biophysics - flow basic parameters

Upload: saif-alsaedy

Post on 06-Jul-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Biophysics - Flow Basic Parameters

    1/20

    Prof. dr hab. Zbigniew Dunajski 

    English Division

    Zakład Biofizyki i Fizjol. Cz. Warsaw

    Medial !niversi"y

  • 8/17/2019 Biophysics - Flow Basic Parameters

    2/20

    Press#rePress#re

    0 p

    h

    h p p  ρ 0

    h

    2m

     Newton Pascal 

    area

     force

     F  p  

  • 8/17/2019 Biophysics - Flow Basic Parameters

    3/20

    Ci$nienieCi$nienie

    0 p

    h

    h p p  ρ 0

    h

    2m

     Newton Pascal 

     przekrój

     sila

     F  p  

  • 8/17/2019 Biophysics - Flow Basic Parameters

    4/20

    %ydros"a"i &ress#re%ydros"a"i &ress#re 

  • 8/17/2019 Biophysics - Flow Basic Parameters

    5/20

    Basi fea"#res and &ara'e"ers of flow 

    Flow is volume/unit time (Flow = velocity x cross

    sectional area of the vessel)

    Flow is usually more important than velocity in thecardiovascular system because the amount of a material that is

     brought to or carried away from an organ is determined by the

    volume of blood passing through an organ each minute, not by

    the velocity of the blood 

    !v"   ⋅=

    #rof dr hab $bigniew %una&s'i

     ( fl#id) any 'edi#' "ha" an flow) inl#ding gases) and li*#idss#h as wa"er. 

  • 8/17/2019 Biophysics - Flow Basic Parameters

    6/20

    +he flow of a fl#id "hro#gh a &i&e is desribed by

    Berno#lli,s e*#a"ion, whih is an a&&lia"ion of"he law of conservation of mechanical energy  "o a

    'oving fl#id- 

    Berno#lli,s law

    here P is the pressure of the uid, ρ its density, h its

    height and v its velocity, g= *acceleration

    const v

     gh P    =⋅

    ++2

    2 ρ 

     ρ 

  • 8/17/2019 Biophysics - Flow Basic Parameters

    7/20

    Berno#lli,s law

    22

    2

    2

    2

    2

    *

    *v P v P    ρ  ρ   

    )(2

    )(222

    2

    *

    2

    2*

    2

    2

    2

    **

    2

    2

    2

    *

    *2

      vv P vv P vv

     P  P    ρ  ρ  ρ  ρ 

    *2 vv > *2  P  P  <

  • 8/17/2019 Biophysics - Flow Basic Parameters

    8/20

    Berno#lli,s law

    const v p  =

    2

    2

     ρ 

    2

    22

    2

    **

    22

    v pv p  ρ  ρ 

     

  • 8/17/2019 Biophysics - Flow Basic Parameters

    9/20

  • 8/17/2019 Biophysics - Flow Basic Parameters

    10/20

     

    e/eli zaniedba0 z'ian1 wysoko$i odink+w r#ry) "o wz+r #&raszza si1 do-

     

    W r#rze o 'niejszy' &rzekroj# iez &łynie szybiej 2v3 4v5 6) w zwi7zk# z "y' &an#je w niej 'niejsze i$nienieni/ w r#rze o wi1kszy' &rzekroj#.

    Ciecz płynąc w rurze o zmieniającym się przekroju ma mniejsze ciśnienie na odcinku, gdzie przekr ó j jest

    mniejszy.

    Podana wy/ej własno$0 iezy była znana &rzed sfor'#łowanie' r +wnania &rzez Berno#lliego i nie &o"rafiono

     jej wy"ł#'azy0) s"wierdzenie "o i obenie kł+i si1 ze 8zdrowy' rozs7dkie'8 wiel# l#dzi i dla"ego znane jes" &od

    nazw7   parado's hydrodynamicny.

    const v

     gh P    =⋅

    ++2

    2 ρ 

     ρ 

    http://pl.wikipedia.org/wiki/Paradoks_hydrodynamicznyhttp://pl.wikipedia.org/wiki/Paradoks_hydrodynamicznyhttp://pl.wikipedia.org/wiki/Paradoks_hydrodynamicznyhttp://pl.wikipedia.org/wiki/Paradoks_hydrodynamiczny

  • 8/17/2019 Biophysics - Flow Basic Parameters

    11/20

    Conserva"ion of flow

    93

    95

    9:

     

    93 ; 95 < 9:

    s3 s5

    v3v5

    v3=s3 ; v5=s5

    Flow ; >ol#'e?"i'e;veloi"y @ ross se"ional

    area of "he vessel

      9 ; >?" ; v="=s?" ; v=s

    > ; @=s ; v="=s

    s

    @

  • 8/17/2019 Biophysics - Flow Basic Parameters

    12/20

    A For a li*#id 'oving along a horizon"al "#be) "he flow (Q) is&ro&or"ional "o "he &ress#re differene ∆P be"ween "heends of "he "#be

    where is "he resis"ane of "he "#be. o"e "he si'ilari"ywi"h h',s aw- G ; >? 

    A +here are "wo "y&es of flow) la'inar  2s"rea'line6 and

    "#rb#len". Gn s"rea'line flow an individ#al li*#id 'ole#lere'ains a" "he sa'e dis"ane fro' "he walls of "he vesselas i" "ravels down i" and "he f#r"her "he 'ole#le is fro'"he wall) "he fas"er i" 'oves and "he flow is silen".

     R

     P Q

      )(∆=

  • 8/17/2019 Biophysics - Flow Basic Parameters

    13/20

    a'inar  2s"rea'line6 flow

    A +#rb#len" flow o#rs when individ#al 'ole#les 'ove

    irreg#larly. +#rb#len" flow is noisy. Mos" flow in "he

    ardiovas#lar sys"e' is s"rea'line. 

  • 8/17/2019 Biophysics - Flow Basic Parameters

    14/20

    Prze&ływ la'inarnyPrze&ływ la'inarny

  • 8/17/2019 Biophysics - Flow Basic Parameters

    15/20

  • 8/17/2019 Biophysics - Flow Basic Parameters

    16/20

    %agenPoise#ille law +he la'inar flow "hro#gh a &i&e is desribed by "he

    %agenPoise#ille law) s"a"ing "ha" "he flow ra"e 29 ;vol#'e of fl#id flowing &er #ni" "i'e6 is &ro&or"ional "o

    "he &ress#re differene P be"ween "he ends of "he &i&e

    and "he fo#r"h &ower of i"s radi#s r.

    η 

    π 

     P r Q

    -

    =

     η - viscosity he internal friction that causes the velocity gradient

    is called  the viscosity  

    the vessel in consideration is a small artery or an arteriole. 

  • 8/17/2019 Biophysics - Flow Basic Parameters

    17/20

    FlowFlow is &ro&or"ional "o "he &ress#re differene Pis &ro&or"ional "o "he &ress#re differene Pbe"ween "he ends of "he &i&e and "he fo#r"h &owerbe"ween "he ends of "he &i&e and "he fo#r"h &ower

    of i"s radi#s r.of i"s radi#s r. 

    H resis"ane of "he vessel H h'Is low G ; >? 

     R

     P Q

      )(∆=

    η 

    π 

     P r 

    Q

    -

    =

    -r l  R

    π η 

     

    resistance of the vessel decreases with r to 4 power 

    *.2-

     

    % d i J" d C "id Bif "i% d i J" d C "id Bif "i

  • 8/17/2019 Biophysics - Flow Basic Parameters

    18/20

    %e'odyna'is- J"enosed Caro"id Bif#ra"io%e'odyna'is- J"enosed Caro"id Bif#ra"iooal blood flow &a""erns &lay an i'&or"an" role in "he develo&'en")

    diagnosis and "rea"'en" of vas#lar disease. een" advanes in 'edial

    i'aging 'ake i" &ossible "o i'age :D vas#lar ana"o'y wi"h s#b'illi'e"er

    resol#"ion. +his da"a for's "he basis for o'"er si'#la"ions of blood flow"hro#gh KrealL vas#lar geo'e"ries. Flow &a""erns downs"rea' of a s"enosis

    &rovide ondi"ions for &la*#e and blood lo" for'a"ion) leading "o s"roke.

  • 8/17/2019 Biophysics - Flow Basic Parameters

    19/20

    %e'odyna'is- Coronary By&ass raf"%e'odyna'is- Coronary By&ass raf"

    hese two animations show the results of pulsatile computational fluid dynamics studies in

    simplified models of the distal end of a coronary bypass graft n the animation on the left, the

     presence of a graft downstream (ie to the right) of the stenosis (far left) and branch producesrelatively slow flow in the host between the graft and branch n the movie on the right, the

    graft has been placed close to the stenosis, and upstream of the branch, producing much faster

    and more uniform flow in the host

    !nimation provided by %r %avid 1teinmans research group

  • 8/17/2019 Biophysics - Flow Basic Parameters

    20/20

    Co'"er Modeling of "he Miroir#la"ionCo'"er Modeling of "he Miroir#la"ion

     

    1ince the 3% nature of microvascular networ's is often difficult to portray on paper, new

    image analysis tools for investigating microvascular oxygen transport using intravital videomicroscopy (445) are being developed 6ith a few simple computer imaging techni7ues,

    and specialied freeware, the microvasculature can be modeled in all its dimensions

    8virtually

    Movie acquired throughIVVM

    3D Computer model ofmicrovasculature based on IVVM