biostatistics 602 - statistical inference lecture 04 ... · minimal sufficient statistics. . . . ....

84
. . . . . . . . . . . Minimal Sufficient Statistics . . . . . . . . . Ancillary Statistics . . . . . . . Location-scale Family . Summary . . Biostatistics 602 - Statistical Inference Lecture 04 Ancillary Statistics Hyun Min Kang January 22th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 1 / 23

Upload: others

Post on 16-Jun-2020

19 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

.

......

Biostatistics 602 - Statistical InferenceLecture 04

Ancillary Statistics

Hyun Min Kang

January 22th, 2013

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 1 / 23

Page 2: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Recap from last lecture

..1 Is a sufficient statistic unique?

..2 What are examples obvious sufficient statistics for any distribution?

..3 What is a minimal sufficient statistic?

..4 Is a minimal sufficient statistic unique?

..5 How can we show that a statistic is minimal sufficient for θ?

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 2 / 23

Page 3: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Recap from last lecture

..1 Is a sufficient statistic unique?

..2 What are examples obvious sufficient statistics for any distribution?

..3 What is a minimal sufficient statistic?

..4 Is a minimal sufficient statistic unique?

..5 How can we show that a statistic is minimal sufficient for θ?

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 2 / 23

Page 4: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Recap from last lecture

..1 Is a sufficient statistic unique?

..2 What are examples obvious sufficient statistics for any distribution?

..3 What is a minimal sufficient statistic?

..4 Is a minimal sufficient statistic unique?

..5 How can we show that a statistic is minimal sufficient for θ?

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 2 / 23

Page 5: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Recap from last lecture

..1 Is a sufficient statistic unique?

..2 What are examples obvious sufficient statistics for any distribution?

..3 What is a minimal sufficient statistic?

..4 Is a minimal sufficient statistic unique?

..5 How can we show that a statistic is minimal sufficient for θ?

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 2 / 23

Page 6: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Recap from last lecture

..1 Is a sufficient statistic unique?

..2 What are examples obvious sufficient statistics for any distribution?

..3 What is a minimal sufficient statistic?

..4 Is a minimal sufficient statistic unique?

..5 How can we show that a statistic is minimal sufficient for θ?

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 2 / 23

Page 7: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Minimal Sufficient Statistic

.Definition 6.2.11..

......A sufficient statistic T(X) is called a minimal sufficient statistic if, for anyother sufficient statistic T′(X), T(X) is a function of T′(X).

.Why is this called ”minimal” sufficient statistic?..

......

• The sample space X consists of every possible sample - finest partition• Given T(X), X can be partitioned into At where

t ∈ T = {t : t = T(X) for some x ∈ X}• Maximum data reduction is achieved when |T | is minimal.• If size of T ′ = t : t = T′(x) for some x ∈ X is not less than |T |, then

|T | can be called as a minimal sufficient statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 3 / 23

Page 8: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Theorem for Minimal Sufficient Statistics

.Theorem 6.2.13..

......

• fX(x) be pmf or pdf of a sample X.• Suppose that there exists a function T(x) such that,• For every two sample points x and y,• The ratio fX(x|θ)/fX(y|θ) is constant as a function of θ if and only if

T(x) = T(y).• Then T(X) is a minimal sufficient statistic for θ.

.In other words....

......

• fX(x|θ)/fX(y|θ) is constant as a function of θ =⇒ T(x) = T(y).• T(x) = T(y) =⇒ fX(x|θ)/fX(y|θ) is constant as a function of θ

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 4 / 23

Page 9: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Exercise from the textbook.Problem..

......

X1, · · · ,Xn are iid samples from

fX(x|θ) =e−(x−θ)

(1 + e−(x−θ))2,−∞ < x < ∞,−∞ < θ < ∞

Find a minimal sufficient statistic for θ.

.Solution..

......

fX(x|θ) =n∏

i=1

exp(−(xi − θ))

(1 + exp(−(xi − θ)))2=

exp (−∑n

i=1(xi − θ))∏ni=1(1 + exp(−(xi − θ)))2

=exp (−

∑ni=1 xi) exp(nθ)∏n

i=1(1 + exp(−(xi − θ)))2

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 5 / 23

Page 10: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Exercise from the textbook.Problem..

......

X1, · · · ,Xn are iid samples from

fX(x|θ) =e−(x−θ)

(1 + e−(x−θ))2,−∞ < x < ∞,−∞ < θ < ∞

Find a minimal sufficient statistic for θ..Solution..

......

fX(x|θ) =n∏

i=1

exp(−(xi − θ))

(1 + exp(−(xi − θ)))2

=exp (−

∑ni=1(xi − θ))∏n

i=1(1 + exp(−(xi − θ)))2

=exp (−

∑ni=1 xi) exp(nθ)∏n

i=1(1 + exp(−(xi − θ)))2

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 5 / 23

Page 11: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Exercise from the textbook.Problem..

......

X1, · · · ,Xn are iid samples from

fX(x|θ) =e−(x−θ)

(1 + e−(x−θ))2,−∞ < x < ∞,−∞ < θ < ∞

Find a minimal sufficient statistic for θ..Solution..

......

fX(x|θ) =n∏

i=1

exp(−(xi − θ))

(1 + exp(−(xi − θ)))2=

exp (−∑n

i=1(xi − θ))∏ni=1(1 + exp(−(xi − θ)))2

=exp (−

∑ni=1 xi) exp(nθ)∏n

i=1(1 + exp(−(xi − θ)))2

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 5 / 23

Page 12: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Exercise from the textbook.Problem..

......

X1, · · · ,Xn are iid samples from

fX(x|θ) =e−(x−θ)

(1 + e−(x−θ))2,−∞ < x < ∞,−∞ < θ < ∞

Find a minimal sufficient statistic for θ..Solution..

......

fX(x|θ) =n∏

i=1

exp(−(xi − θ))

(1 + exp(−(xi − θ)))2=

exp (−∑n

i=1(xi − θ))∏ni=1(1 + exp(−(xi − θ)))2

=exp (−

∑ni=1 xi) exp(nθ)∏n

i=1(1 + exp(−(xi − θ)))2

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 5 / 23

Page 13: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Solution (cont’d)

.Applying Theorem 6.2.13..

......

fX(x|θ)fX(y|θ)

=exp (−

∑ni=1 xi) exp(nθ)

∏ni=1(1 + exp(−(yi − θ)))2

exp (−∑n

i=1 yi) exp(nθ)∏n

i=1(1 + exp(−(xi − θ)))2

=exp (−

∑ni=1 xi)

∏ni=1(1 + exp(−(yi − θ)))2

exp (−∑n

i=1 yi)∏n

i=1(1 + exp(−(xi − θ)))2

The ratio above is constant to θ if and only if x1, · · · , xn are permutationsof y1, · · · , yn. So the order statistic T(X) = (X(1), · · · ,X(n)) is a minimalsufficient statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 6 / 23

Page 14: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Solution (cont’d)

.Applying Theorem 6.2.13..

......

fX(x|θ)fX(y|θ)

=exp (−

∑ni=1 xi) exp(nθ)

∏ni=1(1 + exp(−(yi − θ)))2

exp (−∑n

i=1 yi) exp(nθ)∏n

i=1(1 + exp(−(xi − θ)))2

=exp (−

∑ni=1 xi)

∏ni=1(1 + exp(−(yi − θ)))2

exp (−∑n

i=1 yi)∏n

i=1(1 + exp(−(xi − θ)))2

The ratio above is constant to θ if and only if x1, · · · , xn are permutationsof y1, · · · , yn. So the order statistic T(X) = (X(1), · · · ,X(n)) is a minimalsufficient statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 6 / 23

Page 15: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Solution (cont’d)

.Applying Theorem 6.2.13..

......

fX(x|θ)fX(y|θ)

=exp (−

∑ni=1 xi) exp(nθ)

∏ni=1(1 + exp(−(yi − θ)))2

exp (−∑n

i=1 yi) exp(nθ)∏n

i=1(1 + exp(−(xi − θ)))2

=exp (−

∑ni=1 xi)

∏ni=1(1 + exp(−(yi − θ)))2

exp (−∑n

i=1 yi)∏n

i=1(1 + exp(−(xi − θ)))2

The ratio above is constant to θ if and only if x1, · · · , xn are permutationsof y1, · · · , yn. So the order statistic T(X) = (X(1), · · · ,X(n)) is a minimalsufficient statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 6 / 23

Page 16: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics

.Definition 6.2.16..

......A statistic S(X) is an ancillary statistic if its distribution does not dependon θ.

.Examples of Ancillary Statistics..

......

X1, · · · ,Xni.i.d.∼N (µ, σ2) where σ2 is known.

• s2X = 1n−1

∑ni=1(Xi − X)2 is an ancillary statistic

• X1 − X2 ∼ N (0, 2σ2) is ancillary.• (X1 + X2)/2− X3 ∼ N (0, 1.5σ2) is ancillary.• (n−1)s2X

σ2 ∼ χ2n−1 is ancillary.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 7 / 23

Page 17: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics

.Definition 6.2.16..

......A statistic S(X) is an ancillary statistic if its distribution does not dependon θ..Examples of Ancillary Statistics..

......

X1, · · · ,Xni.i.d.∼N (µ, σ2) where σ2 is known.

• s2X = 1n−1

∑ni=1(Xi − X)2 is an ancillary statistic

• X1 − X2 ∼ N (0, 2σ2) is ancillary.• (X1 + X2)/2− X3 ∼ N (0, 1.5σ2) is ancillary.• (n−1)s2X

σ2 ∼ χ2n−1 is ancillary.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 7 / 23

Page 18: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics

.Definition 6.2.16..

......A statistic S(X) is an ancillary statistic if its distribution does not dependon θ..Examples of Ancillary Statistics..

......

X1, · · · ,Xni.i.d.∼N (µ, σ2) where σ2 is known.

• s2X = 1n−1

∑ni=1(Xi − X)2 is an ancillary statistic

• X1 − X2 ∼ N (0, 2σ2) is ancillary.• (X1 + X2)/2− X3 ∼ N (0, 1.5σ2) is ancillary.• (n−1)s2X

σ2 ∼ χ2n−1 is ancillary.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 7 / 23

Page 19: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics

.Definition 6.2.16..

......A statistic S(X) is an ancillary statistic if its distribution does not dependon θ..Examples of Ancillary Statistics..

......

X1, · · · ,Xni.i.d.∼N (µ, σ2) where σ2 is known.

• s2X = 1n−1

∑ni=1(Xi − X)2 is an ancillary statistic

• X1 − X2 ∼ N (0, 2σ2) is ancillary.

• (X1 + X2)/2− X3 ∼ N (0, 1.5σ2) is ancillary.• (n−1)s2X

σ2 ∼ χ2n−1 is ancillary.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 7 / 23

Page 20: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics

.Definition 6.2.16..

......A statistic S(X) is an ancillary statistic if its distribution does not dependon θ..Examples of Ancillary Statistics..

......

X1, · · · ,Xni.i.d.∼N (µ, σ2) where σ2 is known.

• s2X = 1n−1

∑ni=1(Xi − X)2 is an ancillary statistic

• X1 − X2 ∼ N (0, 2σ2) is ancillary.• (X1 + X2)/2− X3 ∼ N (0, 1.5σ2) is ancillary.

• (n−1)s2Xσ2 ∼ χ2

n−1 is ancillary.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 7 / 23

Page 21: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics

.Definition 6.2.16..

......A statistic S(X) is an ancillary statistic if its distribution does not dependon θ..Examples of Ancillary Statistics..

......

X1, · · · ,Xni.i.d.∼N (µ, σ2) where σ2 is known.

• s2X = 1n−1

∑ni=1(Xi − X)2 is an ancillary statistic

• X1 − X2 ∼ N (0, 2σ2) is ancillary.• (X1 + X2)/2− X3 ∼ N (0, 1.5σ2) is ancillary.• (n−1)s2X

σ2 ∼ χ2n−1 is ancillary.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 7 / 23

Page 22: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

More Examples of Ancillary Statistics

.Examples with normal distribution at zero mean..

......

X1, · · · ,Xni.i.d.∼N (0, σ2) where σ2 is unknown

• Y = X/σ is an ancillary statistic because Yi ∼ N (0, 1).• X1

X2= σY1

σY2= Y1

Y2also follows a cauchy distribution and is an ancillary

statistic.• Any joint distribution of Y1, · · · ,Yn does not depend on σ2, and thus

is an ancillary statistic.• For example, the following statistic is also ancillary.

median(Xi)

X=

σmedian(Yi)

σY=

median(Yi)

Y

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 8 / 23

Page 23: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

More Examples of Ancillary Statistics

.Examples with normal distribution at zero mean..

......

X1, · · · ,Xni.i.d.∼N (0, σ2) where σ2 is unknown

• Y = X/σ is an ancillary statistic because Yi ∼ N (0, 1).

• X1X2

= σY1σY2

= Y1Y2

also follows a cauchy distribution and is an ancillarystatistic.

• Any joint distribution of Y1, · · · ,Yn does not depend on σ2, and thusis an ancillary statistic.

• For example, the following statistic is also ancillary.median(Xi)

X=

σmedian(Yi)

σY=

median(Yi)

Y

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 8 / 23

Page 24: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

More Examples of Ancillary Statistics

.Examples with normal distribution at zero mean..

......

X1, · · · ,Xni.i.d.∼N (0, σ2) where σ2 is unknown

• Y = X/σ is an ancillary statistic because Yi ∼ N (0, 1).• X1

X2= σY1

σY2= Y1

Y2also follows a cauchy distribution and is an ancillary

statistic.

• Any joint distribution of Y1, · · · ,Yn does not depend on σ2, and thusis an ancillary statistic.

• For example, the following statistic is also ancillary.median(Xi)

X=

σmedian(Yi)

σY=

median(Yi)

Y

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 8 / 23

Page 25: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

More Examples of Ancillary Statistics

.Examples with normal distribution at zero mean..

......

X1, · · · ,Xni.i.d.∼N (0, σ2) where σ2 is unknown

• Y = X/σ is an ancillary statistic because Yi ∼ N (0, 1).• X1

X2= σY1

σY2= Y1

Y2also follows a cauchy distribution and is an ancillary

statistic.• Any joint distribution of Y1, · · · ,Yn does not depend on σ2, and thus

is an ancillary statistic.

• For example, the following statistic is also ancillary.median(Xi)

X=

σmedian(Yi)

σY=

median(Yi)

Y

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 8 / 23

Page 26: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

More Examples of Ancillary Statistics

.Examples with normal distribution at zero mean..

......

X1, · · · ,Xni.i.d.∼N (0, σ2) where σ2 is unknown

• Y = X/σ is an ancillary statistic because Yi ∼ N (0, 1).• X1

X2= σY1

σY2= Y1

Y2also follows a cauchy distribution and is an ancillary

statistic.• Any joint distribution of Y1, · · · ,Yn does not depend on σ2, and thus

is an ancillary statistic.• For example, the following statistic is also ancillary.

median(Xi)

X

=σmedian(Yi)

σY=

median(Yi)

Y

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 8 / 23

Page 27: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

More Examples of Ancillary Statistics

.Examples with normal distribution at zero mean..

......

X1, · · · ,Xni.i.d.∼N (0, σ2) where σ2 is unknown

• Y = X/σ is an ancillary statistic because Yi ∼ N (0, 1).• X1

X2= σY1

σY2= Y1

Y2also follows a cauchy distribution and is an ancillary

statistic.• Any joint distribution of Y1, · · · ,Yn does not depend on σ2, and thus

is an ancillary statistic.• For example, the following statistic is also ancillary.

median(Xi)

X=

σmedian(Yi)

σY

=median(Yi)

Y

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 8 / 23

Page 28: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

More Examples of Ancillary Statistics

.Examples with normal distribution at zero mean..

......

X1, · · · ,Xni.i.d.∼N (0, σ2) where σ2 is unknown

• Y = X/σ is an ancillary statistic because Yi ∼ N (0, 1).• X1

X2= σY1

σY2= Y1

Y2also follows a cauchy distribution and is an ancillary

statistic.• Any joint distribution of Y1, · · · ,Yn does not depend on σ2, and thus

is an ancillary statistic.• For example, the following statistic is also ancillary.

median(Xi)

X=

σmedian(Yi)

σY=

median(Yi)

Y

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 8 / 23

Page 29: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Range Statistics

.Problem..

......

• X1, · · · ,Xni.i.d.∼ fX(x − θ).

• Show that R = X(n) − X(1) is an ancillary statistic.

.Solution..

......

• Let Zi = Xi − θ.• fZ(z) = fX(z + θ − θ)

∣∣dxdz∣∣ = fX(z)

• Z1, · · · ,Zni.i.d.∼ fX(z) does not depend on θ.

• R = X(n) − X(1) = Z(n) − Z(1) does not depend on θ.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 9 / 23

Page 30: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Range Statistics

.Problem..

......

• X1, · · · ,Xni.i.d.∼ fX(x − θ).

• Show that R = X(n) − X(1) is an ancillary statistic.

.Solution..

......

• Let Zi = Xi − θ.

• fZ(z) = fX(z + θ − θ)∣∣dx

dz∣∣ = fX(z)

• Z1, · · · ,Zni.i.d.∼ fX(z) does not depend on θ.

• R = X(n) − X(1) = Z(n) − Z(1) does not depend on θ.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 9 / 23

Page 31: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Range Statistics

.Problem..

......

• X1, · · · ,Xni.i.d.∼ fX(x − θ).

• Show that R = X(n) − X(1) is an ancillary statistic.

.Solution..

......

• Let Zi = Xi − θ.• fZ(z) = fX(z + θ − θ)

∣∣dxdz∣∣ = fX(z)

• Z1, · · · ,Zni.i.d.∼ fX(z) does not depend on θ.

• R = X(n) − X(1) = Z(n) − Z(1) does not depend on θ.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 9 / 23

Page 32: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Range Statistics

.Problem..

......

• X1, · · · ,Xni.i.d.∼ fX(x − θ).

• Show that R = X(n) − X(1) is an ancillary statistic.

.Solution..

......

• Let Zi = Xi − θ.• fZ(z) = fX(z + θ − θ)

∣∣dxdz∣∣ = fX(z)

• Z1, · · · ,Zni.i.d.∼ fX(z) does not depend on θ.

• R = X(n) − X(1) = Z(n) − Z(1) does not depend on θ.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 9 / 23

Page 33: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Range Statistics

.Problem..

......

• X1, · · · ,Xni.i.d.∼ fX(x − θ).

• Show that R = X(n) − X(1) is an ancillary statistic.

.Solution..

......

• Let Zi = Xi − θ.• fZ(z) = fX(z + θ − θ)

∣∣dxdz∣∣ = fX(z)

• Z1, · · · ,Zni.i.d.∼ fX(z) does not depend on θ.

• R = X(n) − X(1) = Z(n) − Z(1) does not depend on θ.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 9 / 23

Page 34: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Uniform Ancillary Statistics

.Problem..

......

• X1, · · · ,Xni.i.d.∼ Uniform(θ, θ + 1).

• Show that R = X(n) − X(1) is an ancillary statistic.

.Possible Strategies..

......

• Obtain the distribution of R and show that it is independent of θ.• Represent R as a function of ancillary statistics, which is independent

of θ.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 10 / 23

Page 35: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Uniform Ancillary Statistics

.Problem..

......

• X1, · · · ,Xni.i.d.∼ Uniform(θ, θ + 1).

• Show that R = X(n) − X(1) is an ancillary statistic.

.Possible Strategies..

......

• Obtain the distribution of R and show that it is independent of θ.

• Represent R as a function of ancillary statistics, which is independentof θ.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 10 / 23

Page 36: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Uniform Ancillary Statistics

.Problem..

......

• X1, · · · ,Xni.i.d.∼ Uniform(θ, θ + 1).

• Show that R = X(n) − X(1) is an ancillary statistic.

.Possible Strategies..

......

• Obtain the distribution of R and show that it is independent of θ.• Represent R as a function of ancillary statistics, which is independent

of θ.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 10 / 23

Page 37: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 1/4

R is a function of (X(n),X(1)), so we need to derive the joint distributionof (X(n),X(1)).

Define

fX(x|θ) = I(θ < x < θ + 1)

If θ < X(1) ≤ X(n) < θ + 1,

fX(X(1),X(n)|θ) =n!

(n − 2)!

(X(n) − X(1)

)(n−2)

and fX(X(1),X(n)|θ) = 0 otherwise.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 11 / 23

Page 38: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 1/4

R is a function of (X(n),X(1)), so we need to derive the joint distributionof (X(n),X(1)). Define

fX(x|θ) = I(θ < x < θ + 1)

If θ < X(1) ≤ X(n) < θ + 1,

fX(X(1),X(n)|θ) =n!

(n − 2)!

(X(n) − X(1)

)(n−2)

and fX(X(1),X(n)|θ) = 0 otherwise.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 11 / 23

Page 39: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 1/4

R is a function of (X(n),X(1)), so we need to derive the joint distributionof (X(n),X(1)). Define

fX(x|θ) = I(θ < x < θ + 1)

If θ < X(1) ≤ X(n) < θ + 1,

fX(X(1),X(n)|θ) =

n!(n − 2)!

(X(n) − X(1)

)(n−2)

and fX(X(1),X(n)|θ) = 0 otherwise.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 11 / 23

Page 40: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 1/4

R is a function of (X(n),X(1)), so we need to derive the joint distributionof (X(n),X(1)). Define

fX(x|θ) = I(θ < x < θ + 1)

If θ < X(1) ≤ X(n) < θ + 1,

fX(X(1),X(n)|θ) =n!

(n − 2)!

(X(n) − X(1)

)(n−2)

and fX(X(1),X(n)|θ) = 0 otherwise.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 11 / 23

Page 41: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 1/4

R is a function of (X(n),X(1)), so we need to derive the joint distributionof (X(n),X(1)). Define

fX(x|θ) = I(θ < x < θ + 1)

If θ < X(1) ≤ X(n) < θ + 1,

fX(X(1),X(n)|θ) =n!

(n − 2)!

(X(n) − X(1)

)(n−2)

and fX(X(1),X(n)|θ) = 0 otherwise.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 11 / 23

Page 42: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 2/4Define R and M as follows

{R = X(n) − X(1)

M = (X(n) + X(1))/2

Then

{X(1) = M − R/2

X(n) = M + R/2

The Jacobian is

J =

∂X(1)

∂M∂X(1)

∂R

∂X(n)∂M

∂X(n)∂R

=

1 −12

1 12

=1

2− (−1

2) = 1

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 12 / 23

Page 43: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 2/4Define R and M as follows

{R = X(n) − X(1)

M = (X(n) + X(1))/2

Then

{X(1) = M − R/2

X(n) = M + R/2

The Jacobian is

J =

∂X(1)

∂M∂X(1)

∂R

∂X(n)∂M

∂X(n)∂R

=

1 −12

1 12

=1

2− (−1

2) = 1

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 12 / 23

Page 44: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 2/4Define R and M as follows

{R = X(n) − X(1)

M = (X(n) + X(1))/2

Then

{X(1) = M − R/2

X(n) = M + R/2

The Jacobian is

J =

∂X(1)

∂M∂X(1)

∂R

∂X(n)∂M

∂X(n)∂R

=

1 −12

1 12

=1

2− (−1

2) = 1

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 12 / 23

Page 45: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 3/4

The joint distribution of R and M is

fR,M(r,m) = n(n − 1)

(2m + r

2− 2m − r

2

)(n−2)

= n(n − 1)r(n−2)

Because θ < X(1) ≤ X(n) < θ + 1,

θ <2m − r

2<

2m + r2

< θ + 1

0 < r < 1

θ +r2< m < θ + 1− r

2

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 13 / 23

Page 46: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 3/4

The joint distribution of R and M is

fR,M(r,m) = n(n − 1)

(2m + r

2− 2m − r

2

)(n−2)

= n(n − 1)r(n−2)

Because θ < X(1) ≤ X(n) < θ + 1,

θ <2m − r

2<

2m + r2

< θ + 1

0 < r < 1

θ +r2< m < θ + 1− r

2

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 13 / 23

Page 47: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 3/4

The joint distribution of R and M is

fR,M(r,m) = n(n − 1)

(2m + r

2− 2m − r

2

)(n−2)

= n(n − 1)r(n−2)

Because θ < X(1) ≤ X(n) < θ + 1,

θ <2m − r

2<

2m + r2

< θ + 1

0 < r < 1

θ +r2< m < θ + 1− r

2

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 13 / 23

Page 48: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 4/4

The distribution of R is

fR(r|θ) =

∫ θ+1− r2

θ+ r2

n(n − 1)r(n−2)dm

= n(n − 1)r(n−2)(θ + 1− r

2− θ − r

2

)= n(n − 1)r(n−2)(1− r) , 0 < r < 1

Therefore, fR(r|θ) does not depend on θ, and R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 14 / 23

Page 49: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 4/4

The distribution of R is

fR(r|θ) =

∫ θ+1− r2

θ+ r2

n(n − 1)r(n−2)dm

= n(n − 1)r(n−2)(θ + 1− r

2− θ − r

2

)

= n(n − 1)r(n−2)(1− r) , 0 < r < 1

Therefore, fR(r|θ) does not depend on θ, and R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 14 / 23

Page 50: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 4/4

The distribution of R is

fR(r|θ) =

∫ θ+1− r2

θ+ r2

n(n − 1)r(n−2)dm

= n(n − 1)r(n−2)(θ + 1− r

2− θ − r

2

)= n(n − 1)r(n−2)(1− r) , 0 < r < 1

Therefore, fR(r|θ) does not depend on θ, and R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 14 / 23

Page 51: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Proof : Method I - 4/4

The distribution of R is

fR(r|θ) =

∫ θ+1− r2

θ+ r2

n(n − 1)r(n−2)dm

= n(n − 1)r(n−2)(θ + 1− r

2− θ − r

2

)= n(n − 1)r(n−2)(1− r) , 0 < r < 1

Therefore, fR(r|θ) does not depend on θ, and R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 14 / 23

Page 52: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Method II : Probably A Simpler Proof

fX(x|θ) = I(θ < x < θ + 1) = I(0 < x − θ < 1)

Let Yi = Xi − θ ∼ Uniform(0, 1). Then Xi = Yi + θ, |dxdy | = 1 holds.

fY(y) = I(0 < y + θ − θ < 1)|dxdy | = I(0 < y < 1)

Then, the range statistic R can be rewritten as follows.

R = X(n) − X(1) = (Y(n) + θ)− (Y(1) + θ) = Y(n) − Y(1)

As Y(n) − Y(1) is a function of Y1, · · · ,Yn. Any joint distribution ofY1, · · · ,Yn does not depend on θ. Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 15 / 23

Page 53: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Method II : Probably A Simpler Proof

fX(x|θ) = I(θ < x < θ + 1) = I(0 < x − θ < 1)

Let Yi = Xi − θ ∼ Uniform(0, 1). Then Xi = Yi + θ, |dxdy | = 1 holds.

fY(y) = I(0 < y + θ − θ < 1)|dxdy | = I(0 < y < 1)

Then, the range statistic R can be rewritten as follows.

R = X(n) − X(1) = (Y(n) + θ)− (Y(1) + θ) = Y(n) − Y(1)

As Y(n) − Y(1) is a function of Y1, · · · ,Yn. Any joint distribution ofY1, · · · ,Yn does not depend on θ. Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 15 / 23

Page 54: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Method II : Probably A Simpler Proof

fX(x|θ) = I(θ < x < θ + 1) = I(0 < x − θ < 1)

Let Yi = Xi − θ ∼ Uniform(0, 1). Then Xi = Yi + θ, |dxdy | = 1 holds.

fY(y) = I(0 < y + θ − θ < 1)|dxdy | = I(0 < y < 1)

Then, the range statistic R can be rewritten as follows.

R = X(n) − X(1) = (Y(n) + θ)− (Y(1) + θ) = Y(n) − Y(1)

As Y(n) − Y(1) is a function of Y1, · · · ,Yn. Any joint distribution ofY1, · · · ,Yn does not depend on θ. Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 15 / 23

Page 55: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Method II : Probably A Simpler Proof

fX(x|θ) = I(θ < x < θ + 1) = I(0 < x − θ < 1)

Let Yi = Xi − θ ∼ Uniform(0, 1). Then Xi = Yi + θ, |dxdy | = 1 holds.

fY(y) = I(0 < y + θ − θ < 1)|dxdy | = I(0 < y < 1)

Then, the range statistic R can be rewritten as follows.

R = X(n) − X(1) = (Y(n) + θ)− (Y(1) + θ) = Y(n) − Y(1)

As Y(n) − Y(1) is a function of Y1, · · · ,Yn. Any joint distribution ofY1, · · · ,Yn does not depend on θ. Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 15 / 23

Page 56: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Method II : Probably A Simpler Proof

fX(x|θ) = I(θ < x < θ + 1) = I(0 < x − θ < 1)

Let Yi = Xi − θ ∼ Uniform(0, 1). Then Xi = Yi + θ, |dxdy | = 1 holds.

fY(y) = I(0 < y + θ − θ < 1)|dxdy | = I(0 < y < 1)

Then, the range statistic R can be rewritten as follows.

R = X(n) − X(1) = (Y(n) + θ)− (Y(1) + θ) = Y(n) − Y(1)

As Y(n) − Y(1) is a function of Y1, · · · ,Yn. Any joint distribution ofY1, · · · ,Yn does not depend on θ. Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 15 / 23

Page 57: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

A brief review on location and scale family.Theorem 3.5.1..

......

Let f(x) be any pdf and let µ and σ > 0 be any given constant, then,

g(x|µ, σ) = 1

σf(

x − µ

σ

)is a pdf.

.Proof..

......

Because f(x) is a pdf, then f(x) ≥ 0, and g(x|µ, σ) ≥ 0 for all x.Let y = (x − µ)/σ, then x = σy + µ, and dx/dy = σ.∫ ∞

−∞

1

σf(

x − µ

σ

)dx =

∫ ∞

−∞

1

σf(y)σdy =

∫ ∞

−∞f(y)dy = 1

Therefore, g(x|µ, σ) is also a pdf.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 16 / 23

Page 58: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

A brief review on location and scale family.Theorem 3.5.1..

......

Let f(x) be any pdf and let µ and σ > 0 be any given constant, then,

g(x|µ, σ) = 1

σf(

x − µ

σ

)is a pdf..Proof..

......

Because f(x) is a pdf, then f(x) ≥ 0, and g(x|µ, σ) ≥ 0 for all x.

Let y = (x − µ)/σ, then x = σy + µ, and dx/dy = σ.∫ ∞

−∞

1

σf(

x − µ

σ

)dx =

∫ ∞

−∞

1

σf(y)σdy =

∫ ∞

−∞f(y)dy = 1

Therefore, g(x|µ, σ) is also a pdf.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 16 / 23

Page 59: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

A brief review on location and scale family.Theorem 3.5.1..

......

Let f(x) be any pdf and let µ and σ > 0 be any given constant, then,

g(x|µ, σ) = 1

σf(

x − µ

σ

)is a pdf..Proof..

......

Because f(x) is a pdf, then f(x) ≥ 0, and g(x|µ, σ) ≥ 0 for all x.Let y = (x − µ)/σ, then x = σy + µ, and dx/dy = σ.

∫ ∞

−∞

1

σf(

x − µ

σ

)dx =

∫ ∞

−∞

1

σf(y)σdy =

∫ ∞

−∞f(y)dy = 1

Therefore, g(x|µ, σ) is also a pdf.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 16 / 23

Page 60: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

A brief review on location and scale family.Theorem 3.5.1..

......

Let f(x) be any pdf and let µ and σ > 0 be any given constant, then,

g(x|µ, σ) = 1

σf(

x − µ

σ

)is a pdf..Proof..

......

Because f(x) is a pdf, then f(x) ≥ 0, and g(x|µ, σ) ≥ 0 for all x.Let y = (x − µ)/σ, then x = σy + µ, and dx/dy = σ.∫ ∞

−∞

1

σf(

x − µ

σ

)dx =

∫ ∞

−∞

1

σf(y)σdy =

∫ ∞

−∞f(y)dy = 1

Therefore, g(x|µ, σ) is also a pdf.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 16 / 23

Page 61: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

A brief review on location and scale family.Theorem 3.5.1..

......

Let f(x) be any pdf and let µ and σ > 0 be any given constant, then,

g(x|µ, σ) = 1

σf(

x − µ

σ

)is a pdf..Proof..

......

Because f(x) is a pdf, then f(x) ≥ 0, and g(x|µ, σ) ≥ 0 for all x.Let y = (x − µ)/σ, then x = σy + µ, and dx/dy = σ.∫ ∞

−∞

1

σf(

x − µ

σ

)dx =

∫ ∞

−∞

1

σf(y)σdy =

∫ ∞

−∞f(y)dy = 1

Therefore, g(x|µ, σ) is also a pdf.Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 16 / 23

Page 62: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Location Family and Parameter

.Definition 3.5.2..

......

Let f(x) be any pdf. Then the family of pdfs f(x − µ), indexed by theparameter −∞ < µ < ∞, is called the location family with standard pdff(x), and µ is called the location parameter for the family.

.Example..

......

• f(x) = 1√2π

e−x2/2 ∼ N (0, 1)

• f(x − µ) = 1√2π

e−(x−µ)2/2 ∼ N (µ, 1)

• f(x) = I(0 < x < 1) ∼ Uniform(0, 1)

• f(x − θ) = I(θ < x < θ + 1) ∼ Uniform(θ, θ + 1)

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 17 / 23

Page 63: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Location Family and Parameter

.Definition 3.5.2..

......

Let f(x) be any pdf. Then the family of pdfs f(x − µ), indexed by theparameter −∞ < µ < ∞, is called the location family with standard pdff(x), and µ is called the location parameter for the family.

.Example..

......

• f(x) = 1√2π

e−x2/2 ∼ N (0, 1)

• f(x − µ) = 1√2π

e−(x−µ)2/2 ∼ N (µ, 1)

• f(x) = I(0 < x < 1) ∼ Uniform(0, 1)

• f(x − θ) = I(θ < x < θ + 1) ∼ Uniform(θ, θ + 1)

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 17 / 23

Page 64: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Location Family and Parameter

.Definition 3.5.2..

......

Let f(x) be any pdf. Then the family of pdfs f(x − µ), indexed by theparameter −∞ < µ < ∞, is called the location family with standard pdff(x), and µ is called the location parameter for the family.

.Example..

......

• f(x) = 1√2π

e−x2/2 ∼ N (0, 1)

• f(x − µ) = 1√2π

e−(x−µ)2/2 ∼ N (µ, 1)

• f(x) = I(0 < x < 1) ∼ Uniform(0, 1)

• f(x − θ) = I(θ < x < θ + 1) ∼ Uniform(θ, θ + 1)

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 17 / 23

Page 65: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Scale Family and Parameter

.Definition 3.5.4..

......

Let f(x) be any pdf. Then for any σ > 0 the family of pdfs f(x/σ)/σ,indexed by the parameter σ is called the scale family with standard pdff(x), and σ is called the scale parameter for the family.

.Example..

......

• f(x) = 1√2π

e−x2/2 ∼ N (0, 1)

• f(x/σ)/σ = 1√2πσ2

e−x2/2σ2 ∼ N (0, σ2)

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 18 / 23

Page 66: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Scale Family and Parameter

.Definition 3.5.4..

......

Let f(x) be any pdf. Then for any σ > 0 the family of pdfs f(x/σ)/σ,indexed by the parameter σ is called the scale family with standard pdff(x), and σ is called the scale parameter for the family.

.Example..

......

• f(x) = 1√2π

e−x2/2 ∼ N (0, 1)

• f(x/σ)/σ = 1√2πσ2

e−x2/2σ2 ∼ N (0, σ2)

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 18 / 23

Page 67: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Location-Scale Family and Parameters

.Definition 3.5.5..

......

Let f(x) be any pdf. Then for any µ,−∞ < µ < ∞, and any σ > 0 thefamily of pdfs f((x − µ)/σ)/σ, indexed by the parameter (µ, σ) is calledthe location-scale family with standard pdf f(x), and µ is called thelocation parameter and σ is called the scale parameter for the family.

.Example..

......

• f(x) = 1√2π

e−x2/2 ∼ N (0, 1)

• f((x − µ)/σ)/σ = 1√2πσ2

e−(x−µ)2/2σ2 ∼ N (µ, σ2)

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 19 / 23

Page 68: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Location-Scale Family and Parameters

.Definition 3.5.5..

......

Let f(x) be any pdf. Then for any µ,−∞ < µ < ∞, and any σ > 0 thefamily of pdfs f((x − µ)/σ)/σ, indexed by the parameter (µ, σ) is calledthe location-scale family with standard pdf f(x), and µ is called thelocation parameter and σ is called the scale parameter for the family.

.Example..

......

• f(x) = 1√2π

e−x2/2 ∼ N (0, 1)

• f((x − µ)/σ)/σ = 1√2πσ2

e−(x−µ)2/2σ2 ∼ N (µ, σ2)

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 19 / 23

Page 69: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Theorem for location and scale family

.Theorem 3.5.6..

......

• Let f(·) be any pdf.• Let µ be any real number.• Let σ be any positive real number.• Then X is a random variable with pdf 1

σ f( x−µ

σ

)• if and only if there exists a random variable Z with pdf f(z) and

X = σZ + µ.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 20 / 23

Page 70: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Location Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x − µ) where−∞ < µ < ∞. Show that the range R = X(n) − X(1) is an ancillarystatistic.

.Solution..

......

Assume that cdf is F(x − µ). Using Theorem 3.5.6,Z1 = X1 − µ, · · · ,Zn = Xn − µ are iid observations from pdf f(x) and cdfF(x). Then the cdf of the range statistic R becomes

FR(r|µ) = Pr(R ≤ r|µ) = Pr(X(n) − X(1) ≤ r|µ)= Pr(Z(n) + µ− Z(1) − µ ≤ r|µ) = Pr(Z(n) − Z(1) ≤ r|µ)

which does not depend on µ because Z1, · · · ,Zn does not depend on µ.Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 21 / 23

Page 71: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Location Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x − µ) where−∞ < µ < ∞. Show that the range R = X(n) − X(1) is an ancillarystatistic..Solution..

......

Assume that cdf is F(x − µ). Using Theorem 3.5.6,Z1 = X1 − µ, · · · ,Zn = Xn − µ are iid observations from pdf f(x) and cdfF(x).

Then the cdf of the range statistic R becomes

FR(r|µ) = Pr(R ≤ r|µ) = Pr(X(n) − X(1) ≤ r|µ)= Pr(Z(n) + µ− Z(1) − µ ≤ r|µ) = Pr(Z(n) − Z(1) ≤ r|µ)

which does not depend on µ because Z1, · · · ,Zn does not depend on µ.Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 21 / 23

Page 72: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Location Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x − µ) where−∞ < µ < ∞. Show that the range R = X(n) − X(1) is an ancillarystatistic..Solution..

......

Assume that cdf is F(x − µ). Using Theorem 3.5.6,Z1 = X1 − µ, · · · ,Zn = Xn − µ are iid observations from pdf f(x) and cdfF(x). Then the cdf of the range statistic R becomes

FR(r|µ) = Pr(R ≤ r|µ) = Pr(X(n) − X(1) ≤ r|µ)= Pr(Z(n) + µ− Z(1) − µ ≤ r|µ) = Pr(Z(n) − Z(1) ≤ r|µ)

which does not depend on µ because Z1, · · · ,Zn does not depend on µ.Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 21 / 23

Page 73: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Location Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x − µ) where−∞ < µ < ∞. Show that the range R = X(n) − X(1) is an ancillarystatistic..Solution..

......

Assume that cdf is F(x − µ). Using Theorem 3.5.6,Z1 = X1 − µ, · · · ,Zn = Xn − µ are iid observations from pdf f(x) and cdfF(x). Then the cdf of the range statistic R becomes

FR(r|µ) = Pr(R ≤ r|µ) = Pr(X(n) − X(1) ≤ r|µ)

= Pr(Z(n) + µ− Z(1) − µ ≤ r|µ) = Pr(Z(n) − Z(1) ≤ r|µ)

which does not depend on µ because Z1, · · · ,Zn does not depend on µ.Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 21 / 23

Page 74: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Location Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x − µ) where−∞ < µ < ∞. Show that the range R = X(n) − X(1) is an ancillarystatistic..Solution..

......

Assume that cdf is F(x − µ). Using Theorem 3.5.6,Z1 = X1 − µ, · · · ,Zn = Xn − µ are iid observations from pdf f(x) and cdfF(x). Then the cdf of the range statistic R becomes

FR(r|µ) = Pr(R ≤ r|µ) = Pr(X(n) − X(1) ≤ r|µ)= Pr(Z(n) + µ− Z(1) − µ ≤ r|µ) = Pr(Z(n) − Z(1) ≤ r|µ)

which does not depend on µ because Z1, · · · ,Zn does not depend on µ.Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 21 / 23

Page 75: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Location Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x − µ) where−∞ < µ < ∞. Show that the range R = X(n) − X(1) is an ancillarystatistic..Solution..

......

Assume that cdf is F(x − µ). Using Theorem 3.5.6,Z1 = X1 − µ, · · · ,Zn = Xn − µ are iid observations from pdf f(x) and cdfF(x). Then the cdf of the range statistic R becomes

FR(r|µ) = Pr(R ≤ r|µ) = Pr(X(n) − X(1) ≤ r|µ)= Pr(Z(n) + µ− Z(1) − µ ≤ r|µ) = Pr(Z(n) − Z(1) ≤ r|µ)

which does not depend on µ because Z1, · · · ,Zn does not depend on µ.Therefore, R is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 21 / 23

Page 76: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Scale Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x/σ)/σ whereσ > 0. Show that the following statistic T(X) is ancillary.

T(X) = (X1/Xn, · · · ,Xn−1/Xn)

.Solution..

......

Assume that cdf is F(x/σ), and let Z1 = X1/σ, · · · ,Zn = Xn/σ be iidobservations from pdf f(x) and cdf F(x). Then the joint cdf of the T(X) is

FT(t1, · · · , tn−1|σ) = Pr(X1/Xn ≤ t1, · · · ,Xn−1/Xn ≤ tn−1|σ)= Pr(σZ1/σZn ≤ t1, · · · , σZn−1/σZn ≤ tn−1|σ)= Pr(Z1/Zn ≤ t1, · · · ,Zn−1/Zn ≤ tn−1|σ)

Because Z1, · · · ,Zn does not depend on σ, T(X) is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 22 / 23

Page 77: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Scale Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x/σ)/σ whereσ > 0. Show that the following statistic T(X) is ancillary.

T(X) = (X1/Xn, · · · ,Xn−1/Xn)

.Solution..

......

Assume that cdf is F(x/σ), and let Z1 = X1/σ, · · · ,Zn = Xn/σ be iidobservations from pdf f(x) and cdf F(x).

Then the joint cdf of the T(X) is

FT(t1, · · · , tn−1|σ) = Pr(X1/Xn ≤ t1, · · · ,Xn−1/Xn ≤ tn−1|σ)= Pr(σZ1/σZn ≤ t1, · · · , σZn−1/σZn ≤ tn−1|σ)= Pr(Z1/Zn ≤ t1, · · · ,Zn−1/Zn ≤ tn−1|σ)

Because Z1, · · · ,Zn does not depend on σ, T(X) is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 22 / 23

Page 78: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Scale Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x/σ)/σ whereσ > 0. Show that the following statistic T(X) is ancillary.

T(X) = (X1/Xn, · · · ,Xn−1/Xn)

.Solution..

......

Assume that cdf is F(x/σ), and let Z1 = X1/σ, · · · ,Zn = Xn/σ be iidobservations from pdf f(x) and cdf F(x). Then the joint cdf of the T(X) is

FT(t1, · · · , tn−1|σ) = Pr(X1/Xn ≤ t1, · · · ,Xn−1/Xn ≤ tn−1|σ)= Pr(σZ1/σZn ≤ t1, · · · , σZn−1/σZn ≤ tn−1|σ)= Pr(Z1/Zn ≤ t1, · · · ,Zn−1/Zn ≤ tn−1|σ)

Because Z1, · · · ,Zn does not depend on σ, T(X) is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 22 / 23

Page 79: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Scale Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x/σ)/σ whereσ > 0. Show that the following statistic T(X) is ancillary.

T(X) = (X1/Xn, · · · ,Xn−1/Xn)

.Solution..

......

Assume that cdf is F(x/σ), and let Z1 = X1/σ, · · · ,Zn = Xn/σ be iidobservations from pdf f(x) and cdf F(x). Then the joint cdf of the T(X) is

FT(t1, · · · , tn−1|σ) = Pr(X1/Xn ≤ t1, · · · ,Xn−1/Xn ≤ tn−1|σ)

= Pr(σZ1/σZn ≤ t1, · · · , σZn−1/σZn ≤ tn−1|σ)= Pr(Z1/Zn ≤ t1, · · · ,Zn−1/Zn ≤ tn−1|σ)

Because Z1, · · · ,Zn does not depend on σ, T(X) is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 22 / 23

Page 80: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Scale Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x/σ)/σ whereσ > 0. Show that the following statistic T(X) is ancillary.

T(X) = (X1/Xn, · · · ,Xn−1/Xn)

.Solution..

......

Assume that cdf is F(x/σ), and let Z1 = X1/σ, · · · ,Zn = Xn/σ be iidobservations from pdf f(x) and cdf F(x). Then the joint cdf of the T(X) is

FT(t1, · · · , tn−1|σ) = Pr(X1/Xn ≤ t1, · · · ,Xn−1/Xn ≤ tn−1|σ)= Pr(σZ1/σZn ≤ t1, · · · , σZn−1/σZn ≤ tn−1|σ)

= Pr(Z1/Zn ≤ t1, · · · ,Zn−1/Zn ≤ tn−1|σ)

Because Z1, · · · ,Zn does not depend on σ, T(X) is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 22 / 23

Page 81: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Scale Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x/σ)/σ whereσ > 0. Show that the following statistic T(X) is ancillary.

T(X) = (X1/Xn, · · · ,Xn−1/Xn)

.Solution..

......

Assume that cdf is F(x/σ), and let Z1 = X1/σ, · · · ,Zn = Xn/σ be iidobservations from pdf f(x) and cdf F(x). Then the joint cdf of the T(X) is

FT(t1, · · · , tn−1|σ) = Pr(X1/Xn ≤ t1, · · · ,Xn−1/Xn ≤ tn−1|σ)= Pr(σZ1/σZn ≤ t1, · · · , σZn−1/σZn ≤ tn−1|σ)= Pr(Z1/Zn ≤ t1, · · · ,Zn−1/Zn ≤ tn−1|σ)

Because Z1, · · · ,Zn does not depend on σ, T(X) is an ancillary statistic.

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 22 / 23

Page 82: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Ancillary Statistics for Scale Family.Problem..

......

Let X1, · · · ,Xn be iid from a location family with pdf f(x/σ)/σ whereσ > 0. Show that the following statistic T(X) is ancillary.

T(X) = (X1/Xn, · · · ,Xn−1/Xn)

.Solution..

......

Assume that cdf is F(x/σ), and let Z1 = X1/σ, · · · ,Zn = Xn/σ be iidobservations from pdf f(x) and cdf F(x). Then the joint cdf of the T(X) is

FT(t1, · · · , tn−1|σ) = Pr(X1/Xn ≤ t1, · · · ,Xn−1/Xn ≤ tn−1|σ)= Pr(σZ1/σZn ≤ t1, · · · , σZn−1/σZn ≤ tn−1|σ)= Pr(Z1/Zn ≤ t1, · · · ,Zn−1/Zn ≤ tn−1|σ)

Because Z1, · · · ,Zn does not depend on σ, T(X) is an ancillary statistic.Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 22 / 23

Page 83: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Summary

.Today..

......

• Minimal Sufficient Statistics• Recap from last lecture• Example from the textbook

• Ancillary Statistics• Definition• Examples• Location-scale family and parameters

.Next Lecture..

......• Complete Statistics

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 23 / 23

Page 84: Biostatistics 602 - Statistical Inference Lecture 04 ... · Minimal Sufficient Statistics. . . . . . . . . Ancillary Statistics. . . . . . . Location-scale Family. Summary.. Biostatistics

. . . . . .

. . . . .Minimal Sufficient Statistics

. . . . . . . . .Ancillary Statistics

. . . . . . .Location-scale Family

.Summary

Summary

.Today..

......

• Minimal Sufficient Statistics• Recap from last lecture• Example from the textbook

• Ancillary Statistics• Definition• Examples• Location-scale family and parameters

.Next Lecture..

......• Complete Statistics

Hyun Min Kang Biostatistics 602 - Lecture 04 January 22th, 2013 23 / 23