blue book 27

Upload: -

Post on 03-Apr-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Blue Book 27

    1/40

    MATHEMATICS TABLES

    Department of Applied MathematicsNaval Postgraduate School

  • 7/28/2019 Blue Book 27

    2/40

    TABLE OF CONTENTS

    Derivatives and Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Integrals of Elementary Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Integrals Involving au + b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Integrals Involving u2 a2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Integrals Involving

    u2 a2, a > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Integrals Involving

    a2 u2, a > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Integrals Involving Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Integrals Involving Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Miscellaneous Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Wallis Formulas . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Gamma Function . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Probability and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Discrete Probability Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Standard Normal CDF and Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Continuous Probability Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Bessel Functions . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Legendre Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Trigonometric Functions in a Right Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Trigonometric Functions of Special Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Complex Exponential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Relations among the Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

    Sums and Multiples of Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19Miscellaneous Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Side-Angle Relations in Plane Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22First-Order Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23Linear Second-Order Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . 24Vector Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Vector Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Fundamentals of Signals and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

  • 7/28/2019 Blue Book 27

    3/40

    Version 2.7, July 2010

    Initial typesetting: Carroll WildeGraphics: David Canright

    Editing: Elle Zimmerman, David Canright

    Cover: in spherical coordinates (, , ), shell surface is (, ) = ek sin ,

    where k = 1 ln G and G =1+

    5

    2 is the Golden Ratio.

  • 7/28/2019 Blue Book 27

    4/40

    1

    FOREWORD

    This booklet provides convenient access to formulas and other data that arefrequently used in mathematics courses. If a more comprehensive referenceis needed, see, for example, the STANDARD MATHEMATICAL TABLESpublished by the Chemical Rubber Company, Cleveland, Ohio.

    DIFFERENTIALS AND DERIVATIVES

    A. Letters u and v denote independent variables or functions of an indepen-dent variable; letters a and n denote constants.

    B. To obtain a derivative, divide both members of the given formula for thedifferential by du or by dx.

    1. d(a) = 0 2. d(au) = a du

    3. d(u + v) = du + dv 4. d(uv) = u dv + v du

    5. du

    v

    =

    v du u dvv2

    6. d(un) = n un1 du

    7. d(eu) = eudu 8. d(au) = au ln a du

    9. d(ln u) =du

    u10. d(loga u) =

    du

    u ln a11. d(sin u) = cos u du 12. d(cos u) = sin u du13. d(tan u) = sec2 u du 14. d(cot u) = csc2 u du

    15. d(sec u) = sec u tan u du 16. d(csc u) = csc u cot u du17. d(arcsin u) =

    du1 u2 18. d(arccos u) =

    du1 u2

    19. d(arctan u) =du

    1 + u220. d(sinh u) = cosh u du

    21. d(cosh u) = sinh u du 22. d(arcsinh u) =du

    u2 + 1

    23. d(arccosh u) =du

    u2 1 , u > 1

    24. (Differentiation of Integrals) If f is continuous, then

    d(u

    a

    f(t) dt) = f(u) du.

    25. (Chain Rule) If y = f(u) and u = g(x), then

    dy

    dx=

    dy

    du

    du

    dx.

  • 7/28/2019 Blue Book 27

    5/40

    2

    INTEGRALS

    A. Letters u and v denote functions of an independent variable such as x;letters a, b, m, and n denote constants.

    B. Generally, each formula gives only one antiderivative. To find an expres-sion for all antiderivatives, add a constant of integration.

    ELEMENTARY FORMS

    1.

    a du = a u

    2.

    a f(u) du = a

    f(u) du

    3.

    (f(u) + g(u)) du =

    f(u) du +

    g(u) du

    4.

    u dv = u v

    v du (Integration by parts)

    5.

    un du =

    un+1

    n + 1, n = 1

    6.

    du

    u= ln |u|

    7.

    eudu = eu

    8.

    audu = auln a

    , a > 0

    9.

    cos u du = sin u

    10.

    sin u du = cos u

    11.

    sec2 u du = tan u

    12.

    csc2 u du = cot u

    13. sec u tan u du = sec u14.

    csc u cot u du = csc u

  • 7/28/2019 Blue Book 27

    6/40

    3

    15.

    tan u du = ln | cos u|

    16.

    cot u du = ln | sin u|

    17.

    sec u du = ln | sec u + tan u|

    18.

    csc u du = ln | csc u cot u|

    19.

    du

    u2 + a2=

    1

    aarctan

    u

    a

    20. du

    a2

    u2

    = arcsinu

    a

    21.

    du

    u

    u2 a2 =1

    aarcsec

    u

    a

    INTEGRALS INVOLVING au + b

    22.

    (au + b)n du =

    1

    a

    (au + b)n+1

    n + 1, n = 1

    23.

    du

    au + b=

    1

    aln |au + b|

    24. u du

    au + b

    =u

    a

    b

    a2

    ln

    |au + b

    |25.

    u du

    (au + b)2=

    b

    a2(au + b)+

    1

    a2ln |au + b|

    26.

    du

    u(au + b)=

    1

    bln

    uau + b

    27.

    u

    au + b du =2(3au 2b)

    15a2(au + b)

    32

    28.

    u duau + b

    =2(au 2b)

    3a2

    au + b

    29.

    u2

    au + b du =2(8b2 12abu + 15a2u2)

    105a3(au + b)

    32

    30. u2 duau + b = 2(8b

    2

    4abu + 3a2u2)

    15a3 au + b

  • 7/28/2019 Blue Book 27

    7/40

  • 7/28/2019 Blue Book 27

    8/40

  • 7/28/2019 Blue Book 27

    9/40

    6

    INTEGRALS INVOLVING TRIGONOMETRIC FUNCTIONS

    58.

    sin2 audu =

    u

    2 sin2au

    4a

    59.

    cos2 audu =

    u

    2+

    sin2au

    4a

    60.

    sin3 audu =

    cos3 au

    3a cos au

    a

    61.

    cos3 audu =

    sin au

    a sin

    3 au

    3a

    62. sinn audu = sin

    n1 au cos auna

    +n 1

    n sinn2 au du,

    63.

    cosn audu =

    cosn1 au sin auna

    +n 1

    n

    cosn2 au du,

    64.

    sin2 au cos2 audu =

    u

    8 sin4au

    32a

    65.

    du

    sin2 au= 1

    acot au

    66.

    du

    cos2 au=

    1

    atan au

    67.

    tan2 audu =

    1

    atan au u

    68. cot2 audu = 1

    a

    cot au

    u

    69.

    sec3 audu =

    1

    2asec au tan au +

    1

    2aln | sec au + tan au|

    70.

    csc3 audu = 1

    2acsc au cot au +

    1

    2aln | csc au cot au|

    71.

    u sin audu =

    1

    a2sin au u

    acos au

    72.

    u cos audu =

    1

    a2cos au +

    u

    asin au

    73.

    u2 sin audu =

    2u

    a2sin au a

    2u2 2a3

    cos au

    74.

    u2

    cos audu =

    2u

    a2 cos au +

    a2u2

    2

    a3 sin au

  • 7/28/2019 Blue Book 27

    10/40

    7

    INTEGRALS INVOLVING EXPONENTIAL FUNCTIONS

    75.

    ueau du =

    eau

    a2(au 1)

    76.

    u2eau du =

    eau

    a3(a2u2 2au + 2)

    77.

    uneau du =

    uneau

    a n

    a

    un1eau du, n > 1

    78.

    eau sin budu =

    eau

    a2 + b2(a sin bu b cos bu)

    79.

    eau cos budu =

    eau

    a2 + b2(a cos bu + b sin bu)

    80. du

    1 + eau = u1

    a ln(1 + eau)

    MISCELLANEOUS INTEGRALS

    81.

    arcsin audu = u arcsin au +

    1 a2u2

    a

    82.

    arccos audu = u arccos au

    1 a2u2

    a

    83.

    arctan audu = u arctan au 1

    2aln(1 + a2u2)

    84.

    arccot audu = u arccot au +1

    2a ln(1 + a2u2)

    85.

    ln audu = u ln au u

    86.

    un ln audu = un+1

    ln au

    n + 1 1

    (n + 1)2

    87.

    0

    ea2u2 du =

    2a

  • 7/28/2019 Blue Book 27

    11/40

    8

    WALLIS FORMULAS

    88.

    2

    0

    sinm u du =

    (m1)(m3)(3)(1)(m)(m2)(4)(2)

    2 , m even;

    (m1)(m3)(4)(2)(m)(m2)(5)(3) , m odd

    89.

    2

    0

    cosm u du =

    2

    0

    sinm u du

    90.

    2

    0

    sinm u cosn u du =

    (m1)(m3)(3)(1)(n1)(n3)(4)(2)(m+n)(m+n2)(3)(1) , m even, n odd;

    (m

    1)(m

    3)

    (4)(2)(n

    1)(n

    3)

    (3)(1)

    (m+n)(m+n2)(3)(1) , m odd, n even;(m1)(m3)(4)(2)(n1)(n3)(4)(2)

    (m+n)(m+n2)(4)(2) , m odd, n odd;

    (m1)(m3)(3)(1)(n1)(n3)(3)(1)(m+n)(m+n2)(4)(2)

    2

    , m even, n even

    GAMMA FUNCTION

    Definition :

    (x) =

    0

    ettx1 dt, x > 0

    Shift Property :

    (x + 1) = x(x), x > 0

    Definition :

    (x) =(x + 1)

    x, x < 0, x = 1,2, . . .

    Special Values :

    (1

    2) =

    (n) = (n 1)!, n = 1, 2, . . .

  • 7/28/2019 Blue Book 27

    12/40

  • 7/28/2019 Blue Book 27

    13/40

  • 7/28/2019 Blue Book 27

    14/40

    11

    PROBABILITY AND STATISTICS

    Formulas for counting permutations and combinations:

    (a) nPk =n!

    (n k)! (b) nCk =

    n

    k

    =

    n!

    k!(n k)!Let A and B be subsets (events) of the same sample space.

    (a) P(A B) = P(A) + P(B) P(A B).(b) The conditional probability of B given A, P(B|A), is defined by

    P(B|A) = P(A B)P(A)

    , P(A) = 0.

    (c) A and B are statistically independent if and only if

    P(A B) = P(A)P(B).Let X be a discrete random variable with probability function f(x).

    (a) P(X = x) = f(x), where x S range of X(b) E(X) =

    S

    xf(x) = = mean of X

    (c) var(X) = E((X )2) = E(X2) 2 =S

    x2f(x) 2 = 2

    = variance of X

    (d) =

    var(X) = standard deviation of X.

    Let X be a continuous random variable with and probability density f(x).

    (a) P(a X b) =b

    a

    f(x) dx.

    (b) E(X) =

    S

    xf(x) dx = = mean of X

    (c) var(X) = E((X )2) = E(X2) 2 =S

    x2f(x) dx 2 = 2

    = variance of X

    (d) =

    var(X) = standard deviation of X.

    Let X1, X2, . . . , X n be n statistically independent random variables, each hav-ing the same expected value, , and the same variance, 2. Let

    Y =X1 + X2 + + Xn

    n.

    Then Y is a random variable for which E(Y) = and var(Y) = 2

    n .

  • 7/28/2019 Blue Book 27

    15/40

  • 7/28/2019 Blue Book 27

    16/40

    13

    PROBABILITY FUNCTIONS (Continuous Random Variables)

    Uniform

    f(x; a, b) =1

    b a (a x b).

    =a + b

    2; 2 =

    (b a)212

    .

    Exponential

    f(x; b) = bebx (x 0, b > 0).

    =

    1

    b ; 2

    =

    1

    b2 .Normal

    f(x; a, b) =1

    b

    2e

    (xa)2

    2b2 ( < x < ).

    = a; 2 = b2.

    FOURIER SERIES

    The Fourier series expansion of a function f(t) is defined by:

    f(t) = a0 +

    n=1

    (an cosnt

    L + bn sinnt

    L ),

    where

    a0 =1

    2L

    LL

    f(t) dt

    an =1

    L

    LL

    f(t)cosnt

    Ldt, n 1

    bn =1

    L L

    Lf(t)sin

    nt

    Ldt, n 1

    (Note: for the complex Fourier Series, see page 29)

  • 7/28/2019 Blue Book 27

    17/40

    14

    FOURIER SERIES (Continued)

    Examples of Fourier Series

    f(t) =

    1, 0 < t < L;1, L < t < 0.

    f(t)

    t

    1

    L

    4

    sin

    t

    L+

    1

    3sin

    3t

    L+

    1

    5sin

    5t

    L+ )

    f(t) =

    0, L2 < |t| < L1, 0 < |t| < L2 .

    f(t)

    t

    1

    L

    1

    2+

    2

    cos

    t

    L 1

    3cos

    3t

    L+

    1

    5cos

    5t

    L + )

    f(t) = t, L < t < Lf(t)

    t

    L

    L

    2L

    sin

    t

    L 1

    2sin

    2t

    L+

    1

    3sin

    3t

    L + )

    f(t) = |t|, L < t < Lf(t)

    t

    L

    L

    L2 4L2

    cos tL + 132 cos 3tL + 152 cos 5tL + )

  • 7/28/2019 Blue Book 27

    18/40

    15

    SEPARATION OF VARIABLES

    Eigenvalues and Eigenfunctions for the differential equation

    + = 0.

    1. (0) = (L) = 0

    n = (nL )

    2, n = sinnL x, n = 1, 2, . . .

    2. (0) = (L) = 0

    n =

    (n 12)L2

    , n = cos(n 12 )Lx, n = 1, 2, . . .3. (0) = (L) = 0

    n =

    (n 12)L 2, n = sin(n 12)Lx, n = 1, 2, . . .4. (0) = (L) = 0

    n = (nL )

    2, n = cosnL

    x, n = 0, 1, 2, . . .

    5. (L) = (L), (L) = (L)0 = 0, 0 = 1,

    n = (nL )

    2, n = sinnL x and cos

    nL x, n = 1, 2, . . .

    Solution of inhomogeneous ordinary differential equations

    1. un

    + k nun = hn(t)

    un(t) = aneknt +t0

    hn()ekn(t) d

    2. un + 2n un = hn(t)

    un(t) = an cos nt + bn sin nt +1n

    t0

    hn()sin n(t ) d

  • 7/28/2019 Blue Book 27

    19/40

    16

    BESSEL FUNCTIONS

    1. The differential equation

    x2y + xy + (2x2 n2)y = 0has solutions

    y = yn(x) = c1Jn(x) + c2Yn(x),

    where

    Jn(t) =m=0

    (1)mtn+2m2n+2mm!(n + m + 1)

    .

    2. General properties:

    Jn(t) = (1)nJn(t); J0(0) = 1; Jn(0) = 0, n = 1, 2, 3, . . . ;for fixed n, Jn(t) = 0 has infinitely many solutions.

    3. Identities:

    (a) ddt [tnJn(t)] = tnJn1(t).

    (b) ddt [tnJn(t)] = tnJn+1(t); J0(t) = J1(t)

    (c) Jn(t) =12 [Jn1(t) Jn+1(t)]

    = Jn1(t) nt Jn(t) = nt Jn(t) Jn+1(t)(d) Jn+1(t) =

    2nt Jn(t) Jn1(t) (recurrence).

    4. Orthogonality:

    Solutions yn(0x), yn(1x), . . . , yn(ix), . . . of the differential eigensystemx2y + xy + (2x2 n2)y = 0A1y(x1) B1y(x1) = 0, A2y(x2) + B2y(x2) = 0

    have the propertyx2x1

    xyn(ix)yn(jx) dx = 0

    for i = j, andx2x1

    xy2n(ix) dx =(2ix

    2 n2)y2n(ix) + x2ddxyn(ix)

    222i

    x2

    x1

    for i = j.

  • 7/28/2019 Blue Book 27

    20/40

    17

    5. Integration properties:

    (a)

    tJ1(t) dt = tJ(t) + C

    (b)

    tJ+1(t) dt = tJ(t) + C

    (c)

    tJ0(t) dt = tJ1(t) + C

    (d)

    t3J0(t) dt = (t

    3 4t)J1(t) + 2t2J0(t) + C

    (e)

    t2J1(t) dt = 2tJ1(t) t2J0(t) + C

    (f) t4J1(t) dt = (4t3 16t)J1(t) (t4 8t2)J0(t) + CLEGENDRE POLYNOMIALS

    The differential equation

    (1 x2)y 2xy + n(n + 1)y = 0has solution y = Pn(x), where

    Pn(x) =1

    2n

    [n/2]m=0

    (1)m

    n

    m

    2n 2m

    n

    xn2m

    on the interval [

    1, 1]. The Legendre polynomials can also be obtained itera-

    tively from the first two,

    P0(x) = 1 and P1(x) = x,

    and the recurrence relation,

    (n + 1)Pn+1(x) = (2n + 1)xPn(x) nPn1(x).The Legendre polynomials are also given by Rodrigues formula:

    Pn(x) =(1)n2nn!

    dn

    dxn[(1 x2)n].

    Orthogonality:

    1

    1Pn(x)Pm(x) dx =

    0, n = m;2

    2n+1, n = m.

    Standardization:Pn(1) = 1.

  • 7/28/2019 Blue Book 27

    21/40

  • 7/28/2019 Blue Book 27

    22/40

    19

    RELATIONS AMONG THE FUNCTIONS

    sin x = 1cscx csc x =1

    sin x

    cos x = 1secx sec x =1

    cos x

    tan x = 1cotx =sinxcosx cot x =

    1tan x =

    cosxsinx

    sin2 x + cos2 x = 1 1 + tan2 x = sec2 x1 + cot2 x = csc2 x sin x = 1 cos2 x cos x =

    1 sin2 x

    tan x = sec2 x 1 sec x =

    1 + tan2 x cot x = csc2 x 1 csc x =

    1 + cot2 x

    sin x = cos(2 x) = sin( x) cos x = sin(2 x) = cos( x)tan x = cot(

    2 x) = tan( x) cot x = tan(

    2 x) = cot( x)

    SUMS AND MULTIPLES OF ANGLES

    sin(x y) = sin x cos y cos x sin ycos(x y) = cos x cos y sin x sin ytan(x y) = tan x tan y

    1 tan x tan ysin2x = 2 sin x cos xcos2x = cos2 x sin2 x = 2 cos2 x 1 = 1 2sin2 xsin3x = 3 sin x 4sin3 xcos3x = 4 cos3 x 3cos xsin4x = 8 sin x cos3 x

    4sin x cos x

    cos4x = 8 cos4 x 8cos2 x + 1tan2x =

    2tan x

    1 tan2 x cot2x =cot2 x 1

    2cot x

    tan3x =3tan x tan3 x

    1 3tan2 x sin

    1

    2x =

    1 cos x

    2 cos

    1

    2x =

    1 + cos x

    2

    tan1

    2x =

    1 cos x1 + cos x

    =1 cos x

    sin x=

    sin x

    1 + cos x

    * The choice of the sign in front of the radical depends on the quadrantin which x, regarded as an angle, falls.

  • 7/28/2019 Blue Book 27

    23/40

  • 7/28/2019 Blue Book 27

    24/40

    21

    SIDE-ANGLE RELATIONS IN PLANE TRIANGLES

    Letters A, B, and Cdenote the angles of a plane triangle with opposite sides a,b, and c, respectively. The letter s denotes the semi-perimeter of the triangle,that is,

    s =1

    2(a + b + c).

    a

    sin A=

    b

    sin B=

    c

    sin C= diameter of the circumscribed circle

    a2 = b2 + c2 2 b c cos Aa = b cos C+ c cos B

    tanA B

    2

    =a b

    a + b

    cotC

    2sin A =

    2

    bc

    s(s a)(s b)(s c)

    area =

    s(s a)(s b)(s c)

    sinA

    2=

    (s b)(s c)

    bc

    cosA

    2=

    s(s a)

    bc

    tanA

    2=

    (s b)(s c)

    s(s a)a + b

    a b =sin A + sin B

    sin A sin B =tan 12 (A + B)

    tan 12 (A B) =cot 12C

    tan 12(A B)

    h

    d

    h = dsin sin

    sin( + )=

    d

    cot + cot

    h

    d

    h = dsin sin

    sin( ) =d

    cot cot

  • 7/28/2019 Blue Book 27

    25/40

    22

    HYPERBOLIC FUNCTIONS

    sinh x =1

    2(ex ex), cosh x = 1

    2(ex + ex)

    tanh x =ex exex + ex

    = sinh xcosh x

    =1

    coth x

    sinh x =

    cosh2 x 1 = tanh x1 tanh2 x

    = 1coth2 x 1

    cosh x =

    1 + sinh2 x =1

    1 tanh2 x= coth x

    coth2 x 1

    tanh x =sinh x

    1 + sinh

    2

    x

    =

    cosh2 x 1

    cosh x

    =1

    coth x

    coth x =

    1 + sinh2 x

    sinh x= cosh x

    cosh2 x 1=

    1

    tanh x

    sinh(x y) = sinh x cosh y cosh x sinh ycosh(x y) = cosh x cosh y sinh x sinh ytanh(x y) = tanh x tanh y

    1 tanh x tanh y coth(x y) =coth x coth y 1coth y coth x

    sinh2x = 2cosh x sinh x cosh2x = cosh2 x + sinh2 x

    sinh1 x = ln(x +

    x2 + 1) cosh1 x = ln(x +

    x2 1)

    tanh1 x =1

    2

    ln1 + x1 x coth

    1 x =1

    2

    lnx + 1x 1

    Complex hyperbolic functions involve the Euler relations

    eiz = cos z + i sin z; cos z =eiz + eiz

    2, sin z =

    eiz eiz2i

    .

    cos z = cosh iz

    sin z = i sinh iztan z = i tanh izcot z = i coth iz

    cosh z = cos iz

    sinh z = i sin iztanh z = i tan izcoth z = i cot iz

    sinh(x iy) = sinh x cos y i cosh x sin ycosh(x iy) = cosh x cos y i sinh x sin y

    ln z = ln |z|+ i arg z; so ln ix = ln |x| + (2n + 12

    )i

    and ln(x) = ln |x| + (2n + 1)i (n = 0,1,2, . . .)

  • 7/28/2019 Blue Book 27

    26/40

    23

    FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

    I. Separable equations : N(y) dy = M(x) dx. To solve, integrate both sides:N(y) dy =

    M(x) dx + c.

    II. Exact equations : M(x, y) dx + N(x, y) dy = 0, whereM

    y=

    N

    x. To

    solve,

    integratef

    x= M(x, y) and

    f

    y= N(x, y) :

    f(x, y) = M(x, y) dx + (y) = N(x, y) dy + (x) = c.III. Linear equations :

    dy

    dx+p(x) y = q(x).

    The solution is given by

    y =1

    P(x)

    P(x)q(x) dx +

    c

    P(x), where P(x) = e

    p(x) dx.

    IV. Homogeneous equations :

    dy

    dx= f

    y

    xor

    dy

    dx= f

    x

    y .

    Substitute y = ux,dy

    dx= x

    du

    dx+ u or x = vy,

    dx

    dy= y

    dx

    dy+ v,

    integrate the resulting expression, then resubstitute for u or v.

    V. Equations in the rational form

    dy

    dx=

    ax + by + c

    dx + ey + f,

    where a, b, c, d, e, f are constants such that ae = bd. Substitute

    x = X h, y = Y k, where h = bf ceae bd , k =

    cd afae bd ,

    to obtain the homogeneous equation

    dY

    dX=

    aX+ bY

    dX+ eY.

    This equation may be solved as in item IV above.

  • 7/28/2019 Blue Book 27

    27/40

    24

    LINEAR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

    WITH CONSTANT COEFFICIENTS

    I. Homogeneous equation ay + by + cy = 0. Substitute y = erx to find thecharacteristic equation, and write its roots r1 and r2 :

    ar2 + br + c = 0; r1, r2 =b b2 4ac

    2a.

    The solution, yc, is given by the following table.

    Case 1. b2 4ac > 0, yc = c1er1x + c2er2xreal and distinct roots.

    Case 2. b2 4ac = 0, yc = (c1 + c2x)erxtwo real equal roots.

    Case 3. b2 4ac < 0, yc = ex(c1 cos x + c2 sin x),two complex roots. where

    =b2a

    , =

    4ac b2

    2a

    II. Undetermined Coefficients : ay + by + cy = F(x).

    1. Solve the homogeneous equation ay + by + cy = 0 for yc.

    2. Assume a particular solution yp for any term in F(x) that is one of threespecial types, as follows.

    A. For a polynomial of degree N, yp is a polynomial of degree N.

    B. For an exponential kep(x), yp = Aep(x).C. For j cos x + k sin x, yp = A cos x + B sin x.

    3. If any term in yp found above appears in yc, multiply the correspondingtrial term by the power of x just high enough that the resulting productcontains no term of yc.

    4. For any term in F(x) that is a product of terms of the three types listedabove, let yp be the product of the corresponding trial solutions.

    5. Substitute yp into the given O.D.E. and evaluate the unknown coefficientsby equating like terms.

    6. The general solution of the given equation is

    y = yc + yp.

    Evaluate the two arbitrary constants c1 and c2 in the general solution yby applying boundary/initial conditions, as appropriate.

  • 7/28/2019 Blue Book 27

    28/40

    25

    III. Variation of Parameters : ay + by + cy = F(x).

    1. Write the solution of the homogeneous equation ay + by + cy = 0 in theform

    yc = c1y1 + c2y2.

    2. Assume a particular solution yp for any term in the form

    yp = u1y1 + u2y2,

    where u1 and u2 are functions determined by the conditions

    u1y1 + u2y2 = 0

    u1y1 + u

    2y2 = G(x) where G(x) =

    F(x)

    a.

    3. The solution of this system of equations is given by

    u1 = y2G

    Wand u2 =

    y1G

    W,

    where W denotes the Wronskian determinant:

    W = W(x) =

    y1 y2y1 y2 = 0.

    4. Integrate to find the unknown functions:

    u1(x) =

    y2(x)G(x)

    W(x)dx and u2(x) =

    y1(x)G(x)

    W(x)dx.

    5. Form the particular solution yp = u1y1 + u2y2.

    6. The general solution of the given equation is

    y = yc + yp.

    Evaluate the two arbitrary constants c1 and c2 in the general solution yby applying boundary/initial conditions, as appropriate.

    IV. Laplace Transforms : ay + by + cy = F(x), y(0) = y0 and y(0) = y0.

    1. Take the Laplace transform (see pages 9-10) of both sides of the givenequation, using the given initial conditions. The result is an algebraicequation for F(s), the Laplace transform of the solution.

    2. Solve the algebraic equation obtained in Step 1 to find F(s) explicitly.

    3. The inverse Laplace transform of F(s) is the solution of the given initialvalue problem.

    *The coefficients may also be functions, i.e., b = b(x) and c = c(x).

  • 7/28/2019 Blue Book 27

    29/40

    26

    VECTOR ALGEBRA

    1. Scalar and vector products. Given vectors

    a = 1e1 + 2e2 + 3e3 = axi + ayj + azk

    b = 1e1 + 2e2 + 3e3 = bxi + byj + bzk,

    c = 1e1 + 2e2 + 3e3 = cxi + cyj + czk,

    let be the angle from a to b. The scalar (dot) product of a and b is thescalar

    a b = |a||b| cos = axbx + ayby + azbz.The vector (cross) product ofa and b is the vector of magnitude

    |a b| = |a||b| sin ,

    perpendicular to a and b and in the direction of the axial motion of aright-handed screw turning a into b. In coordinate form,

    a b =

    e2 e3 1 1e3 e1 2 2e1 e2 3 3

    =

    i ax bx

    j ay byk az bz

    =ay azby bz

    i +az axbz bx

    j + ax aybx by

    k= (aybz azby)i + (azbx axbz)j + (axby aybx)k.

    The box product ofa, b, and c is the scalar quantity given by

    a

    b

    c

    [abc] = [bca] = [cab] =

    [bac] =

    [cba] =

    [acb]

    =

    1 1 12 2 23 3 3

    [e1e2e3] =

    ax bx cxay by cyaz bz cz

    .The product of two box products is given by

    [abc][def] =

    a d a e a fb d b e b fc d c e c f

    .A special case gives Grams determinant :

    [abc]2 =

    a a a b a cb a b b b cc a c b c c

    = [(a b)(b c)(c a)]= (a a)(b b)(c c) + 2(a b)(b c)(a c) (a a)(b c)2

    (b b)(a c)2 (c c)(a b)2.

  • 7/28/2019 Blue Book 27

    30/40

    27

    VECTOR ALGEBRA (Continued)

    The vector triple product of vectors a, b, and c is given by

    a (b c) = (a c)b (a b)c = b ca b a c

    .Three additional formulas for scalar and vector products:

    (a b) (c d) = (a c)(b d) (a d)(b c) = a c b ca d b d

    .(a b)2 = (a a)(b b) (a b)2

    (a b) (c d) = [acd]b [bcd]a = [abd]c [abc]d.

    VECTOR ANALYSIS

    Differential operators

    (x,y,z) = grad(x,y,z) x

    i +

    yj +

    zk

    F(x,y,z) = div F(x,y,z) Fxx

    +Fyy

    +Fzz

    F = curl F(x,y,z) Fz

    y Fy

    z

    i +

    Fxz

    Fzx

    j +

    Fyx

    Fxy

    k

    = i j k

    x

    y

    z

    Fx Fy Fz

    (G )F = Gx F

    x+ Gy

    F

    y+ Gz

    F

    z

    = (G Fx)i + (G Fy)j + (G Fz)k

    2 = ( ) 2x2

    +2

    y2+

    2

    z2

    (Laplace operator)

    div grad = () = 2grad div F = ( F) = 2F + ( F)curl curl F = ( F) = ( F) 2F

    curl grad =

    (

    ) = 0

    div curl F = ( F) = 0() = + 2() = 2 + 2() () + 2

  • 7/28/2019 Blue Book 27

    31/40

    28

    VECTOR ANALYSIS (Continued)

    (F G) = (F )G + (G )F + F (G) + G (F) (F) = F + () F

    (F G) = G F F G(G )(F) = F(G ) + (G )F (F) = F + () F

    (F G) = (G )F (F )G + F( G) G( F)

    Cylindrical : x = r cos , y = r sin , z = z

    grad =

    =

    rr +

    1

    r

    +

    zk

    div F = F = 1r

    (rFr)

    r+

    1

    r

    F

    +Fzz

    curl F = F =

    1r r

    1r k

    r

    z

    Fr rF Fz

    Laplacian = 2 = 1

    r

    r

    r

    r

    +

    1

    r22

    2+

    2

    z2

    Spherical : x = cos sin , y = sin sin , z = cos

    grad = =

    +1

    +

    1

    sin

    div F = F = 12

    (2F)

    + 1 sin

    (sin F)

    + 1 sin

    F

    curl F = F =

    1

    2 sin 1

    sin 1

    F F sin F

    2 = 1

    2

    2

    +

    1

    2 sin

    sin

    +

    1

    2 sin2

    2

    2

    Integral Theorems

    V F(r) dV =

    S

    F(r) dA (Divergence theorem)V dV + V 2 dV = S() dA (Greens theorem)V(2 2) dV =

    S( ) dA (symmetric form)

    V2 dV =S dA (Gauss theorem)

    S[ F(r)] dA =C

    F(r) dr (Stokes theorem)

  • 7/28/2019 Blue Book 27

    32/40

    29

    FUNDAMENTALS OF SIGNALS AND NOISE

    Complex numbers (j2 = 1)

    a + bj = Rej , where

    R =

    a2 + b2,

    =

    arctanba

    , a > 0;

    arctanba

    , a < 0;2 , a = 0, b > 0;2 , a = 0, b < 0.

    Aej Bej = ABej(+)

    ej = ej(+2n), n = 1,2, . . .

    Unit phasor

    j = ej2

    ej = 1 1 = ej0 = ej2

    j = ej 2 = ej 32

    Euler Identity

    ejx = cos xj sin x;

    cos x = ejx

    +ejx

    2 ;sin x = e

    jxejx2j

    .

    Fourier series (Periodic signals. For the real number form, see p. 13.)

    x(t) =

    n=cne

    j2nf1t, where

    cn =1

    T1

    T12

    T12x(t)ej2nf1t dt,

    T1 = period,

    f1 = 1T1

    = fundamental frequency,

    (For real signals, cn = cn (complex conjugate).)

  • 7/28/2019 Blue Book 27

    33/40

    30

    Fourier transform (aperiodic signals)

    X(f) =

    x(t)ej2ft dt; x(t) =

    X(f)ej2tf df.

    The correspondence between x(t) and X(f) is denoted by x(t) X(f).

    Transform of Fourier Series

    If x(t) =

    n=cne

    j2nf1t, then X(f) =

    n=cn(f nf1).

    Convolution (

    ) and Correlation ()

    x y =

    x()y(t ) d

    y()x(t ) d = y x

    x y =

    x()y(t + ) d

    Properties of the delta function

    (t) dt = 1

    (t t0)x(t) dt = x(t0)

    x(t) (t t0) = x(t t0)x(t)(t t0) = x(t0)(t t0)

    Parseval theorem (Average Power in a periodic signal)

    P =1

    T

    T2

    T2|x(t)|2 dt =

    n=

    |cn|2

    Rayleigh theorem (Total Energy in an aperiodic signal)

    E =

    |x(t)|2 dt =

    |X(f)|2 df

  • 7/28/2019 Blue Book 27

    34/40

    31

    Fourier theorems

    If x(t) X(f) is a transform pair, thenLINEARITY ax(t) + by(t) aX(f) + bY(f)

    SHIFT/MODULATION x(t t0) X(f)ej2t0f

    x(t)ej2f0t X(f f0)

    PRODUCT/CONVOLUTION x(t)y(t) X Y

    x y X(f)Y(f)

    SCALE x(at) 1|a|X

    fa

    DIFFERENTIATIONd

    dtx(t) j2f X(f)

    INTEGRATION

    t

    x() d X(f)j2f

    .

    Fourier pairs

    Time Domain Frequency Domain

    h(t) = 1 uT02

    (|t|) H(f) = sin(T0f)f

    1

    h(t)

    t-T0/2 T0/2

    H(f)

    f1/T0 2/T0

    T0

    h(t) =sin(2f0t)

    2f0t H(f) = 1

    2f0(1 uf0(|f|))

    h(t)

    t1/2f0 1/f0

    11/2f0

    H(f)

    f-f0 f0

  • 7/28/2019 Blue Book 27

    35/40

    32

    Fourier pairs Continued

    Time Domain Frequency Domain

    h(t) = K H(f) = K(f)

    K

    h(t)

    t

    H(f)

    f

    K

    h(t) = K(t) H(f) = Kh(t)

    t

    K K

    H(f)

    f

    h(t) = A cos(2f0t) H(f) = A2

    [(f + f0) + (f f0)]h(t)

    t1/f0

    AH(f)

    f

    A/2

    -f0 f0

    h(t) = A sin(2f0t) H(f) = A2

    j[(f + f0) (f f0)]h(t)

    t

    1/f0

    AIm[H(f)]

    f

    A/2

    -f0

    f0

    h(t) =

    1 |t|

    T0

    1 uT0(|t|)

    H(f) = sin

    2(T0f)

    T02f2

    1

    h(t)

    t-T0 T0

    H(f)

    f1/T0 2/T0

    T0

  • 7/28/2019 Blue Book 27

    36/40

    33

    Fourier pairs Continued

    Time Domain Frequency Domain

    h(t) = e|t| H(f) = 22 + 42f2

    h(t)

    t

    1H(f)

    f

    2/

    h(t) = exp(t2) H(f) =

    exp

    2f2

    h(t)

    t

    1H(f)

    f

    /

    h(t) =

    et, t > 0

    0, t 0 H(f) =1

    + 2jf

    h(t)

    t

    1|H(f)|

    f

    1/

    h(t) = sgn(t) H(f) = jf

    1

    -1

    h(t)

    t

    Im[H(f)]

    f

  • 7/28/2019 Blue Book 27

    37/40

    34

    Linear time invariant systemsBasic Properties

    Ifx(t) y(t)

    g(t) q(t)

    then

    ax(t t0) + bg(t t0) ay(t t0) + bq(t t0)

    Transform properties

    Input Output

    Time Domain (t) h(t)

    x(t) y(t) = x(t) h(t)

    system

    Frequency Domain X(f) Y(f) = X(f) H(f)h(t) H(f) h(t) impulse response; H(f) transfer function

    Random signals

    x =

    xp(x) dx Mean value

    x2 =

    x2p(x) dx Second moment

    < x, x >= x2 = 1T

    T2

    T2|x(t)|2 dt Norm square

    < x > =1

    T

    T2

    T2x(t) dt Time average

    For an ergodic process:Second moment = Norm square and Mean value = Time average.

  • 7/28/2019 Blue Book 27

    38/40

    35

    Autocorrelation

    Rxx() = limT

    1

    T

    T2

    T2x(t)x(t + ) dt

    Power Spectral Density

    The power spectral density Gxx is the Fourier transform of the autocor-relation function:

    Rxx(t) =

    Gxx(f)ej2tf df Gxx(f) =

    Rxx(t)ej2ft dt

    Noise power (Gxx denotes the power spectral density)

    PTotal =

    Gxx df = Rxx(0) = x2 = (x)

    2

    Pac = N = 2x = noise power

    Pdc = Rxx() = (x)2

    Noise bandwidth (Gxx denotes the power spectral density)

    Gyy = Gxx |H|2 (linear system)

    Ny =

    Gxx |H|2 df = noise power output

    N = n0BN = noise power, wheren02

    = white noise

    BN =

    |H|2 df = noise bandwidth

  • 7/28/2019 Blue Book 27

    39/40

    36

    Ideal filter (low pass)

    h(t) =sin(2f0t)

    2f0 H(f) = 1 uf0(|f|)

    2f0

    h(t)

    t1/2f0 1/f0

    11/2f0

    H(f)

    f-f0 f0

    RC filter (low pass)

    VC= h(t)

    E(t) h(t) =

    1

    RC

    et/RC

    H(f) =

    1

    1 + 2jfRC

    E(t)

    VC

    CR

    h(t)

    t

    1|H(f)|

    f

    1

    Ideal filter (high pass)

    h(t) = (t) sin(2f0t)t

    H(f) = uf0(|f|)

    h(t)

    t

    1/2f0 1/f0 1

    H(f)

    f-f0 f0

    RC filter (high pass)

    VR = h(t)E(t) h(t) = (t) 1RC

    et/RC H(f) = 2jfRC1 + 2jfRC

    E(t)

    VRCR

    h(t)

    t

    |H(f)|

    f

    1

  • 7/28/2019 Blue Book 27

    40/40

    37

    Ideal filter (band pass)

    h(t) =sin(2f2t)

    t sin(2f1t)

    t H(f) = uf2(|f|) uf1(|f|)

    h(t)

    t

    1

    H(f)

    f-f2 -f1 f1 f2

    LRC filter (band pass)

    VR = h(t)

    E(t) h(t)

    H(f) =2jfRC

    1 (2f)2LC+ 2jfRC

    E(t)

    VRC

    R L

    h(t)

    t

    |H(f)|

    f

    1

    LC1/(2 )LC1/(2 )

    Ideal sampling

    Sampled signal

    x(t) = x(t) s(t) where s = k=

    (t kTs)

    Spectrum after sampling

    X(f) = X(f) S(f) where S(f) = fs

    n=(f nfs)

    Sampling theorem

    If

    Ts 2W (Nyquist rate)

    then the signal can be reconstructed with a filter of bandwidth B, givenby:

    W < B < fs W.