biomimetic sorbents - stanford university...biomimetic sorbents for selective co 2 capture jen...

25
Biomimetic Sorbents for Selective CO 2 Capture Jen Wilcox, Zhenan Bao, Daniel T. Stack, Jiajun He, John To, Chris Lyons and Erik Rupp GCEP Symposium, Stanford, California October 8 th , 2013

Upload: others

Post on 21-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Biomimetic Sorbents for Selective CO2 Capture

    Jen Wilcox, Zhenan Bao, Daniel T. Stack, Jiajun He, John To, Chris Lyons and Erik Rupp

    GCEP Symposium, Stanford, California

    October 8th, 2013

  • •  Scale of CO2 and Minimum Work •  Carbon-Based Sorbents •  Biomimetic Sorbents

    Agenda

  • To Prevent 2 °C Warming …

    •  Between  2000-‐2050  if  cumula3ve  emissions  are  less  than:  –  1,000  Gt  →  25%  probability  

    global  warming  beyond  2  °C  –  1,440  Gt  →  50%  probability  

    global  warming  beyond  2  °C  

    Where  we’re  projected  to  go  (BAU):  –  Assuming  annual  increases:  

    •  Coal  –  0.3%  •  Oil  –  0.9%  •  Natural  Gas  –  2.3%  

    –  ≈  31  Gt  CO2  emiUed  in  2011  –  ≈  44  Gt  CO2  projected  in  2050  –  1790  cum.  Gt  CO2  in  2050!  

    BAU  

    2009 2050

    Ref:  Allen  et  al.,  Nature,  2009  Ref:  BP  Sta3s3cal  Rev.  of  World  Energy,  2012  

  • Expanding the Impact of CCS

    BAU  -‐  1790  Gt  CO2  

    1000  Gt  CO2  →  25%  probability  of  ↑2°C  

    1440  Gt  CO2  →  50%  probability  of  ↑2°C  

    Scenario   Avoided  Cum.  Gt  CO2  Replace  Coal  w/  NG   1512  

    90%  Capture  (Point  Source  Electric  Sector)   1288  

    90%  Capture  (Point  Source  Electric  Sector)  +  50%  Transport  (on-‐board  capture;  EV;  DAC)  

    1083  

  • 1

    3

    5

    7

    9

    11

    13

    15

    17

    19

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    Minim

    um  W

    ork  (kJ/mol  CO

    2  Cap

    tured)  

    CO2  ConcentraPon  

    50%  capture;  80%  purity  75%  capture;  80%  purity  90%  capture;  80%  purity  50%  capture;  95%  purity  75%  capture;  95%  purity  90%  capture;  95%  purity  50%  capture;  99%  purity  75%  capture;  99%  purity  90%  capture;  99%  purity  

    Minimum  Work  

    Coal  GasificaPon  

    1-‐4  kJ/mol  CO2  

    Natural  Gas  CombusPon  6-‐9  kJ/mol  CO2  

    Coal  CombusPon  5-‐7  kJ/mol  CO2  

    Direct  Air  Capture  19  –  21  kJ/mol  CO2  

    •  DAC  is  always  ≈  20  kJ/mol  CO2,  regardless  of  %  capture  and  purity  

    •  Reason:  capturing  less  of  a  given  total  gas  

    •  Addi3onal  work  required  due  to  density  changes  w/  mixtures  of  CO2  and  N2  

    •  95%CO2  +  5%N2:  681  kg/m3  •  80%CO2  +  20%N2:  343  kg/m3  •  ≈  0.5  kJ/mol  CO2  addi3onal  

    compression  energy!  

    Wilcox, Carbon Capture, 2012

  • Low-‐Hanging  Fruit  –  Point  Sources  

    •  Most  adsorp3on  and  absorp3on  separa3on  process  studies  focus  on  material  capacity  for  CO2  

     

    But…      •  Single  500-‐MW  power  plant  emits  ≈  11,000  tons  CO2  per  day!    

    –  In  2011  ≈  600  500-‐MW  plants    (coal  and  NG)  US-‐wide  •  If  the  kine3cs  are  too  slow  →  capital  costs  ↑  due  to  need  for  

    high  #  units  to  process  the  flue  gas  •  How  can  we  speed  up  the  kine3cs  of  a  separa3on  process?    

  • Carbonic Anhydrase (CA) for CO2 Capture

    Ø   Fast  reacPon  8  orders  of  magnitude  faster  than  noncatalyzed  bicarbonate  forma3on  in  water  

    Ø   Low  reacPon  heat  low  energy  penalty  for  regenera3on  

    Ø   High  selecPvity  over  N2  and  H2O  

     Ø   Tolerance  of  water  

     

  • Carbon as a Substrate

    Assume:    Heat  of  regenera3on  =  CpΔT  +  ΔH    hea%ng  up  all  material  in  system  from  T1  to  T2    +    breaking  the  CO2  interac%on    

  • Materials  Synthesis  

    The Team - Synthesis, Characterization, Testing

    PI:  Zhenan  Bao  John  To,  PhD  Student  Chemical  Engineering

                   

    Materials  TesPng  and  CharacterizaPon    

    PI:  Jen  Wilcox  Dr.  Erik  Rupp,  Research  Associate  Energy  Resources  Engineering  

    Jiajun  He    PhD  Student    

    Dr.  Reza  Haghpanah  Post-‐doc    

    PI:  Daniel  T.  Stack  Chris  Lyons,  PhD  Student  

    Chemistry  

  • •  Scale of CO2 and Minimum Work •  Carbon-Based Sorbents •  Biomimetic Sorbents

    Agenda

  • Recent Studies

    Sorbent CO2 Cap.* (mmol/g)

    Testing Methods

    Reference

    N-Doped Polypyrrole 0.8 Nova Sevilla et al. Adv. Funct. Mater. 2011

    Imine-Linked Polymer 0.6 Autosorb 1 Wang et al. Appl. Mater. Inter. 2013

    “Click” N-doped C 0.73 Belsorp Gu et al. Carbon 2013

    Carbon Nitride 0.7 Autosorb-1MP Deng et al. Chem. Eng. J. 2012

    Polyindole 1.1 Belsorp Saleh et al. Environ. Sci. Techol. 2012

    Poly(benzoxazine-co-resol) 0.7 Micromeritics Hao et al. J. Am. Chem. Soc. 2011

    *All values are taken at 25 °C and 0.1 bar of CO2

  • Effects of Carbonization Temperature

    Carbonization Temperature (°C)

    BET area (m2/g)

    Pore Volume (cc/g)

    Elemental Analysis CO2 Capacity* (mmol/g) N% C%

    600 62.3 0.077 8.29 46.21 0.16

    700 48.1 0.083 8.11 49.67 0.20

    800 148.3 0.172 5.66 58.39 1.13

    900 511.2 0.342 4.09 62.34 0.96

    *Measured  by  BT  at  25  °C  with  0.1  bar  of  CO2   Ways  to  further  improve  CO2  capacity?  

    •  Highest  capacity  at  800  oC  (close  to  the  literature  max)  

    •  Surface  area  significantly  increases  from  700  to  900  oC  

     

  • KOH Activation Before  Ac3va3on   Aver  Ac3va3on  

    •  Similar  morphology  •  More  space  in  the  networks  aver  ac3va3on      

    1 µm 1 µm

  • •  Microporous features with exceptional surface area (from 1500 to 3468 m2/g by BET) and pore volume (from 0.98 to 2.25 cc/g by QSDFT)

    •  High CO2 capacity at 25 oC and 0.1 bar: 1.42 mmol/g (800_3ac)

    KOH Activation

    Sample

    Textural properties N/C comp.

    [wt%]

    SBET

    [m2/g]

    Vt

    [cm3/g] Vmicro

    [cm3/g] N C

    500_3ac 3410.2 1.864 0.847 - -

    600_3ac 3468.0 2.248 0.723 0.92 76.87

    800_3ac 2640.8 1.615 0.582 1.17 75.21

    900_3ac 1499.7 0.980 0.544 2.33 80.50 !

  • CO2 Sorption Isotherms (25 oC)

    AC sample Adsorption conditions CO2 capacity (mmol/g)

    Yeast 25 °C, 1 bar 4.8 Eucalyptus sawdust 25 °C, 1 bar 4.8

    This work 25 °C, 1 bar 6.1

    Chen, Z. et al., Front. Environ. Sci. Eng. 2013, 7(3), 326-340.

  • •  Scale of CO2 and Minimum Work •  Carbon-Based Sorbents •  Biomimetic Sorbents

    Agenda

  • •  Use commercially-available porous materials as supports •  Functionalize via a simple mechanism •  Sorbent test and study the surface functional groups on

    CO2 adsorption

    Proof-of-Concept Experiments

  • Simplified  Zinc  FuncPonal  Group  

    Synthetic method and chemisorption of CO2

    Sample zinc silica 1: heated up to 250 °C prior to surface modification Sample zinc silica 2: direction functionalization without preheating

    Sample Zinc Loading (mmol/g)

    Silica gel 0.00003

    Zinc silica 1 1.63

    Zinc silica 2 1.82 Digested and analyzed by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy)

  • 19

    Breakthrough  Experiments:  Zinc  Silica  Dry Humid

    0 20 40 60 80 100

    0.00

    0.04

    0.08

    0.12

    CO

    2  Con

    centratio

    n  (-‐)

    T ime  (s )

     B lank  S ilica  G e l  Z inc  S ilica  1  Z inc  S ilica  2

    0 20 40 60 80 100

    0.00

    0.04

    0.08

    0.12

    CO

    2  Con

    centratio

    n  (-‐)

    T ime  (s )

     B lank  S ilica  G e l  Z inc  S ilica  1  Z inc  S ilica  2

    Sorbent CO2 Capacity

    (mmol/g) Preparation Process

    Zinc Loading (mmol/g)

    Surface Area (m2/g)

    Avg. Pore Size (nm)

    Pore Volume (cc/g) Dry Humid

    Silica gel 0.10 0.04 Commercial 0.0003 511 12.6 0.75 Zinc silica 1 0.06 0.06 Preheated 1.62 378 12.6 0.55 Zinc silica 2 0.36 0.30 Direct func. 1.83 349 6.8 0.53

  • In  Summary  

    •  This  work  aims  to  develop  affordable  and  scalable  carbon-‐based  sorbents  with  covalently  bonded  zinc  func3onali3es  for  selec3ve  CO2  capture  

    •  High-‐surface  area  microporous  carbon  was  synthesized  by  a  simple  solu3on-‐based  process,  with  CO2  adsorp3on  capacity  up  to  6.1  mmol/g,  which  exceeds  materials  presented  in  the  literature  

    •  Preliminary  results  indicate  equivalent  CO2  capacity  under  dry  and  humid  condi3ons,  by  simple  func3onaliza3on  of  silica  gel  with  zinc  

    •  Future  work  will  include  controlled  mesoporous  carbons  to  support  Zn  func3onaliza3on  

       

  • Acknowledgements  

    Funding  Global  Climate  Energy  Project,  Stanford  University  

     

    QuesPons?    

  • Minimum Work for Separation combined first and second laws

    Wmin = RT nBCO2 ln(yB

    CO2 ) + nBB −CO2 ln(yB

    B −CO2 )[ ] + RT nCCO2 ln(yCCO2 ) + nCC −CO2 ln(yCC −CO2 )[ ]−RT nA

    CO2 ln(yACO2 ) + nA

    A −CO2 ln(yAA −CO2 )[ ]

    Wilcox, Carbon Capture, Springer, 2012

  • Chemical Activation - Mechanism •  For  alkaline  hydroxide,  K+  or  Na+  are  easily  diffuse  into  the  amorphous  region  •  For  some  materials,  K+  is  beUer;  others  Na+  is  beUer  

    Viswanathan, Neel, Varadarajan, Methods of Activation and Specific Applications of Carbon Materials, 2009

  • Polymer Hydrogel

    Sample Monomer: Crosslinker

    BET Area

    (m2/g)

    CO2 Capacity* (mmol/g)

    900_2c 1:2 511.2 0.92

    *Measured by BT at 25 °C with 0.1 bar of CO2

    900_2c

    500 nm

    Easy synthesis of polymer hydrogel, followed by

    carbonization

  • Pore  Analysis  by  N2  SorpPon  

    BET Surface Area (m2/g)

    Average Pore Diameter

    (nm)

    Pore Volume (cc/g)

    Silica gel 510.7 12.6 0.75

    Zinc silica 1 337.8 12.6 0.55

    Zinc silica 2 348.8 6.8 0.53

    0.0 0.2 0.4 0.6 0.8 1.00

    100

    200

    300

    400

    500

    600

     

     

    Volum

    e  at  S

    TP  (cc

    /g)

    p/p0

     S ilica  G el  Z inc  S ilica  1  Z inc  S ilica  2

    0 10 20 30 40 500.0

    0.5

    1.0

    1.5

    2.0

     

     

    Pore  Volum

    e  (cc/g)

    P ore  D iamter  (nm)

     S ilica  G el  Z inc  S ilica  1  Z inc  S ilica  2

    N2 isotherms Pore size distribution by DFT method