ethanol production from corn:

    Corn production:

    Seeding, Fertilizers, Herbicides and Pesticides,Irrigation, Harvesting

    Corn-to-EtOH process

    Transportation, Grinding,Heat in Mashing and Hydrolysis,(-) Heat recovery from fermentation,Distillation, Dehydration, Residue Management

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    19/134

    Cellulose-to-Ethanol ProcessCellulosic biomass:

    Woody biomass (trees):

    Pine, aspen, willow, etc.

    Herbaceous biomass (grasses):

    Switch grass, Bermuda grass,corn stover, wheat straw, etc.

    Waste cellulosic materials:Waste paper,solid waste, etc.

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    20/134

    Cellulose-to-Ethanol ProcessEnzymatic hydrolysis (saccharification)

    (C6H10O5) n + n H 2O n C 6H12O6Cellulose Glucose

    FermentationC

    6H

    12O

    62 C

    2H

    5OH + 2 CO

    2Glucose Ethanol

    Microbes

    Cellulases

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    21/134

    Major Composition

    Cellulose Hemicellulose Lignin

    Hardwood stems 40 - 55% 24 - 40% 18 - 25%

    Softwood stems 45 - 50% 25 - 35% 25 - 35%

    Switchgrass 45% 31% 12%

    Costal Bermuda grass 35% 22% 20%

    Corn stover 39% 22% 21%

    Wheat straw 30% 50% 15%

    White paper 85 - 99% 1 - 15%

    Newspaper 40 - 50% 25 - 40% 18 - 30%

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    22/134

    Cellulose StructureNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    23/134

    Cellulose Structure

    Source: Hopkins, W.G., 1999. Introduction to Plant Physiology, second edition. John Wiley & Sons, Inc., New York.Source: Hopkins, W.G., 1999. Introduction to Plant Physiology, second edition. John Wiley & Sons, Inc., New York.

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    24/134

    Hemicellulose Structure

    A complex, heterogeneous mixture of sugars and sugarderivatives that form a highly branched network.

    X X X X X X X X X2 3

    4--Me- -D-GA 11 -L-A

    X X: -1,4-linked D-xylopyranose unitsMe: methoxy groupGA: glucuronic acidA: esterified- -L-arabinofuranose

    side chain

    Arabinoxylan

    The monomers include hexoses (glucose, galactose, andmannose) and pentoses (arabinose and xylose).

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    25/134

    Lignin

    A complex polymer: Branched polymer/polydisperse

    Hold the fibers together

    Provide support for the trees and grasses

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    26/134

    Lignin Structure

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    27/134

    Structure of Lignocellulosic Biomass

    Source: Hopkins, W.G., 1999. Introduction to Plant Physiology, second edition.

    John Wiley & Sons, Inc., New York.

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    28/134

    PretreatmentPurpose:

    Remove lignin and/or hemicellulose

    Reduce crystallinity of the cellulose

    Increase the porosity of the materials

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    29/134

    Pretreatment

    Requirements:

    Improve the formation of sugars or the ability to subsequentlyform sugars by hydrolysis

    Avoid the degradation or loss of carbohydrates

    Avoid the formation of byproducts inhibitory to thesubsequent hydrolysis and fermentation

    Be cost-effective

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    30/134

    Pretreatment TechnologyPhysical Pretreatment

    Mechanical comminution:

    Chipping to: 10 30 mm

    Grinding or milling to: 0.2 2 mm

    NC STATE UNIVERSITY BAE 590G 2007

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    31/134

    Pretreatment TechnologyPhysico-chemical Pretreatment

    Steam explosion:

    ChippedLignocellulosic

    Biomass

    Steam

    160 260 oC0.69 4.83 atm

    A few seconds to a few minutes

    Swiftly release pressure toatmosphere

    NC STATE UNIVERSITY BAE 590G 2007

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    32/134

    Steam Explosion:

    CelluloseLignin

    Hemicellulose

    Pretreatment

    Ladisch, 2006

    NC STATE UNIVERSITY BAE 590G 2007

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    33/134

    Steam Explosion:

    @ high temperature,

    Hemicellulose degraded

    Lignin transformedExample:

    Untreated Poplar chips: Hydrolysis efficiency 15%

    Treated Poplar chips: Hydrolysis efficiency 90%

    Advantage:

    70% less energy compared to mechanical treatment

    Disadvantage:

    Generation of inhibitory compounds to microbes

    NC STATE UNIVERSITY BAE 590G 2007

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    34/134

    Physico-chemical Pretreatment

    Ammonia Fiber Explosion (AFEX):

    ChippedLignocellulosicBiomass

    LiquidAmmonia

    90 oCHigh Pressure

    ~ 30 min Swiftly release pressure to

    atmosphere

    Ammonia vapor recovery

    Compressor

    NC STATE UNIVERSITY BAE 590G 2007

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    35/134

    Ammonia Fiber Explosion (AFEX):

    CelluloseLignin

    Hemicellulose

    Pretreatment

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    36/134

    Ammonia Fiber Explosion (AFEX):

    Tremendously increase the porosity

    Keep the composition essentially the same

    Do not generate inhibitory compoundsSignificantly reduce the crystallinity of the cellulose

    Works well on low-lignin biomass such as grasses but not efficiently on high-lignin biomass such as woods

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    37/134

    CO 2 Explosion:

    Physico-chemical Pretreatment

    High Pressure

    Short time

    ChippedLignocellulosicBiomass

    CO 2

    Swiftly release pressure toatmosphere

    Relative low efficiency compared to Steam Explosion and AFEXLess expensive than AFEX

    Do not generate inhibitory compounds

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    38/134

    Ozonolysis:

    Chemical Pretreatment

    Ozone removes ligninslightly attacks hemicellulosehardly affect cellulose

    Disdvantage: Cost

    Advantages:

    Effectively remove ligninDo not generate inhibitory compounds

    Reactions at room temperature and atmospheric pressure

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    39/134

    Acid hydrolysis

    Chemical Pretreatment

    Concentrated H 2SO 4 and HCl can be used for hydrolysis,

    but they are corrosive and hazardous, and must be recovered.Dilute acid pretreatment:

    H2SO 4: 1.0 1.5%

    - Degrade hemicellulose- Reduce crystallinity of cellulose

    @ low solid loading (5 10 %)

    120 160 oC for 15 60 min@ high solid loading (10 40 %)

    160 190 oC for 5 30 min

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    40/134

    Dilute acid pretreatment for coastal Bermuda grass

    Bermudagrassarabinan

    4.3%galactan

    1.1%

    xylan19.4%

    ash4.2% glucan32.4%

    other 18.3%

    acid-insoluble

    lignin20.3%

    Sun and Cheng, 2005

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    41/134

    H 2SO 4 (%)

    0.5 0.7 0.9 1.1 1.3 1.5 1.7

    T o t a l r e

    d u c i n g s u g a r s

    ( m g / g )

    80

    160

    240

    320

    400

    480

    30 min60 min

    90 min

    H 2SO 4 (%)

    0.5 0.7 0.9 1.1 1.3 1.5 1.7

    X y l o s e

    ( m g / g )

    0

    40

    80

    120

    160

    Dilute acid pretreatment for coastal Bermuda grass

    Sun and Cheng, 2005

    Coastal Bermuda grass prehydrolyzate composition

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    42/134

    Alkaline hydrolysis (NaOH, lime)

    Chemical Pretreatment

    Principle:

    Break the intercellular bonds crosslinking hemicelluloseand other compounds (lignin and cellulose)

    Results:

    Increase porosity and internal surface areaDecrease in the degree of polymerization

    Decrease crystallinity

    Separate lignin, hemicellulose, and celluloseDisrupt the lignin structure

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    43/134

    Organosolv process

    Chemical Pretreatment

    Use organic solvents to break the internal lignin-

    hemicellulose bonds at high temperature (> 185 oC)

    Organic solvents:

    methanol, ethanol, acetone, ethylene glycoloxalic and salicylic acids

    @ low temperature, the organic solvents have to be usedtogether with inorganic acid such as H 2SO 4 and HCl.

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    44/134

    Fungal treatment

    Biological Pretreatment

    Microbes: brown-, white-, and soft-rot fungi

    Brown-rot fungi attack cellulose

    White- and soft-rot fungi attack lignin and cellulose

    Some white-rot fungi produce lignin-degradingenzymes such as lignin peroxidases

    Advantage: Inexpensive

    Disadvantage: Time-consuming

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    45/134

    Enzymatic Hydrolysis

    (C6H10O5) n + n H 2O n C 6H12O6

    Cellulose Glucose

    Cellulases

    Cellulase (Endoglucanase)

    Cellobiohydrolase (Exoglucanase)

    -Glucosidase

    Cellulases: -(1 4) glycoside hydrolases

    Low cost compared to acid or alkaline hydrolysis

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    46/134

    Enzymatic Hydrolysis

    Exoglucanase

    Cellobiose

    Cellulose

    -Glucosidase

    Glucose

    Endoglucanase

    Cello-oligosaccharides

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    47/134

    Cellulolytic EnzymesCellulase (Endoglucanase)

    Randomly attack the -(1, 4) glycosidic bonds of cellulose

    Rapidly decrease the viscosity of cellulose solution

    Normally act on only amorphous cellulose not crystallinecellulose

    Can be produced from fungi and bacteria

    Optimum reaction conditions depend on the sourceorganism

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    48/134

    Cellulase (Endoglucanase)

    Microbes that produce cellulase and its properties

    Fungi

    Aspergillus sp.

    pH (optimum) Temp.

    2-9 (4-5) 45-70 oC

    P. chrysosporium 3-6 (4-5) 40-50o

    CTrichoderma sp. 5-9 (5) 50-65 oC

    Humicola sp. 3.5-9.5 (5) 50-65 oC

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    49/134

    Microbes that produce cellulase and its properties

    Bacteria pH (optimum) Temp.

    Cellulase (Endoglucanase)

    Bacillus sp. 4-10 (4.5-7) 60-70 oC

    Clostridium sp. sp. 5-7 (6-6.5) 60-70 oC

    Pseudomonas sp. 7-8 (8)

    Ruminococcus sp.

    Streptomyces sp.

    Thermomonospora sp.

    ll l lNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    50/134

    Cellobiohydrolase (Exoglucanase)

    Cellulolytic Enzymes

    Release cellobiose from the non-reducing ends of a

    cellulosic substrateHydrolyze both amorphous and crystalline cellulose

    Generally do not hydrolyze substituted cellulose such as

    carboxymethyl cellulose

    Mainly from fungi

    It was found recently that some bacteria can alsoproduce cellobiohydrolase

    ll b h d l ( l )

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    51/134

    Microbes that produce cellobiohydrolase and its properties

    Fungi

    Coniophora sp.

    pH (optimum) Temp.

    5.0 50 oC

    Humicola sp. 5.0 50o

    C Penicillium sp. 4.5 60 oC

    Fusarium sp. 5.0 50 oC

    Cellobiohydrolase (Exoglucanase)

    Trichoderma sp. 5.0 80 oC

    C ll l l i ENC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    52/134

    -Glucosidase

    Cellulolytic Enzymes

    Degrade cellobiose into glucose

    Very broad specificity to both glycon and aglycon substratessuch as steroid -glucosides and -glucosylceramides ofmammals, compared to cellulase and cellobiohydrolase

    Provide the source of energy and C in the form of glucoseto the host microorganisms

    Improve hydrolysis efficiency by degrading cellobiose,

    the end-product and competitive inhibitor ofcellobiohydrolase and cellulase

    Gl id

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    53/134

    Microbes that produce -Glucosidase and its properties

    Fungi

    Aspergillus sp.

    pH (optimum) Temp.

    4.5-5.0 65 oC

    Humicola sp. 5.0 50o

    C Penicillium sp.

    Candida sp. 6.8

    Saccharomyces sp. 6.8 45 oC

    -Glucosidase

    Trichoderma sp. 6.0-6.5

    Gl id

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    54/134

    Microbes that produce -Glucosidase and its properties

    Agrobacterium sp.

    Bacteria pH (optimum) Temp.

    Ruminococcus sp. 6.5 30-35o

    C

    -Glucosidase

    Clostridium sp. 6.0 65 oC

    Streptomyces sp. 6.5 50 oC

    Other EnzymesNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    55/134

    Xylanases

    Other Enzymes

    Attack -(1,4) bonds between D-xylose residues ofheteroxylans and xylo-oligosaccharides

    Do not degrade xylobiose

    Endo-acting enzyme

    Other EnzymesNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    56/134

    -Xylosidase

    Hydrolyze xylo-oligosaccharides to xylose

    Not active on xylan

    Other Enzymes

    Improving Enzymatic HydrolysisNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    57/134

    Factors affecting enzymatic hydrolysis:

    Substrates

    Cellulase enzyme activities

    Reaction conditions: Temperature, pH, etc.

    Improving Enzymatic Hydrolysis

    Improving Enzymatic HydrolysisNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    58/134

    Substrates

    Improving Enzymatic Hydrolysis

    @ low substrate level, increase of substrate conc.increases the hydrolysis rate.

    Optimal substrate load depends on the source ofcellulose and enzymes

    Another disadvantage of cellulosic materials

    Improving Enzymatic HydrolysisNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    59/134

    Enzyme dose and combination

    Cellulase dose: range 7 33 FPU/g substrate

    1 FPU (filter paper unit) = 1 micromole of reducing sugaras glucose produced by 1 ml of enzyme per minute

    Usual cellulase dose: 10 15 FPU/g substrate

    Improving Enzymatic Hydrolysis

    Use enzyme mixture addition of -Glucosidase

    Enzymatic Hydrolysis of BermudagrassNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    60/134

    Time (h)

    0 10 20 30 40 50 60 70 80

    G l u c o s e

    ( m g / g b i o m a s s )

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 CBU, 5 FPU

    25 CBU, 5 FPU50 CBU, 5 FPU

    Enzymatic Hydrolysis of Bermudagrass1 CBU (cellobiase unit) = 1 mol of cellobiose thatis converted into glucose per minute withcellobiose as a substrate

    Sun and Cheng, 2004

    Enzymatic Hydrolysis of Rye StrawNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    61/134

    Time (h)

    0 10 20 30 40 50 60 70 80

    G l u c o s e

    ( m g / g

    b i o m a s s )

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 CBU, 5 FPU25 CBU, 5 FPU50 CBU, 5 FPU

    Enzymatic Hydrolysis of Rye Straw

    Sun and Cheng, 2004

    Enzymatic Hydrolysis of BermudagrassNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    62/134

    Time (h)

    0 10 20 30 40 50 60 70 80

    C e l l o

    b i o s e

    ( m g / g

    b e r m u

    d a g r a s s

    )

    0

    8

    16

    24

    32 0 CBU, 5 FPU

    0 CBU, 10 FPU0 CBU, 15 FPU25-50 CBU, 5-15 FPUcontrol

    Enzymatic Hydrolysis of Bermudagrass

    Sun and Cheng, 2004

    Improving Enzymatic HydrolysisNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    63/134

    Improving Enzymatic Hydrolysis

    Simultaneous Saccharification and Fermentation(SSF)

    Mixture of Microorganisms:

    Fugus T. reesei for hydrolysis or saccharification

    Yeast S. cerevisiae for fermentation

    Optimal T: 38 oC compromise between optimal Tfor hydrolysis (45-50 oC) andfermentation (30 oC)

    Cost ReductionNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    64/134

    Cost Reduction

    Utilization of hemicellulose and lignin

    Fermentation of pentose to ethanol

    Gasification of lignin and hemicellulose

    Recycle of enzymes

    Ethanol Production: Fermentation

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    65/134

    Overall Reactions:

    C6H12O6 + 2ADP

    Glucose

    2C 2H5OH + 2CO 2 + 2ATP + 10.6kJ

    Ethanol

    Enzymes

    180 g 92 g

    Ethanol Production: Fermentation

    S gar Catabolism Gl col sis EMP Path a

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    66/134

    Sugar Catabolism Glycolysis EMP Pathway

    OH

    HO

    OH

    H

    H

    HH

    OHOH

    CH 2O

    Glucose-6-phosphate(product)

    P

    OH

    HO

    OH

    H

    H

    HH

    OHOH

    CH 2OH

    Glucose(substrate)

    1

    ATP ADP

    Glucokinase(enzyme)

    (Adenosine Triphosphate)

    (Adenosine Diphosphate)

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    67/134

    Sugar Catabolism Glycolysis EMP Pathway

    Phosphoglucoseisomerase

    OH

    HO

    OH

    H

    H

    HH

    OHOH

    CH 2O

    Glucose-6-phosphate

    P

    2

    H

    HO

    O

    OH

    HOHOH

    CH 2OHP OCH 2

    Fructose-6-phosphate

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    68/134

    Sugar Catabolism Glycolysis EMP Pathway

    Fructose-1,6-bisphosphatase

    3

    H

    HO

    O

    OH

    HOHOH

    CH 2OP OCH 2

    Fructose-1,6-bisphosphate

    H

    HO

    O

    OH

    HOHOH

    CH 2OHP OCH 2

    Fructose-6-phosphate

    PATP ADP

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    69/134

    Sugar Catabolism Glycolysis EMP Pathway

    Fructose-1,6-bisphosphate

    adolase

    4

    HHO

    O

    OH

    HOHOH

    CH 2OP OCH 2

    Fructose-1,6-bisphosphate

    P CH 2O

    C = O

    CH 2OH

    P

    +

    CH 2O

    H C OH

    H C = O

    P

    Dihydroxyacetone phosphate

    Glyceraldehyde3-phosphate

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    70/134

    Sugar Catabolism Glycolysis EMP Pathway

    5

    CH 2O

    C = O

    CH 2OH

    P CH 2O

    H C OH

    H C = O

    P

    Dihydroxyacetone phosphate

    Glyceraldehyde3-phosphate

    Triose phosphateisomerase

    (96%) (4%)

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    71/134

    Sugar Catabolism Glycolysis EMP Pathway

    6

    CH 2O

    C = O

    CH 2OH

    P CH 2O

    H C OH

    C = O

    P

    Dihydroxyacetone phosphate 1,3-Diphosphoglycerate

    NAD + NADH

    O P

    Nicotinamideadenine

    dinucleotide(Reduced form)

    Glyceraldehyde3-phosphate

    dehydrogenase

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    72/134

    Sugar Catabolism Glycolysis EMP Pathway

    7

    CH 2O

    H C OH

    C = O

    P

    1,3-Diphosphoglycerate

    O P

    CH 2O

    H C OH

    C = O

    P

    OHPhosphoglycerate

    kinase

    ADP ATP

    3-Phosphoglycerate

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    73/134

    Sugar Catabolism Glycolysis EMP Pathway

    8

    CH 2OH

    H C O

    C = O

    P

    OH

    Glycerophosphate

    mutase

    2-Phosphoglycerate

    CH 2O

    H C OH

    C = O

    P

    OH

    3-Phosphoglycerate

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    74/134

    g y y y

    9

    CH 2

    C O

    C = O

    P

    OHEnolase

    2-Phosphoenolpyruvate

    CH 2OH

    H C O

    C = O

    P

    OH

    2-Phosphoglycerate

    H2O

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    75/134

    g y y y

    10

    CH 2

    C O

    C = O

    P

    OH

    2-Phosphoenolpyruvate

    CH 2

    C OH

    C = O

    OHPyruvate

    kinase

    ADP ATP

    Enolpyruvate

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    76/134

    g y y y

    11

    CH 3

    C = O

    C = O

    OH

    Pyruvate

    kinase

    Pyruvate

    CH 2

    C OH

    C = O

    OH

    Enolpyruvate

    Sugar Catabolism Glycolysis EMP Pathway

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    77/134

    g y y y

    12

    CH 3=

    O

    Py ruva teC OH

    = O

    C

    CH 3 CH 2OH

    Ethanol

    Alcoholdehydrogenase

    NAD +

    NADH + H +

    CH 3=

    O

    CHAcetaldehyde

    CO 2

    Py r u va ted eca r b oxyla se

    CH 3=

    O

    C OH

    Acetate

    Tricarboxylic Acid(TCA) Cycle

    Fermentation By-products

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    78/134

    CH 2O

    C = O

    CH 2OH

    P CH 2O

    H C OH

    C H 2OH

    P

    Dihydroxyacetone phosphate

    -Phosphoglycerol

    NAD+

    NADH 2

    -Phosphoglyceroldehydrogenase

    CH 2OH

    H C OH

    C H 2OH

    Phospholipase

    Glycerol

    Glycerol1

    Fermentation By-products

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    79/134

    Acetic Acid 2

    CH 3 CH 2OH + H 2O CH 3 COOH + 2H 2

    Acetogenic bacteria

    Ethanol Acetic Acid

    CH 3 CH 2OH + O 2 CH 3 COOH + H 2O Acetobacter

    Fermentation By-products

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    80/134

    Butyric Acid 3

    C6H12O6

    Glucose

    2CH 3CH 2CH 2COOH + CO 2 + 2H 2 + 61.44kJ

    Butyric Acid

    Clostridia

    Fermentation By-products

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    81/134

    Other alcohols4

    n-Propanol

    iso-Butanol

    iso-Pentanol

    Methanol

    Tricarboxylic Acid (TCA) Cycle or Citric Acid Cycle

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    82/134

    http://en.wikipedia.org/wiki/Citric_acid_cycle

    Microbiology of Ethanol Fermentation

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    83/134

    Microorganisms in ethanol fermentationYeasts Sacchromyces cereviciaeBacteria

    Microorganism Growth RequirementCarbonEnergy

    Nutrients

    YeastNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    84/134

    HistoryYeast Cell Composition

    Water 80%

    Dry matter 20%C 50%O 30-35%

    N 5%

    H 5%P 1%Mineral 5-10%

    or Proteins 40-45%carbohydrates 30-35%

    Nucleic acids 6-8%lipids 4-5%

    Yeast Morphology

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    85/134

    Yeast Cell Structure

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    86/134

    Yeast Cell Structure

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    87/134

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    88/134

    YeastCellCycle

    Fermentation

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    89/134

    Glucose

    Yeast

    - Growth conditions:

    Temperature: -5 38o

    C pH 2.0 8.0

    YeastEthanol + CO 2

    Discussion: T; pH

    Optimum

    ~ 30o

    C4.8 5.0

    Yeast PropagationNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    90/134

    Carbon source:Glucose, maltose, etc.

    Nitrogen source: Need ammonium or organic N

    (NH 4)2SO 4, (NH 4)3PO 4, urea

    Phosphorus source:

    Need P mainly at early fermentation.

    Need small amount, usually enough from raw starch

    materials such as corn or other grains. Addition of P is needed when sugar beet is used.

    Lab Yeast PropagationNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    91/134

    Slope Culture

    10 ml Test Tube Yeast extract, peptone glucose (YEPG)

    28 - 30 oC; 24 hours

    250 ml Flask YEPG28 - 30 oC; 15 - 20 hours

    3,000 ml flask Saccharification product28 - 30 oC; 15 - 20 hours

    Yeast Propagation in Production

    1 10 20

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    92/134

    Lab yeast culture Fermentation seed tanks1 : 10-20

    Discussion:

    Hygiene is extremely important in yeast propagation to prevent the fermentation from contamination.

    Medium: Saccharides

    Measures: Disinfection Restricted personnel access Filtration of air in the room

    Fermenter for EtOH Produc.

    New Techniques on Yeast

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    93/134

    High temperature yeast: 40-50 oC

    - Dont need heat exchange

    - Possible to combine saccharification and fermentation

    Ethanol-tolerant yeast:

    Normal yeast: 10-12% (v) EtOH

    18-20% (v) EtOH

    Genetically engineered yeast: directly convert starch to EtOH

    New Techniques on YeastNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    94/134

    Active Dry Yeast

    Normally, yeast contains ~ 80% water.

    Under rapid vacuum drying at 50-60oC, water content

    can be reduced to 5%.

    Active dry yeast has to be vacuum packed to keep it activity

    Active dry yeast: 30 40 billion cells/g

    Immobilized yeast fermentation

    Heat ProductionNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    95/134

    C6H12O6 + 2ADP

    Glucose

    2C 2H5OH + 2CO 2 + 2ATP + Heat

    Ethanol

    Yeast

    180 g 92 g2P i

    Overall net heat production for all stages: 157 kJ/mole

    Energy storage in ATP: 2 x 31 = 62 kJ

    Overall heat can be produced: 157 + 62 = 219 kJ/mole

    Energy Balance

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    96/134

    Energy production from combustion of ethanol:

    1 Kcal = 4.18 kJ = 3.97 B.t.u.

    C2H5OH + 3O 2 2CO 2 + 3H 2O + 326 Kcal/mole

    46 g

    Ethanol Fermentation Technology

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    97/134

    Batch fermentation

    Operation: Reactor disinfection

    Add substrate, yeast culture, and nutrients

    Fermentation

    SeparationFementer

    Batch Fermentation

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    98/134

    Advantages:

    Simple system and easy to operate

    Less chance for contamination

    Disadvantages:

    Low efficiency

    Changing environment for yeast

    Ethanol Fermentation Technology

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    99/134

    Fed-batch fermentation

    Yeast, nutrients, and some substrate are added at the beginning, and more substrate is added in several times.

    Fementer

    Ethanol Fermentation Technology

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    100/134

    Continuous fermentation

    Fementer

    Substrate

    Product NutrientsOperation:

    Reactor start-up

    Steady-state operation

    Continuous fermentation

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    101/134

    Advantages:

    High efficiency

    Easy for automation

    Disadvantages:

    Challenge to protect from contamination

    Stable environment for microbes

    Control of Ethanol Fermentation

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    102/134

    Temperature

    Optimum T for Yeast ( Sacchromyces cereviciae ) growthand fermentation:

    28 32 oC or 82 - 90 oF

    Fermentation produces heat, so heat exchanger is usuallyneeded to maintain an optimal T

    Protection from contamination

    Distillation and DehydrationNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    103/134

    Ethanol concentration in fermentation beer: 10-20%

    Fuel ethanol: > 99%

    Distillation: Ethanol: 10-20% < 93%

    Dehydration: Ethanol: < 93% > 99%

    Distillation

    Bubble Point and Dew Point

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    104/134

    Bubble Point and Dew Point

    @ 1 atm, water is boiling at 100 oC

    Water

    Heat

    25oC Water

    Heat

    Water vapor

    100 oC

    Heat

    Water

    vapor 100 oC

    Distillation

    When you have two liquid

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    105/134

    Examples: Water EthanolBenzene - Toluene

    When you have two liquidcompounds that can becompletely dissolved in each

    other at any ratio, the physicalproperties of the solution can bedifferent from a single liquidcompound.

    A+B

    Phase Equilibrium

    120

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    106/134

    AB0.0 0.2 0.60.4 0.8 1.0

    T e m p e r a t u r e , o

    C

    x = mole fraction of A in liquidy = mole fraction of A in vapor

    60

    70

    80

    90

    100

    110

    120

    Bubble-point curve

    Dew-point curve

    x=0.32 y=0.68

    IdealSolution

    Phase Equilibrium

    y=x Ideal solutiono r

    1.0

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    107/134

    Henrys Law

    pA = y e P = H Axe

    0.0 0.2 0.60.4 0.8 1.0 y = m o l e

    f r a c t

    i o n o f

    A i n v a p o

    x = mole fraction of A in liquid

    0.2

    0.4

    0.6

    0.8

    AB

    Raoults Law

    pA = y eA P = p AxeA

    pB = y eB P = p BxeB

    0

    0

    Phase Equilibrium: Azeotropic mixture

    80

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    108/134

    A(Benzene)

    B(EtOH)

    0.0 0.2 0.60.4 0.8 1.0

    T e m p e r a t u r e , o

    C

    x = mole fraction of A in liquidy = mole fraction of B in vapor

    60

    65

    70

    75

    t b = azeotropic point

    x

    y

    Phase Equilibrium: Azeotropic mixture

    o r1.0

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    109/134

    0.0 0.2 0.60.4 0.8 1.0 y = m o l e

    f r a c t

    i o n o f

    A i n v a p o

    x = mole fraction of A in liquid

    0.2

    0.4

    0.6

    0.8

    A (Benzene)B (EtOH)

    ya

    xa

    ya = x a

    100

    Phase Equilibrium: Ethanol WaterNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    110/134

    A(EtOH)

    B(H 2O)

    0.0 0.2 0.60.4 0.8 1.0

    T e m p e r a t u r e , o

    C

    x = mole fraction of A in liquidy = mole fraction of B in vapor

    70

    75

    80

    90

    85

    95

    78.5 oC

    Phase Equilibrium: Ethanol Water

    a p o r 1.0

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    111/134

    0.0 0.2 0.60.4 0.8 1.0 y = m o l e

    f r a c t

    i o n o f

    E t O H i n v a

    x = mole fraction of EtOH in liquid

    0.2

    0.4

    0.8

    EtOHH 2O

    0.6

    xa=0.84

    Distillation: Ethanol Water mixture

    100

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    112/134

    A(EtOH)

    B(H 2O)

    0.0 0.2 0.60.4 0.8 1.0

    T e m p e r a t u r e , o

    C

    x = mole fraction of A in liquidy = mole fraction of B in vapor

    70

    75

    80

    90

    85

    95

    78.5 oC

    Distillation: Ethanol Water mixture

    C li WCondenser

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    113/134

    Fractionating

    Column

    EtOH-H 2OMixture

    Bottom Product

    Overhead Product

    SteamReboiler

    Cooling Water

    R e c t i f y i n g

    S e c t i o n

    S t r i p p

    i n g

    S e c t i o n

    Reflux

    D, x D Total mass balance: F = D + B

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    114/134

    FractionatingColumn

    EtOH-H 2OMixture

    F, x F

    B, x B

    S t r i p p i n g

    R e c t i f y i n g

    EtOH mass balance: F x F = D x D + B x B

    Thus,

    DF

    xF - xBxD - xB

    =

    BF

    xD - xFxD - xB

    =

    Operating Lines

    D, x D c t i f y i n g

    L Total mass balance: Vn+1 = D + L n

    EtOH mass balance: V y = D x + L x

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    115/134

    n

    n+1F, x F

    FractionatingColumn

    EtOH-H 2OMixture B, x B

    S t r i p p

    i n g

    R e

    c

    Vn+1 , yn+1Ln, xn

    EtOH mass balance: Vn+1 yn+1 = D x D + L n xn

    Thus,L

    nD + L n

    yn+1 = x n +D x

    DD + L n

    Heat (T difference between plates and latent heatof vapor) balance for all the liquid and vapor at plate n will determine L n and Vn+1 .

    Assume:

    Latent heats >> other heatsLatent heats of the components in are close

    Then, L n = L n-1 = = L

    - Operating line for rectifying section

    D, x D c t i f y i n g

    LSimplified Operating line:

    Operating Lines

    LD + Lyn+1 = x n +

    D x DD + L

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    116/134

    FractionatingColumn

    EtOH-H 2OMixture

    F, x F

    B, x B

    S t r i p p

    i n g

    R e

    n

    n+1

    Vn+1

    , yn+1

    Ln, x

    n

    D + Lyn+1 n D + L

    Reflux Ratio R D:R D =

    L

    DThen:R D

    R D + 1y = x +

    xDR D + 1

    or L

    D + Ly = x +

    D x DD + L

    Top Plate: y = x = x D

    Distillation: Example

    1.0 xD = 0.8If R D = 2.0

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    117/134

    0.0 0.2 0.60.4 0.8 1.0 y = m o l e

    f r a c

    t i o n o f

    E t O H i n

    v a p o r

    x = mole fraction of EtOH in liquid

    0.2

    0.4

    0.8

    EtOHH 2O

    0.6

    xa=0.84

    D

    XDR D + 1

    = 0.27

    Then

    Operating Line

    - y axis intersect

    Operating LinesTotal mass balance: Lm = V m+1 + B

    EtOH mass balance: Lm xm = V m+1 ym+1 + B x BD, x D

    i f y

    i n g L

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    118/134

    mm+1 Vm+1 , y m+1

    Lm, xm

    Thus,Lm

    Lm - By

    m+1= x

    m-

    B x B

    Lm - B- Operating line for stripping section

    Temperature in reboiler determines xB and yr

    FractionatingColumn

    EtOH-H 2OMixture

    F, x F

    B, x B

    S t r i p p

    i n g

    R e c t i

    yr

    xB

    A(EtOH)

    B(H 2O)

    0.0 0.2 0.60.4 0.8 1.0

    T e m p e r a t u r e , o

    C

    x = mole fraction of A in liquidy = mole fraction of B in vapor

    70

    75

    80

    90

    100

    85

    95

    Distillation: Example

    1.0xD = 0.8If R D = 2.0

    S d

    NC STATE UNIVERSITY BAE 590G 2007

    R

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    119/134

    0.0 0.2 0.60.4 0.8 1.0 y = m o l e

    f r a c

    t i o n o f

    E t O H i n

    v a p o r

    x = mole fraction of EtOH in liquid

    0.2

    0.4

    0.8

    EtOHH 2O

    0.6

    xa=0.84

    XDR D + 1

    = 0.27Then

    Operating LineIf T reboiler = 98 oC

    Then xB = 0.02

    If feed xF

    = 0.18

    Saturatedliquid feed

    If saturatedliquid feed

    Feed Plate

    R DR D + 1

    y = x +xD

    R D + 1

    r

    1.0

    S t t d

    Feed Plate

    Distillation: ExampleNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    120/134

    0.0 0.2 0.60.4 0.8 1.0 y = m o l e

    f r a c

    t i o n o f

    E t O H i n

    v a p o r

    x = mole fraction of EtOH in liquid

    0.2

    0.4

    0.8

    EtOHH 2O

    0.6

    xa=0.84

    Operating Line

    If feed xF = 0.18Cold Feed Saturated

    Liquid Vapor &Liquid If Saturatedliquid feed

    If Cold feed

    If Vapor &liquid feed

    Vapor

    If Vapor feed

    o r1.0 L

    D + Ly = x +D x D

    D + L

    Distillation: DiscussionNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    121/134

    0.0 0.2 0.60.4 0.8 1.0 y = m o l e

    f r a c t

    i o n o f

    E t O H i n v a p o

    x = mole fraction of EtOH in liquid

    0.2

    0.4

    0.8

    EtOHH 2O

    0.6

    Operating Line

    or

    R DR D + 1

    y = x +xD

    R D + 1

    Maximum R D ?

    Minimum R D ?

    Fractionating Column:Plate Column

    D, x Dg

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    122/134

    FractionatingColumn

    EtOH-H 2OMixture

    F, x F

    B, x B

    S t r i p p i n

    g

    R e c t i f y i n g

    Plate Efficiency:

    Fractionating Column:

    Plate Column

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    123/134

    Plate Efficiency:

    Single plate efficiencyLocal efficiency

    Overall efficiency

    Actual Plate # =Theoretical Plate #

    Plate Efficiency

    50 60 %

    Fractionating Column:Packed Column

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    124/134

    Fractionating Column: Packs

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    125/134

    Ballast Rings Cross Rings

    Ball-Shaped PacksSaddles

    NC STATE UNIVERSITY BAE 590G 2007

    Fractionating Column: Packs

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    126/134

    Ballast Rings

    Size: Diameter x Height: 1 x 1 inch

    Specific Surface Area: 108 m 2 /m 3

    Porosity: 86%

    NC STATE UNIVERSITY BAE 590G 2007

    Fractionating Column: Packed Column

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    127/134

    Equivalent Height of a Theoretical Plate

    Total Height of Packs = EHTP x Theoretical Plate #

    Dehydration

    Ethanol concentration in fermentation beer: 10-20%

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    128/134

    Fuel ethanol: > 99%

    Distillation: Ethanol: 10-20% < 93%

    Dehydration: Ethanol: < 93% > 99%

    Dehydration

    Molecular Sieves

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    129/134

    Dehydration

    Molecular Sieves9

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    130/134

    Pore diameter: ~ 0.3 nm or 0.3 x 10 -9 m

    Water molecular diameter: ~ 0.28 nm

    EtOH molecular diameter: ~ 0.4 nm

    Water Adsorption: 0.3 MPa

    Molecular Sieve Recovery - Water Adsorption:Vacuum 50 kPa

    By-Products

    Starch-rich biomass:

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    131/134

    Chemical composition:

    Water Starch Proteins Fat Fiber Minerals% % % % % %

    Corn 7-16 65-70 8-10 3-5 1-1.5 1.5-2

    Potato 68-85 9-25 1-3.5 0.5-1.8

    By-Products

    Cellulose-rich biomass:

    NC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    132/134

    Cellulose Hemicellulose Lignin

    Hardwood stems 40 - 55% 24 - 40% 18 - 25%

    Softwood stems 45 - 50% 25 - 35% 25 - 35%

    Switchgrass 45% 31% 12 - 20%Costal Bermuda grass 35% 22% 9 - 20%

    Corn stover 39% 22% 21%

    Wheat straw 30% 50% 15%

    Corn-to-Ethanol ProcessNC STATE UNIVERSITY BAE 590G 2007

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    133/134

    Lignocellulosic BiomassNC STATE UNIVERSITY BAE 590G 2007

    CelluloseHydrolysis

    HexoseFermentation

    Ethanol

  • 8/10/2019 Bioetanol generalitati ppt.pdf

    134/134

    FermentationEthanolHemicellulose

    PretreatmentHexoseHydrolysis

    Pentose F e r m

    e n t a t i o n

    LigninDirect Combustion

    HeatGasification

    Syn gas (CO, H 2, CO 2, CH 4)