bipol 1 handout 8aitlims-zsis.meil.pw.edu.pl/pomoce/bipol/bipol_1_handout...2 airfoil geometry...

30
1 Wing Airfoil selection Aerodynamic characteristics (K max , C Lmax , stall characteristics) Structural reasons;

Upload: doanlien

Post on 02-Apr-2018

245 views

Category:

Documents


1 download

TRANSCRIPT

1

Wing

Airfoil selection

• Aerodynamic characteristics (Kmax, CLmax, stall characteristics)

• Structural reasons;

2

Airfoil geometry

Airfoil geometry

Leading edge

Trailing edge

Chord

Camber line

Maximum thickness

Maximum camberMaximum

thickness position Maximum camber

position

3

Angle of attack definition

V∞

AoA

Stall

AoA=0°

AoA=10°

AoA=15°

AoA=20°

Separation point

4

Airfoil aerodynamic characteristics

a/dαdC l ≡≡≡≡0α

KRα

MAXLC

Drag coefficient (C x or CD )Lift coefficient (C z or CL)

Stall

Airfoil aerodynamic characteristics

Design C z

5

Airfoil aerodynamic characteristicsPower factor(Cz

3 / Cx2 lub C z

1,5 /Cx)Gliding ratio (C z / Cx)

Airfoil aerodynamic characteristicsPitching moment coefficient C m

Derivative dCm/dCzis an indicator of stability.

It is negative for stable aeroplanesand positive for unstable aeroplanes.

6

Maximum thickness – t/c

Maximum thickness - t

Chord - c

Effect of airfoil thickness on lift coefficient

6%

8%

10%

12%

14%

16%

18%

20%

7

Effect of airfoil thickness on lift coefficient

Effect of airfoil thickness on drag coefficient

6%

8%

10%

12%

14%

16%

18%

20%

8

Effect of airfoil thickness on gliding ratio

6%

8%

10%

12%

14%

16%

18%

20%

Effect of airfoil thickness on power factor

6%

8%

10%

12%

14%

16%

18%

20%

9

CamberCamber line

Maximum camber

Effect of airfoil camber on lift coefficient

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

10

Effect of airfoil camber on drag coefficient

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

Effect of airfoil camber on gliding ratio

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

11

Effect of airfoil camber on power factor

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

Effect of airfoil camber on moment coefficient

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

12

Position of maximum thickness

Maximum thickness

Position of maximum thickness

Boundary layer development

laminar turbulent

separated

transition

separation

13

Effect of airfoil „laminarity” on drag coefficient

15%

20%

25%

30%

35%

40%

45%

50%

Effect of airfoil „laminarity” on lift coefficient

15%

20%

25%

30%

35%

40%

45%

50%

14

Effect of camber line shape on moment coefficient

35%

28%

22%

15%

Effect of camber line shape on gliding ratio

35%

2%

4%

6%

28%

22%

15%

0%

15

Reynolds number effect on

aerodynamic coefficients

Effect of Mach

number on lift

coefficient

16

Effect of Mach

number on drag

coefficient

Effect of Mach number on moment coefficient

17

Critical Mach number

Historical values of an aeroplane airfoil thickness as a function of Mach number

18

Critical Mach number

Critical Mach number

19

Airfoil selectionCalculate Reynolds number for design airspeed

Re>3 000 000 3 000 000>Re>500 000 500 000>Re

Wortmann catalogue„StuttgarterProfilkatalog” Vol.1 i 2

Selig catalogue„Summary of low speed airfoil data” Vol.1-3„Airfoils at low speeds”

Calculate Mach number for maximum airspeed

Mmax<0,75

Mmax>0,75

Abbot catalogue „Theory of the wing section”, raport NACA 824, NASA TN D-7428

Supercritical airfoil eg. NASA SC(2) 714NASA TM X-1109NASA TM X-2977NASA TP 2969

Airfoil selection

Calculate Reynolds number for design airspeed

Find characteristics for Re des i Mdes

Calculate C L for design airspeed

Compare C D for C Ldes of available airfoils and select few best airfoils

Compare C Lmax of selected airfoils

Compare stall character of selected airfoils

Compare C M of selected airfoils

Select an airfoil with a combination of above featur es best suiting to the aeroplane mission

20

Remaining wing features

• Wing incidence;• Mean aerodynamic chord mac, • Wing area (reference area) S;• Wing span b;• Wing aspect ratio A;• Wing dihedral;• Wing sweep angle (leading edge ΛLE,

quarter chord Λc/4);• Taper ratio λ;• Geometrical and aerodynamic twist;• Winglets• Leading edges extensions;

c

Wing incidence angle

An angle between root chord and fuselage longitudinal axis

21

Taper ratio

S/WW

S ====

SAb ⋅⋅⋅⋅====

(((( ))))[[[[ ]]]]λλλλ++++⋅⋅⋅⋅⋅⋅⋅⋅====

1bS2

cR

R

T

cc====λλλλ

Straight wings:

λ=0.4÷0.5

Swept wings:

λ=0.2÷0.3

cT

cR

b/2

S

RT cc ⋅⋅⋅⋅λλλλ====

Mean aerodynamic chord mac, c

(((( ))))(((( )))) ;1

132 2

λλλλλλλλλλλλ

++++++++++++⋅⋅⋅⋅⋅⋅⋅⋅

==== ROOTcc

( )( )[ ];1216

λλ +⋅+⋅

= bY

cR

cT

cT

cR

c

Y

0,25mac

22

Vortices generated by a wing

Vortices generated by a wing and effect of aspect ratio on drag coefficient

Sb

A2

====eA

CCC

2L

0DD ⋅⋅⋅⋅⋅⋅⋅⋅ππππ++++====

23

Effect of aspect ratio (A, AR) on lift coefficient

Sb

A2

====

Helmbolt equation

2

2

ll

lL

ACC

ACC

++++

ππππ++++

ππππ

⋅⋅⋅⋅====αααααααα

αααααααα

Wing dihedral angle φ – an angle between chords’ plane and horizontal plane

ϕϕϕϕ

Wing dihedral

b1 b2

b3

b4

b3<b1=b2<b4

-5 ÷ 0-5 ÷ 00 ÷ 5Supersonic swept

-5÷-2-2 ÷ 23 ÷ 7Subsonic swept

0 ÷ 22 ÷ 45 ÷ 7Unswept

highmidlow

Wing position

24

Wing sweep c/t4/cLE ,, ΛΛΛΛΛΛΛΛΛΛΛΛ

ΛΛΛΛLEΛΛΛΛc/4

Line connecting quarter chords along the wing span

(((( )))) (((( ))))[[[[ ]]]]λλλλ++++⋅⋅⋅⋅λλλλ−−−−++++ΛΛΛΛ====ΛΛΛΛ 1A/1tantan 4/cLE

Wing sweep

Wing sweep reduces effective Mach number.

ΛΛΛΛLE

ΛΛΛΛt/c

M

Meff=M∞cos(ΛΛΛΛLE)

Mkryt~1/cosm(ΛΛΛΛLE)

qeff=q∞cos2(ΛΛΛΛLE)

W~tan2(ΛΛΛΛLE)

McosΛΛΛΛLE

25

Wing sweep effect on dCL/dα

(((( )))) (((( ))))

ββββΛΛΛΛ++++⋅⋅⋅⋅ββββ⋅⋅⋅⋅++++++++

⋅⋅⋅⋅ππππ⋅⋅⋅⋅====αααα

2c/t

22

L

tan1A42

A2d

dC

2effM1 −−−−====ββββ

LEeff cosMM ΛΛΛΛ==== ∞∞∞∞

Wing sweep effect on separation

26

Wing sweep at supersonic speeds

Winglets

27

Wing twist

Geometric twist

Aerodynamic twist

Wing twist

Geometric twist

Aerodynamic twist

28

Delta wings

AoA

V

Leading Edge

eXtensions

29

LEX effect on lift coefficient

Vortex generators RAF Museum Hendon

30