bio/pls 210 jan smalle [email protected] website: smalle lab (jasmal3/) [email protected]

35
BIO/PLS 210 Jan Smalle [email protected] Website: Smalle Lab (http://www.uky.edu/~jasmal3/)

Upload: melinda-cross

Post on 20-Jan-2016

213 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

BIO/PLS 210

Jan Smalle

[email protected]

Website: Smalle Lab(http://www.uky.edu/~jasmal3/)

Page 2: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Syllabus

Page 3: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu
Page 4: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

How to download the lectures?

http://www.uky.edu/~jasmal3/

TEACHING

PLS 210 Resources

Download Lectures

Go to:

Click on:

Page 5: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

The lectures

PDF file available before (download, print, study…)

Quiz during the lecture

Results of the quiz discussed at the beginning of the next lecture

Page 6: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

PLS/BIO210 Grades distribution over the past 7 years:

A: 21% (16-28%)

B: 21%

C: 28%

D: 22%

E: 8% (0-13%)

Page 7: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

The Chemistry of LifeChapter 2

Page 8: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

David Latimer and his bottle garden

Page 9: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu
Page 10: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu
Page 11: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Photosynthesis and Respiration

Photosynthesis:

6CO2 + 6H2O + energy C6H12O6 + 6O2

Respiration:

C6H12O6 + 6O2 6CO2 + 6H2O + energy

Page 12: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Atomic Particles

Particle Charge Mass Units Location

Proton + 1 Nucleus

NeutronNo

electrical charge

1 Nucleus

Electron -Negligible(0.0005 units)

Orbitals around nucleus

Page 13: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Twelve Most Common Elements in Living Organisms

Element Symbol Number of Protons

Hydrogen H 1

Carbon C 6

Nitrogen N 7

Oxygen O 8

Sodium Na 11

Magnesium Mg 12

Phosphorus P 15

Sulfur S 16

Chlorine Cl 17

Potassium K 19

Calcium Ca 20

Iron Fe 26

Page 14: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

hydrogen

carbon

• Hydrogen has one proton and one electron located in one orbital surrounding the nucleus.

• Carbon has six protons and (thus) six electrons. One electron pair is located in the inner orbital. The other four are distributed over four outer orbitals organized in a tetrahedron structure.

Page 15: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

hydrogen

carbon

• Carbon has six protons and (thus) six electrons. One electron pair is located in the inner orbital. The other four are distributed over four outer orbitals organized in a tetrahedron structure.

• Electrons of the Carbon atom are distributed over two energetically different electron shells.

Page 16: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Covalent Bonds

• Single bond– Atoms share two electrons– Represented by single line (-) in

structural formula

H - C - H

H

H

Methane

Page 17: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Overall Photosynthesis Reaction

6CO2 + 6H2O + energy C6H12O6 + 6O2

Carbon dioxide Water Glucose Oxygen

Page 18: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Overall Photosynthesis Reaction

6CO2 + 6H2O + energy C6H12O6 + 6O2

24 C-O bonds+

12 H-O bonds

36 covalent bonds

7 C-O bonds+

5 C-C bonds+

7 C-H bonds+

5 H-O bonds+

12 O-O bonds

36 covalent bonds

Page 19: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Overall Respiration Reaction

C6H12O6 + 6O2 6CO2 + 6H2O + energy

24 C-O bonds+

12 H-O bonds

36 covalent bonds

7 C-O bonds+

5 C-C bonds+

7 C-H bonds+

5 H-O bonds+

12 O-O bonds

36 covalent bonds

Page 20: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

hydrogen

carbon

• Carbon has six protons and (thus) six electrons. One electron pair is located in the inner orbital. The other four are distributed over four outer orbitals organized in a tetrahedron structure.

• Electrons of the Carbon atom are distributed over two energetically different electron shells.

Page 21: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Electron energy levels

Carbon (C) Oxygen (O) Inner shell

(Low potential energy)

Outer shell

(high potential energy)

Nitrogen(N)

NucleusElectron

Carbon: six protons and six electrons

Nitrogen: seven protons and seven electrons

Oxygen: eight protons and eight electrons

Page 22: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Carbon (C) Carbon (C)

Inner shell

(Low potential energy)

Outer shell

(high potential energy)

C-C bond

Page 23: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Carbon (C) Carbon (C)

C-C bond

Page 24: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Electron energy levels

Carbon (C) Oxygen (O)

Inner shell

(Low potential energy)

Outer shell

(high potential energy)

Oxygen has 8 protons in its nucleus. The result is a higher positive charge that exerts a stronger attraction force on the electrons of the outer shell. On average, these electrons will be located closer to the nucleus (compared to Carbon).

Page 25: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Carbon (C) Oxygen (O)

Inner shell

(Low potential energy)

Outer shell

(high potential energy)

C-O bond

Page 26: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Carbon (C) Oxygen (O)

C-O bond?

No !

Yes !

Page 27: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

C-O bond?

No !

Yes !

C O

- Oxygen has a higher electronegativity than Carbon (Oxygen nucleus has 8 protons compared to 6 in the carbon nucleus. The higher proton number results in a higher positive charge).

- Electron pair is pulled towards the O nucleus

- Bonding electron pair contains a lower level of potential energy compared to when it is in the middle between nuclei (see waterfall analogy).

Page 28: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

High potential energy

Earth center

Gravitational force

Low potential energy

Waterfall analogy

LAKE

RIVER

C

O

C

C

High potential energy

Low potential energy

Electrical force

Electrical force

Page 29: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

C

O

C

C

Carbon-Carbon bonds contain useful energy

Bonding electron pair of C-C contains more energy than C-O pair

Page 30: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Hydrogen (H) Carbon (C)

Inner shell

(Low potential energy)

Outer shell

(high potential energy)

H-C bond

Page 31: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Hydrogen (H) Carbon (C)

Inner shell

(Low potential energy)

Outer shell

(high potential energy)

The potential energy of the bonding electron pair of a H-C bond is defined by the distance to the C nucleus. The distance to the H nucleus is in this case irrelevant since the single electron orbital of the H atom already defines the lowest possible energy state of an electron (or electron pair).

Page 32: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

H-C bond

The potential energy of the bonding electron pair of a H-C or H-O bond is defined by the distance to the C or O nucleus. The distance to the H nucleus is in this case irrelevant since the single electron orbital of the H atom already defines the lowest possible energy state of an electron (or electron pair).

H-O bond

Page 33: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

H

O

H

C

Carbon-hydrogen bonds contain useful energy

Bonding electron pair of C-H contains more energy than H-O pair

Page 34: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

C

C

Basis of photosynthesis:Light energy is used to transform C-O and H-O bonds into C-C and H-C bonds + Energy

C

O

+ Energy

Basis of respiration:Energy is liberated by transforming C-C and C-H bonds into C-O and H-O bonds

+ +

C

C

+ +

Increased potential energy

Decreased potential energy

H

C

H

C

H

O

C

O

H

O

Page 35: BIO/PLS 210 Jan Smalle jsmalle@uky.edu Website: Smalle Lab (jasmal3/) jsmalle@uky.edu

Photosynthesis and Respiration

Photosynthesis:

6CO2 + 6H2O + energy C6H12O6 + 6O2

Respiration:

C6H12O6 + 6O2 6CO2 + 6H2O + energy