bldcmotor

Upload: ronit-kumar

Post on 08-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 BLDCMotor

    1/65

    Brushless DC (BLDC) Motor Fundamentals

    INTRODUCTIONBrushless Direct Current (BLDC) motors areone of the motor types rapidly gainingpopularity. BLDC motors are used inindustries such as Appliances, Automotive,Aerospace, Consumer, Medical, IndustrialAutomation Equipment and Instrumentation.

    As the name implies, BLDC motors do notuse brushes for commutation; instead, theyare electronically com-mutated. BLDC motorshave many advantages over brushed DCmotors and induction motors. A few of these

    are: Better speed versus torque characteristics High dynamic response High efficiency Long operating life Noiseless operation Higher speed ranges

    In addition, the ratio of torque delivered to thesize of the motor is higher, making it useful inapplications where space and weight arecritical factors.

    In this application note, we will discuss in

    detail the con-struction, working principle,characteristics and typical applications of BLDC motors. Refer to Appendix B:Glossary for a glossary of terms commonlyused when describing BLDC motors.

    CONSTRUCTION ANDOPERATING PRINCIPLEBLDC motors are a type of synchronousmotor. This means the magnetic fieldgenerated by the stator and the magnetic fieldgenerated by the rotor rotate at the samefrequency. BLDC motors do not experience

    the slip that is normally seen in inductionmotors.

    BLDC motors come in single-phase, 2-phaseand 3-phase configurations. Corresponding to itstype, the stator has the same number of windings. Out of these, 3-phase motors are themost popular and widely used. This applicationnote focuses on 3-phase motors.

    Stator

    The stator of a BLDC motor consists of stackedsteel laminations with windings placed in theslots that are axially cut along the inner periphery (as shown in Figure 3). Traditionally,the stator resembles that of an induction motor;however, the windings are distributed in adifferent manner. Most BLDC motors have threestator windings connected in star fashion. Eachof these windings are constructed withnumerous coils interconnected to form awinding. One or more coils are placed in theslots and they are interconnected to make awinding. Each of these windings are distributedover the stator periphery to form an evennumbers of poles.

    There are two types of stator windingsvariants: trapezoidal and sinusoidal motors.This differentiation is made on the basis of the interconnection of coils in the stator windings to give the different types of backElectromotive Force (EMF). Refer to theWhat i s Back EMF? section for moreinformation.

    As their names indicate, the trapezoidal motor gives a back EMF in trapezoidal fashion andthe sinusoidal motors back EMF issinusoidal, as shown in Figure 1 and Figure

    2. In addition to the back EMF, the phasecurrent also has trapezoidal and sinusoidalvariations in the respective types of motor.This makes the torque output by a sinusoidalmotor smoother than that of a trapezoidalmotor. However, this comes with an extracost, as the sinusoidal motors take extrawinding interconnections because of the coilsdistribution on the stator periphery, therebyincreasing the copper intake by the stator windings.

    Depending upon the control power supplycapability, the motor with the correct voltagerating of the stator can be chosen. Forty-eight

    volts, or less voltage rated motors are used inautomotive, robotics, small arm movementsand so on. Motors with 100 volts, or higher ratings, are used in appliances, automationand in industrial applications.

  • 8/6/2019 BLDCMotor

    2/65

  • 8/6/2019 BLDCMotor

    3/65

    FIGURE 1: TRAPEZOIDAL BACK EMF

    0 60 120 180 240 300 360 60

    Phase A-B

    Phase B-C

    Phase C-A

    FIGURE 2: SINUSOIDAL BACK EMF

    0 60 120 180 240 300 360 60

    Phase A-B

    Phase B-C

    Phase C-A

  • 8/6/2019 BLDCMotor

    4/65

  • 8/6/2019 BLDCMotor

    5/65

    FIGURE 3: STATOR OF A BLDC MOTOR

    Stamping with Slots

    Stator Windings

  • 8/6/2019 BLDCMotor

    6/65

    Rotor

    Therotor is

    madeof per manentmagnetandcanvar yfromtwotoeightpolepair swithalternateNor th(N)andSouth(S)poles.

    Basedontherequiredmagneticfielddensityintherotor,thepro

    per

    magneticmaterial ischosentomaketherotor.Ferr itemagnetsaretraditionallyused tomakeper manentmagnets.Asthetec

    hnologyadvances,rareearthalloymagnetsare

    gainingpopular ity.Theferritemagnetsarelessexp

  • 8/6/2019 BLDCMotor

    7/65

    ensivebuttheyhavethedisad-vantag

    e of lowfluxdensityfor agivenvolume.Incon-

    trast,thealloymaterialhashighmagneticdensityper

    volumeandenablestherotor tocompr essfurther for thesametorque.Also,the

    sealloymagnetsimprovethesize-to-wei

    ghtratioandgivehigher torquefor thesamesizemotor usingferritemagnets.

    Neodymium

  • 8/6/2019 BLDCMotor

    8/65

    (Nd),Samar iumCobalt(SmCo)andthe

    alloy of Neodymium,Fer riteandBor on(NdFeB)

    aresomeexamplesof rar eearthalloymagnets.Continu-ousresear

    chisgoingontoimprovethefluxden

    sitytocompr esstherotor further.

    Figure4 sho

    wscrosssections of diff erentarr angements of

    magnetsin arotor.

    FIGURE 4:

    ROTORMAGNETCROSSSECTIONS

    S

    N

    N

    S

    S

    N

    N

    N

  • 8/6/2019 BLDCMotor

    9/65

    NSS

    NN

    S

    Circular core with magnets Circular core with rectangular Circular core with rectangular magnetson the periphery magnets embedded in the rotor inserted into the rotor core

    Hall SensorsUnlike a brushed DC motor, the commutation of a Note: Hall Effect Theory: If an electric current

    carrying conductor is kept in a magneticBLDC motor is controlled electronically. To rotate thefield, the magnetic field exerts a trans-BLDC motor, the stator windings should be energizedverse force on the moving charge carriersin a sequence. It is important to know the rotor positionwhich tends to push them to one side of in order to understand which winding will be energizedthe conductor. This is most evident in afollowing the energizing sequence. Rotor position isthin flat conductor. A buildup of charge atsensed using Hall effect sensors embedded into thethe sides of the conductors will balancestator.this magnetic influence, producing a

    Most BLDC motors have three Hall sensors embedded measurable voltage between the twointo the stator on the non-driving end of the motor. sides of the conductor. The presence of Whenever the rotor magnetic poles pass near the Hall this measurable transverse voltage issensors, they give a high or low signal, indicating the N called the Hall effect after E. H. Hall whoor S pole is passing near the sensors. Based on the discovered it in 1879.combination of these three Hall sensor signals, theexact sequence of commutation can be determined.

  • 8/6/2019 BLDCMotor

    10/65

    FIGURE 5: BLDC MOTOR TRANSVERSE SECTION

    Stator Windings

    Hall Sensors Rotor Magnet S

    Rotor Magnet NAccessory Shaft

    Driving End of the ShaftHall Sensor Magnets

    Figure 5 shows a transverse section of a BLDC motor with a rotor that has alternate N and S permanent mag-nets. Hall sensors are embedded into the stationary partof the motor. Embedding the Hall sensors into the stator is a complex process because any misalignment in theseHall sensors, with respect to the rotor magnets, willgenerate an error in determination of the rotor posi-tion.To simplify the process of mounting the Hall sensors ontothe stator, some motors may have the Hall sensor magnets on the rotor, in addition to the main rotor magnets. These are a scaled down replica version of therotor. Therefore, whenever the rotor rotates, the Hallsensor magnets give the same effect as the main mag-nets. The Hall sensors are normally mounted on a PCboard and fixed to the enclosure cap on the non-drivingend. This enables users to adjust the complete assem-bly of Hall sensors, to align with the rotor magnets, in

    order to achieve the best performance.Based on the physical position of the Hall sensors,there are two versions of output. The Hall sensorsmay be at 60 or 120 phase shift to each other.Based on this, the motor manufacturer defines thecommutation sequence, which should be followedwhen controlling the motor.

    Note: The Hall sensors require a power supply. Thevoltage may range from 4 volts to 24 volts.Required current can range from 5 to 15mAmps. While designing the con-troller,please refer to the respective motor technical specification for exact voltage and

    current ratings of the Hall sensors used.The Hall sensor output is normally an open-collector type. A pull-up resistor may berequired on the controller side.

    See the Commutation Sequence section for anexample of Hall sensor signals and further details onthe sequence of commutation.

    Theory of Operation

    Each commutation sequence has one of the windingsenergized to positive power (current enters into thewinding), the second winding is negative (current exitsthe winding) and the third is in a non-energized condi-tion. Torque is produced because of the interactionbetween the magnetic field generated by the stator coils and the permanent magnets. Ideally, the peaktorque occurs when these two fields are at 90 toeach other and falls off as the fields move together. Inorder to keep the motor running, the magnetic fieldproduced by the windings should shift position, as therotor moves to catch up with the stator field. What isknown as Six-Step Commutation defines thesequence of energizing the windings. See theCommutatio n Sequence section for detailed

    information and an example on six-step commutation.

  • 8/6/2019 BLDCMotor

    11/65

    TORQUE/SPEEDCHARAC

    TERISTICS

    Figure6 showsanexample of torque/speedcharacter-istics.Therearetwo

    torquepar ameter sused todefineaBLDCmot

    or,

    peaktorque(TP )andratedtorque(TR).(Refer to AppendixA:TypicalMotor TechnicalSpecificationfor acompletelistof

    par ameter s.)Dur -ingcontinuousoperations,the

    motor canbeloadeduptotheratedtorque.Asdisc

  • 8/6/2019 BLDCMotor

    12/65

    ussedearlier,in aBLDCmotor,thetorque

    remainsconstantfor aspeedrangeuptothe

    ratedspeed.Themotor canberunuptothemaximumspeed,whichcanbeupto150%of theratedspeed,butthetorquestar tsdropping.

    Applicationsthathavefrequentstar tsandstopsandfrequentreversalsof rota

    tionwithloadonthemotor,demandmor e

    torquethantheratedtorque.Thisrequirementcomesfor abrief period,especiallywhen

    the

  • 8/6/2019 BLDCMotor

    13/65

    motor star tsfrom astandstillandduring

    acceler a-tion.Dur ingthisperiod,extr atorque

    isrequired toover-cometheiner tiaof theloadandtherotor itself.Themotor candeliver ahig

    her torque,maximumuptopea

    ktorque,aslongasitfollowsthe

    speedtorquecur ve.Ref er tothe Selectinga

    SuitableMotor Ratingfo r theApplicationsectiontounderstandhowtoselectthesepar ameter

    sfor anapplication.

    FIGURE 6:

    TORQUE/SPEED

    CHARACTERI

  • 8/6/2019 BLDCMotor

    14/65

    STICS

    PeakTorque

    TP

    Tor que

    IntermittentTorqueZone

    RatedTorque

    TR

    ContinuousTorqueZone

    Rated SpeedMaximum

    Speed

    Speed

  • 8/6/2019 BLDCMotor

    15/65

    COMPARING BLDC MO

    TORS TO OTH

    ER MOTOR T

    Y

    PESCompared tobrushedDCmotorsand

    inductionmotors,BLDCmotorshavemanyadvantagesandfewdisadvantages.Bru

    shlessmotorsrequirelessmainte-nance,sothey

    have alonger lifecomparedwithbrushedDCmotors.BLDCmotorsproducemor eout-putpower per

  • 8/6/2019 BLDCMotor

    16/65

    framesizethanbrushedDCmotorsand

    inductionmotors.Becausetherotor ismadeof

    per ma-nentmagnets,therotor iner tiaisless,comparedwithother typesof motors.Thisimprovesacceler ationanddeceler ationcharact

    eris

    tics,shorteningoperating

  • 8/6/2019 BLDCMotor

    17/65

    cycles.Their linear speed/torquecharacteristicspro-ducepredictablespeed

    regulation.Withbrushlessmotors,brushinspec

    tioniseliminated,makingthemidealfor limitedaccessareasandapplicationswhereser vici

    ng

    isdifficult.BLDCmotorsoperatemuch

    mor equietlythanbrushedDCmotors,reduci

    ngElectromagneticInterfer ence(EMI).Low-voltagemodelsareidealfor batteryoperation,port

    ableequipmentor medicalapplications.

    Table

  • 8/6/2019 BLDCMotor

    18/65

    1 summarizesthecomparisonbetweenaBLDCmotor andabrushe

    dDCmotor .Table 2 compares aBLDCmotor toaninductionmotor.

    TABLE 1: COMPAFeature

    Commutation EMaintenance Les

    Life LSpeed/Torque FCharacteristics

    Efficiency HiOutput Power/ HigFrame Size cha

    thd

    Rotor Inertia LowT

    Speed Range Highb

    Electric Noise LowGenerationCost of Building Hig

    cControl Co

    Control Requirements A corusp

    TABLE 2: COMPAFeatures

    Speed/Torque Flat

    Characteristics ratedOutput Power/ HighFrame Size smRotor Inertia LowStarting Current Rate

    Control Requirements A conrusp

    Slip Nofr

  • 8/6/2019 BLDCMotor

    19/65

  • 8/6/2019 BLDCMotor

    20/65

    COMMUTATIONSEQUENC

    EFig

    ure7showsanexample of Hallsensor

    signalswithrespecttobackEMFandthephase

    curr ent. Figure 8showstheswitchingsequencethat

    sho

    uldbefollowedwithrespecttothe

    Hallsensors.Thesequencenumberson Figure 7 corr

    espondtothenumbersgiven inFigure 8.

    Every60electricaldegrees of rotation,oneof theHallsen

    sor schangesthestate.Giventhis,ittakes

    six

  • 8/6/2019 BLDCMotor

    21/65

    stepstocompleteanelectricalcycle.

    Insynchr onous,withevery60electricaldegree

    s,thephasecurr entswitch-ingshouldbeupdated.However,oneelectricalcyclemaynotcorr espondto acompletemechanicalrevolu-tionof the

    roto

    r.Thenumber of electricalcyclesto

    berepeatedtocompleteamechanicalrota

    tionisdeter-minedbytherotor polepair s.For eachrotor polepair s,oneelectricalcycle iscompleted.So,thenumber of electricalcycl

    es/r

  • 8/6/2019 BLDCMotor

    22/65

    otationsequalstherotor polepair s.

    Figure9 showsablockdiagramof thecontroller used tocontrolaBLDCmotor.Q0toQ5are

    thepower switchescontrolledbythePIC18FXX31micro-controller.Basedonthemotor voltageandcurr

    entratings,theseswitchescanbeMO

    SFETs,or IGBTs,or simplebipolar transistors.

    Table3 and Table 4 showthesequenceinwhi

    chthesepower switchesshouldbeswitchedbasedontheHallsensor inputs,A,BandC.Table 3 is

  • 8/6/2019 BLDCMotor

    23/65

    for clockwiserota-tionof themotor and

    Table 4 isfor counter clockwisemotor rotation.

    This isanexample of Hallsensor sig-nalshavinga60degreephaseshiftwithrespect toeachother.Aswehavepreviouslydiscussedinthe HallSen

    sor

    s section,theHallsensor smaybeat

    60or 120phaseshifttoeachother.When

    derivingacontroller for aparticular motor,thesequencedefinedbythemotor manuf acturer shouldbefollowed.

    Ref erringto Figure9, if thesignals

  • 8/6/2019 BLDCMotor

    24/65

    mar kedbyPWMxareswitchedONor OF

    Faccordingtothesequence,themotor willrun

    attheratedspeed.This isassumingthattheDCbusvoltageisequaltothemotor ratedvolt-age,plusanylossesacr osstheswitches.Tovar y

    the

    speed,thesesignalsshouldbePulseWid

    thModulated(PWM) atamuchhigher freq

    uencythanthemotor fre-quency.Asaruleof thumb,thePWMfrequencyshouldbeatleast 10timesthatof themaximumfrequencyof themotor.

    Wh

  • 8/6/2019 BLDCMotor

    25/65

    enthedutycycle of PWM isvariedwithin

    thesequences,theaveragevoltagesupplied tothe

    sta-tor reduces,thusreducingthespeed.Another advan-tage of havingPWM isthat, if theDCbusvoltageismuchhigher thanthemotor ratedvolt

    age

    ,themotor canbecontrolledbylimiting

    theper centage of PWMdutycyclecorr espond

    ingtothatof themotor ratedvolt-age.Thisaddsflexibility tothecontroller tohookupmotorswithdiff erentratedvoltagesandmatchthe

    ave

  • 8/6/2019 BLDCMotor

    26/65

    ragevoltageoutputbythecontroller,to

    themotor ratedvoltage, bycontrollingthePWM

    dutycycle.

    Therearediff erentapproaches of controls. If thePWMsignalsarelimitedinthe

    microcontr oller,theupper switchescanbeturn

    edonfor theentiretimeduringthecorr espondingsequenceandthecorr espondinglower switchcan

    be

  • 8/6/2019 BLDCMotor

    27/65

    controlledbytherequireddutycycle

    onPWM.

    Thepotentiometer ,connectedtotheanalog-to-digitalconverter channel inFigure 9,

    isfor settingaspeedreference.Basedonthisinputvoltage,thePWMdutycycleshouldbecal

    culated.

    Closed-LoopContr ol

    Thespeedcanbecontrolledin aclosed

    loopbymeasuringtheactualspeedof themotor.Theerr or inthesetspeedandactualspeediscalculated.APropor -tionalplusIntegral

    plu

  • 8/6/2019 BLDCMotor

    28/65

    sDer ivative(P.I.D.)controller canbeuse

    d toamplif ythespeederr or anddynamically

    adjustthePWMdutycycle.

    For low-cost,

    low-resolutionspeedrequirements,theHallsignalscanbeused tomeasurethespeedfeed-back. A

    timer fromthePIC18FXX31canbeuse

    d tocountbetweentwoHalltransitions.With

    thiscount,theactualspeedof themotor canbecalculated.

    For high-resolutionspeedmeasurements,anopticalencoder canbefittedontothe

  • 8/6/2019 BLDCMotor

    29/65

    motor,whichgivestwosignalswith

    90degreesphasediff erence.Usingthese

    signals,bothspeedanddirection of rotationcanbedetermined.Also,mostof theencodersgiv

    e athir dindexsignal,which

    isonepulseper revolution.Thiscanbe

    usedfor positioningapplications.Opticalenc

    od-ersareavailablewithdiff erentchoices of PulsePer Revolution(PPR),rangingfromhun

    dredstothousands.

  • 8/6/2019 BLDCMotor

    30/65

    FIGURE 7: HALL SENSOR SIGNAL, BACK EMF, OUTPUT TORQUE AND PHASE CURRENT

    HallSensor Output

    BackEMF

    OutputTorque

    PhaseCurrent

    Sequence

    Number

    1 Electrical Cycle 1 Electrical Cycle

    0 180 360 540 720

    1A0

    1B

    01

    C0

    +A+

    B- 0

    +B+

    C-0

    +C+

    0A-

    +

    0

    +

    0A

    +

    0B

    +0C

    (2) (3) (6) (2) (4) (5)(1) (4) (5) (1) (3) (6)

    1 Mechanical Revolution

  • 8/6/2019 BLDCMotor

    31/65

    FIGURE 8: WINDING ENERGIZING SEQUENCE WITH RESPECT TO THE HALL SENSOR

    A A

    C B C B(1) (2)

    A A

    C B C B(3) (4)

    A A

    C B C B(5) (6)

  • 8/6/2019 BLDCMotor

    32/65

    FIGURE9: CONTROL BLOCK DIAGRAM

    REF DC+

    Q1 Q3 Q5PWM5A

    RUN/ PWM4PWM1

    STOP PWM3PWM3 PWM5PIC18FXX31 IGBT

    PWM4FWD/REV PWM2 Driver PWM2

    PWM1 PWM0PWM0

    BCQ0 Q2 Q4

    DC-

    N SHall A

    S NHall B

    Hall C

    TABLE 3:SEQUENCE FOR ROTATING THE MOTOR IN CLOCKWISE DIRECTION WHENVIEWED FROM NON-DRIVING END

    Sequence Hall Sensor Input Active PWMsPhase Current

    # A B C A B C

    1 0 0 1 PWM1(Q1) PWM4(Q4) DC+ Off DC-2 0 0 0 PWM1(Q1) PWM2(Q2) DC+ DC- Off 3 1 0 0 PWM5(Q5) PWM2(Q2) Off DC- DC+

    4 1 1 0 PWM5(Q5) PWM0(Q0) DC- Off DC+5 1 1 1 PWM3(Q3) PWM0(Q0) DC- DC+ Off 6 0 1 1 PWM3(Q3) PWM4(Q4) Off DC+ DC-

    TABLE 4:SEQUENCE FOR ROTATING THE MOTOR IN COUNTER-CLOCKWISE DIRECTIONWHEN VIEWED FROM NON-DRIVINGEND

    Sequence Hall Sensor Input Active PWMsPhase Current

    # A B C A B C

    1 0 1 1 PWM5(Q5) PWM2(Q2) Off DC- DC+

    2 1 1 1 PWM1(Q1) PWM2(Q2) DC+ DC- Off 3 1 1 0 PWM1(Q1) PWM4(Q4) DC+ Off DC-4 1 0 0 PWM3(Q3) PWM4(Q4) Off DC+ DC-

    5 0 0 0 PWM3(Q3) PWM0(Q0) DC- DC+ Off 6 0 0 1 PWM5(Q5) PWM0(Q0) DC- Off DC+

  • 8/6/2019 BLDCMotor

    33/65

    WHAT

    ISBACKEMF?WhenaBL

    DCmotor rotates,eachwindinggeneratesa

    voltageknownasbackElectromotiveFor ceor backEMF,whichopposesthemainvoltagesup

    plie

    d tothewindingsaccordingtoLenzsLaw.Thepolarity of thisbackEMF is

    inoppositedirection of theenergizedvoltage.

    BackEMFdependsmainlyonthreefactors:

    Angular velocityo

    f

  • 8/6/2019 BLDCMotor

    34/65

    ther otor

    Magn

    eticfieldgener atedbyr otor magnets

    Thenumber of tur nsinthestator windi

    ngs

    EQUATION1:

    Back EMF= (E)

    N lr B

    wher e:

    N is the number of w

    inding tur ns per phase, l

    is

  • 8/6/2019 BLDCMotor

    35/65

    the length o

    f the r otor ,r

    is the inter nal r adius of the r otor ,B is the r

    otor magnet

    ic f ield densi

    ty and is the motor s angular velocity

  • 8/6/2019 BLDCMotor

    36/65

    Oncethemotor isdesigned,therotor magneticfieldandthenumber of turn

    s inthestator windingsremainconstant.Theonl

    yfactor thatgovernsbackEMF istheangular velocity or speedof therotor andasthespeedincr

    eas

    es,backEMFalsoincr eases.Themot

    or technicalspecificationgivesapar ameter

    called,backEMFconstant(ref er to AppendixA:TypicalMoto r TechnicalSpecif ication

    ),thatcanbeused toestimatebackEMFfor

    a

  • 8/6/2019 BLDCMotor

    37/65

    givenspeed.

    Thepotentialdiff erenceacr ossawindingcanbecalculatedbysubtractingthebackEMFvaluefromthesupplyvoltage

    .ThemotorsaredesignedwithabackEMF

    constantinsuch awaythatwhenthemotor isrun-

    ning attheratedspeed,thepotentialdiff

    erencebetweenthebackEMFandthesupply

    voltagewillbesufficient for themotor todrawtheratedcurr entanddeliver theratedtorque.If themotor isdrivenbeyondtheratedspeed,backEM

    F

  • 8/6/2019 BLDCMotor

    38/65

    mayincr easesubstantially,thusdec

    reasingthepotentialdiff erenceacr ossthewindin

    g,reducingthecurr entdrawnwhichresultsin adroopingtorquecur ve.Thelastpointon

    thespeedcur vewouldbewhenthesup

    plyvoltageisequaltothesumof theback

    EMFandthelossesinthemotor,wherethecurr entandtorqueareequaltozer o.

  • 8/6/2019 BLDCMotor

    39/65

  • 8/6/2019 BLDCMotor

    40/65

    SensorlessContr

    olof BLDCMotor s

    Untilnowwehave

    seencommutationbasedontherotor position

    givenbytheHallsensor.BLDCmotorscanbecommutatedbymonitoringthebackEMFsig-nalsinstead

    of theHallsensor s.TherelationshipbetweentheHallsensor sandbackEMF,withres

    pect tothephasevoltage, isshownin Figure7.

    Aswehaveseen inearlier sections,everycommutationsequencehasoneof thewindingsenergized

  • 8/6/2019 BLDCMotor

    41/65

    positive,thesecondnegativeandthethir d

    leftopen.Asshownin Figure7,theHallsensor

    signalchangesthestatewhenthevolt-agepolarity of backEMFcrossesfrom apositivetonegative or fromnegative topositive.Inidealcas

    es,

    thishappensonzer o-crossing of back

    EMF,butpractically,ther ewillbeadelaydue

    tothewindingchar-acteristics.Thisdelayshouldbecompensatedbythemicrocontr oller .Figure10showsablockdiagramfor sensorl

    ess

  • 8/6/2019 BLDCMotor

    42/65

    controlof aBLDCmotor.

    Another aspecttobeconsidered isver ylowspeeds.BecausebackEMF is

    proportionaltothespeedof rota-tion, ata

    ver ylowspeed,thebackEMFwouldbeat aver ylowamplitudetodetectzer o-crossing.The

    mot

  • 8/6/2019 BLDCMotor

    43/65

    or hastobestar tedinopenloop,fro

    mstandstillandwhensuff icientbackEMF is

    built todetectthezer o-crosspoint,thecontrolshouldbeshif tedtothebackEMFsensing.The

    minimumspeedatwhichbackEMFcanbe

    sen

    sediscalculatedfromthebackEM

    Fconstantof themotor.

    Withthismethodof commutation,theHallsensor scanbeeliminate

    dandinsomemotors,themagnetsfor Hallsensor salsocanbeeliminated.Thissimplifiesthe

  • 8/6/2019 BLDCMotor

    44/65

    motor constructionandreducesthecos

    t aswell.This isadvantageousif themotor is

    operatingindustyor oilyenvironments,whereoccasionalcle

    aningisrequired inorder for theHallsen

    sor s tosenseproperly.Thesamethingapplies

    if themotor ismountedin alessaccessiblelocation.

    FIGURE 10: BLO

    REF

    RUN/STOP

    PIC18FFWD/REV

  • 8/6/2019 BLDCMotor

    45/65

  • 8/6/2019 BLDCMotor

    46/65

    SELECTING A SU

    ITABLE MOTOR RATING F

    OR THE APPL

    ICATI

    ONSelectingtherighttype of motor for

    thegivenapplicationisver yimportant.Basedontheloadchar-acteristics,themotor must

    beselectedwiththeproper rating.Thr eepar

    am

  • 8/6/2019 BLDCMotor

    47/65

    eter sgovernthemotor selectionfor the

    givenapplication.Theyare:

    Peakt

    or quer equir edf or

    theapplication

    RMS

    tor quer equir ed

    Th

    e

    oper atingspeedr ange

    PeakTorque(TP )

    Requirement

    Thepeak,or maximumtorq

    uerequiredfor theapplica-tion,canbecal

    culatedbysummingtheloadtorque(TL),torq

  • 8/6/2019 BLDCMotor

    48/65

    ueduetoiner tia(TJ )andthetorquerequire

    d toovercomethefriction(TF).

    Thereareother

    factorswhichwillcontributetotheoverallpeak

    torquerequirements.For example,thewindagelosswhichiscontributedbytheresistanceofferedby

    theair intheair gap.Thesefactorsare

    com-plicated toaccountfor.Therefore,a20

    %saf etymar ginisgivenasaruleof thumbwhencalculatingthetorque.

    EQUATION2:

    TP = (T L + T J+ T F) * 1.2

    Thetorqueduetoiner tia(TJ )isthetorq

  • 8/6/2019 BLDCMotor

    49/65

    uerequired toacceler atetheloadfrom

    standstillor from alower speedto ahigher spe

    ed.Thiscanbecalculatedbytak-ingtheproduct of loadiner tia,includingtherotor iner tiaand

    loadacceler ation.

    EQUATION3:

    T J = J

    w

    her e:JL

    + M

    is the sum of

    the load and

    r otor iner tia and is the

    r

  • 8/6/2019 BLDCMotor

    50/65

    equir ed acc

    eler ation

    Themechanic

    alsystemcoupled tothemotor shaftdeterminestheloadtorqueandthefrictionaltorque.

    RMSTorqueRequ

    irement(TRMS )

    TheRootMeanSquar e(RMS)torquecanberoughlytranslatedtotheaveragecontinuoustorquerequiredfor the

    application.Thisdependsuponmanyfactors.

  • 8/6/2019 BLDCMotor

    51/65

    Thepeaktorque(TP),loadtorque(TL)

    ,torqueduetoiner tia(TJ ),frictionaltorque

    (TF)andacceler ation,deceler ationandruntimes.

    ThefollowingequationgivestheRMStorque

    requiredfor atypicalapplicationwhereTAis

    the

    acceler ationtime,TRistheruntimeandTDisthedeceler ationtime.

    EQUATION4:

    TRMS =

    [{T P2

    TA +

    (T L +

    TF)2

    TR +

    (T J

    TL

    TF)2

    TD}/

    (T A +

    TR +

    TD)]

    SpeedRange

    This isthemotor speedrequired todrive

    the

  • 8/6/2019 BLDCMotor

    52/65

    applicationandisdeterminedbythetyp

    e of application.For exam-ple,anapplicationlike

    ablower wherethespeedvari-ation isnotver yfrequentandthemaximumspeedof theblower

    canbetheaveragemotor speedrequired.Wh

    ere

    asinthecase of apoint-to-pointpos

    itioningsys-tem,likein ahigh-precision

    conveyer beltmovementor roboticarmmovements,thiswouldrequireamotor with aratedope

    ratingspeedhigher thantheaveragemove-

    me

  • 8/6/2019 BLDCMotor

    53/65

    ntspeed.Thehigher operatingspeedcan

    beaccountedfor thecomponentsof thetrapezo

    idalspeedcur ve,resultinginanaveragespeedequaltothemovementspeed.Thetrapezo

    idalcur veisshownin Figure 11.

    It isalwayssuggestedtoallow asaf etymar ginof 10%,asaruleof thumb,toaccount for miscellaneous

    factorswhicharebeyondour calculations.

  • 8/6/2019 BLDCMotor

    54/65

  • 8/6/2019 BLDCMotor

    55/65

    FIGURE 11: TRAPEZOIDAL SPEED CURVE

    MaximumSpeed

    Average Motor Speed

    Speed

    TA TR TD

    Time

  • 8/6/2019 BLDCMotor

    56/65

    TYPICAL

    BLDCMOTORAPPLICATIONSBLDCmotorsfindapplications ineverysegmentof themar ket.Autom

    otive,appliance,industr ialcontrols,automatio

    n,

    aviationandsoon,haveapplicationsfor BLDCmotors.Outof these,wecan

    categorizethetype of BLDCmotor controlintothreemajor types:

    Constantlo

    ad

    Var yingloads

    Posi

  • 8/6/2019 BLDCMotor

    57/65

    tioningapplications

    ApplicationsWithConstantLoads

    Thesearethetypesof applicationswhereavariablespeedismor eimportantthankeepingtheaccuracyof the

    spe

    edat asetspeed.Inaddition,theacceler

    ationanddeceler ationratesarenotdynamicall

    ychanging.Inthesetypesof applications,theload isdirectlycoupled tothemotor shaft.For exa

    mple,fans,pumpsandblower scomeund

    er

  • 8/6/2019 BLDCMotor

    58/65

    thesetypesof applications.Theseapp

    licationsdemandlow-costcontrollers,mo

    stlyoperatinginopen-loop.

    ApplicationsWithVaryingLoads

    Theseare

    thetypesof applicationswheretheloadonthe

    motor variesover aspeedrange.These

    applica-tionsmaydemandahigh-spe

    edcontrolaccuracyandgooddynamicresponses. Inhomeappliances,wash-ers,dryersandco

    mpr essorsaregoodexamples.Inautomotive,

    fuel

  • 8/6/2019 BLDCMotor

    59/65

    pumpcontrol,electronicsteeringcon-

    trol,enginecontrolandelectricvehiclecontrolare

    goodexamplesof these.Inaer ospace,ther eareanumber of applications,likecentrifuges

    ,pumps,roboticarmcontrols,gyr oscopecon

    trol

    sandsoon.Theseapplicationsmay

    usespeedfeedbackdevicesandmayrunin

    semi-closedloop or intotalclosedloop.Theseapplicationsuseadvancedcontrolalgorithms,

    thuscomplicatingthecontroller.Also,thisincr

    eas

  • 8/6/2019 BLDCMotor

    60/65

    estheprice of thecompletesystem.

    PositioningApplicat

    ions

    Mostof theindustr ialandautomationtypesof applica-tioncomeunder thiscatego

    ry.Theapplications inthiscategoryhavesomekind of power transmission,whichcouldbemechanic

  • 8/6/2019 BLDCMotor

    61/65

    algearsor timer belts,or asimplebelt

    drivensystem. Intheseapplications,thedynami

    cresponseof speedandtorqueareimportant.Also,theseapplicationsmayhavefrequent

    reversalof rota-tiondirection.Atypicalcycl

    e

    willhaveanacceler atingphase,acon

    stantspeedphaseandadeceler ationandpos

    itioningphase,asshownin Figure 11.Theloadonthemotor mayvar yduringallof these

    phases,causingthecontroller tobecompl

    ex.

  • 8/6/2019 BLDCMotor

    62/65

    Thesesystemsmostlyoperateinclosed

    loop.Therecouldbethreecontrolloopsfun

    ctioningsimultaneously:Tor queControlLoop,SpeedControlLoopandPositionControl

    Loop.Opticalencoder or synchr onousresolvers

    are

    usedfor measuringtheactualspeedof

    themotor.Insomecases,thesamesensor s

    areused togetrelativeposi-tioninformation.Otherwise,separatepositionsensor smaybeuse

    d togetabsolutepositions.Computer Numer ic

    Co

  • 8/6/2019 BLDCMotor

    63/65

    ntrolled(CNC)machinesareagood

    example of this.Processcontrols,machiner

    ycontrolsandconveyer controlshaveplentyof applications inthiscategory.

    SUMMAR

    YInconclusion,BLDCmotorshav

    eadvantagesover brushedDCmot

    orsandinductionmotors.Theyhavebetter spe

    edver sustorquecharacteristics,highdynamicresponse,highefficiency,longoperatinglife,noiselessoperation,higher speedranges,rugged

    con

  • 8/6/2019 BLDCMotor

    64/65

    -structionandsoon.Also,torquedeli

    ver edtothemotor sizeishigher,makingituse

    fulinapplicationswherespaceandweightarecriticalfactors.Withtheseadv

    an-tages,BLDCmotorsfindwidespr ead

    applicationsinautomotive,appliance,aer ospace

    ,consumer ,medical,instrumentationandautomationindustr ies.

  • 8/6/2019 BLDCMotor

    65/65