bme2020 2 ecg - umm.uni-heidelberg.de&kulvwldq 7|qqhv , 6olgh , *doydqlf lqvxodwlrq 1r hohfwulf...

34
10/30/2020 1 Biomedical Engineering Bioelectric Signals: EEG & ECG Christian Tönnes Christian Tönnes I Slide 2 I 30.10.2020 Schedule Day Date Time Lecturer Topic Tuesday 03.11.2020 13:00-14:30 Licht Biosensors & Physiological Signals I Tuesday 10.11.2020 13:00-14:30 Licht Biosensors & Physiological Signals II Thursday 12.11.2020 13:00-14:30 Tönnes Bioelectrical Signals: EEG & ECG Tuesday 17.11.2020 13:00-14:30 Reichert Medical Imaging: MRI Thursday 19.11.2020 13:00-14:30 Tönnes Medical Imaging: CT, X-Ray & US Tuesday 24.11.2020 13:00-14:30 Golla Medical Imaging: Other Thursday 26.11.2020 13:00-14:30 Andoh Blood Flow & Pressure I Tuesday 01.12.2020 13:00-14:30 Andoh Blood Flow & Pressure II Thursday 03.12.2020 13:00-14:30 Golla Machine Learning I Tuesday 08.12.2020 13:00-14:30 Golla Machine Learning II Thursday 10.12.2020 13:00-14:30 Golla 3D Printing Tuesday 22.12.2020 13:00-14:30 All Recap - Exam Preparations Tuesday 26.01.2021 10:00-12:00 Golla, Tönnes Exam Wednesday 03.02.2021 08:30-10:00 Golla, Tönnes Repeat Exam

Upload: others

Post on 29-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 10/30/2020

    1

    Biomedical EngineeringBioelectric Signals: EEG & ECG

    Christian Tönnes

    Christian Tönnes I Slide 2 I 30.10.2020

    Schedule

    Day Date Time Lecturer TopicTuesday 03.11.2020 13:00-14:30 Licht Biosensors & Physiological Signals ITuesday 10.11.2020 13:00-14:30 Licht Biosensors & Physiological Signals IIThursday 12.11.2020 13:00-14:30 Tönnes Bioelectrical Signals: EEG & ECGTuesday 17.11.2020 13:00-14:30 Reichert Medical Imaging: MRIThursday 19.11.2020 13:00-14:30 Tönnes Medical Imaging: CT, X-Ray & USTuesday 24.11.2020 13:00-14:30 Golla Medical Imaging: OtherThursday 26.11.2020 13:00-14:30 Andoh Blood Flow & Pressure ITuesday 01.12.2020 13:00-14:30 Andoh Blood Flow & Pressure IIThursday 03.12.2020 13:00-14:30 Golla Machine Learning ITuesday 08.12.2020 13:00-14:30 Golla Machine Learning IIThursday 10.12.2020 13:00-14:30 Golla 3D PrintingTuesday 22.12.2020 13:00-14:30 All Recap - Exam Preparations

    Tuesday 26.01.2021 10:00-12:00Golla, Tönnes

    Exam

    Wednesday 03.02.2021 08:30-10:00Golla, Tönnes

    Repeat Exam

  • 10/30/2020

    2

    Christian Tönnes I Slide 3 I 30.10.2020

    Materials

    Slides are available from our website:https://www.umm.uni-heidelberg.de/inst/cbtm/ckm/lehre/

    Christian Tönnes I Slide 4 I 30.10.2020

    Lecturer: Christian Tönnes

    PhD Student:

    Medical Image Analysis with Deep Learning

    Computer Assisted Clinical Medicine

    Medical Faculty Mannheim

    Heidelberg University

    [email protected]

    Phone:+49 (0) 621 383 4603

  • 10/30/2020

    3

    Christian Tönnes I Slide 5 I 30.10.2020

    MEASURING ECG/EEG/EMG

    Christian Tönnes I Slide 6 I 30.10.2020

    Circuit to measure electric signals

    1. Electrode

    2. Surge protection / galvanic insulation

    3. Instrumentation Amplifier

    4. Noise Filtering

    5. Analog-to-digital converter

    Right leg driver to reduce noise

    http://openeeg.sourceforge.net

  • 10/30/2020

    4

    Christian Tönnes I Slide 7 I 30.10.2020

    Electrode

    Connection between Circuit and Skin

    Conductive gel for better signal

    Fastened with glue or suction

    Artifacts generated by:

    • Movement of Electrode

    • Bad conductivity

    Glue Electrodes © Christian Tönnes

    Suction Electrodeshttps://www.cardiodepot.eu/s/17769_158780_suction-electrode-system-dt-80-straessle

    Christian Tönnes I Slide 8 I 30.10.2020

    Surge Protection

    Prevents power surges (e.g. from Defibrillation) to hit the amplifier

    Prevents power from a faulty device to endanger the patient

    Possible solutions:

    • Clamping (here: Transistors start conducting at 0.2V to GND )

    • Varistor: Massively increases resistance over clamping voltage

    • Transient voltage suppression diode

    • Thyristor: Can be created from a PNP- and NPN-Transistor

    • … many more

    https://commons.wikimedia.org/wiki/File:Typische_Varistorkennlinien.gifhttps://commons.wikimedia.org/wiki/File:Thyristor.svg

    VaristorThyristor

  • 10/30/2020

    5

    Christian Tönnes I Slide 9 I 30.10.2020

    Galvanic insulation

    No electric connection between two circuits

    Possibilities:

    • Induction: Two Transformers only connected by their magnetic field, most common, only AC

    • Opto-isolator: LED + Photo-sensor, common for digital signals

    • Relay: Switch a circuit by activating a magnet

    https://commons.wikimedia.org/wiki/File:Trafo-innenleben.jpg https://commons.wikimedia.org/wiki/File:Optoisolator_topologies_both.svg

    https://commons.wikimedia.org/wiki/File:Relay_principle_horizontal_new.gif

    Christian Tönnes I Slide 10 I 30.10.2020

    Instrumentation Amplifier

    Consists of 3 Operational Amplifier

    𝑉 = 𝑉 − 𝑉 · 𝐴 = 𝑉 − 𝑉 · 1 + ·

    Advantages:

    • Low noise

    • Low drift

    • High common-mode rejection

    • High gain

    https://commons.wikimedia.org/wiki/File:Op-Amp_Instrumentation_Amplifier.svg

  • 10/30/2020

    6

    Christian Tönnes I Slide 11 I 30.10.2020

    Noise Filter

    EEG:

    • Band Stop: 50Hz (common-mode interference, mains frequency)

    ECG:

    • Band Stop: 50Hz (common-mode interference, mains frequency)

    • High Pass: ~0.05Hz (Reduce breathing noise)

    • Low Pass: ~150Hz (~45-60Hz for noisy signal, can only be used for rhythm analysis)

    EMG:

    • Band Stop: 50Hz (common-mode interference, mains frequency)

    • High Pass: ~20Hz

    • Low Pass: ~400Hz

    Christian Tönnes I Slide 12 I 30.10.2020

    OpenEEG Filters

    High-Pass: f = 0.16𝐻𝑧

    Low-Pass: f = 59𝐻𝑧 (Besselworth = Combination of Bessel- & Butterworth-filter)

  • 10/30/2020

    7

    Christian Tönnes I Slide 13 I 30.10.2020

    Right leg driver

    Optional, in addition to noise filter

    Electricity from power socket has 50 or 60Hz

    Electric devices or cables near patient create 50/60Hz interference

    Use of RLD for active canceling of common-mode interference:

    • Apply a known direct current to the body

    • Better: current is dynamically adapted to common-mode signal

    • Average leads, invert and halve, feed to body J.G. Webster, "Medical Instrumentation", 3rd ed, New York: John Wiley & Sons, 1998, ISBN 0-471-15368-0.

    Christian Tönnes I Slide 14 I 30.10.2020

    Analog-to-digital converter / AD Converter

    Converts a current to a digital value

    For Biopotentials needed:

    • High resolution (e.g. 24bit)

    • High Sampling rate

    • At least double of the highest frequency signal

    • ECG: 250Hz, EMG: 800Hz

    Easy, cheap, solution: Sound card (16bit + 48kHz)

  • 10/30/2020

    8

    Christian Tönnes I Slide 15 I 30.10.2020

    Circuit to measure electric signals (recap)

    1. Electrode

    2. Surge protection / galvanic insulation

    3. Instrumentation Amplifier

    4. Noise Filtering

    5. Analog-to-digital converter

    Right leg driver to reduce noise

    http://openeeg.sourceforge.net

    Christian Tönnes I Slide 16 I 30.10.2020

    ELECTROCARDIOGRAPHYECG

  • 10/30/2020

    9

    Christian Tönnes I Slide 17 I 30.10.2020

    ECG Short

    Several (2/3/4/10) electrodes on torso & extremities

    Measure electrical activity of the heart

    Voltage: ~ 1-3mV

    Time (Pulse ~80, shorter for faster pulse):

    • p-Wave:

  • 10/30/2020

    10

    Christian Tönnes I Slide 19 I 30.10.2020

    ECG Leads

    With 3 Electrodes (small ECG) 6 possible Leads:

    • Defined by Einthoven:

    • I: Right Arm (RA) → Left Arm (LA)

    • II: RA → Left Leg (LL)

    • III: LA → LL

    • Defined by Golberger:

    • aVF: RA+LA → LL

    • aVL: RA+LL → LA

    • aVR: LA+LL → RA

    https://en.wikipedia.org/wiki/File:Limb_leads_of_EKG.png

    Christian Tönnes I Slide 20 I 30.10.2020

    ECG Leads

    10 electrodes 12 leads:

    • Einthoven + Goldberger leads +

    • Wilson:

    • Wilsons’s central terminal: LL+LA+RA

    • V1: Wct → V1

    • V2: Wct → V2

    • …

    Optional additional positions:

    • V4R: Mirror position of V4

    • V7-V8: Mirror positions of V4-V6 on the back

    https://commons.wikimedia.org/wiki/File:De-Chest_leads_(CardioNetworks_ECGpedia).png

  • 10/30/2020

    11

    Christian Tönnes I Slide 21 I 30.10.2020

    ECG ARTIFACTS

    Christian Tönnes I Slide 22 I 30.10.2020

    Loose lead artifact

    Artifacts in Lead I and II -> Electrode on right arm is loose

  • 10/30/2020

    12

    Christian Tönnes I Slide 23 I 30.10.2020

    Patient movement

    Patient movement creates short bursts of high frequency noise

    More often if electrodes are at end of extremities (Hand, Foot)

    Tell Patient to stop moving

    Christian Tönnes I Slide 24 I 30.10.2020

    Baseline drift

    Device has not found a stable mean voltage

    Common after a new electrode is connected

  • 10/30/2020

    13

    Christian Tönnes I Slide 25 I 30.10.2020

    Shivering

    Patient is cold and shivers, may look like atrial fibrillation

    Christian Tönnes I Slide 26 I 30.10.2020

    Pacemaker

    Sharp spike (>100Hz) instead of p-Wave

    ©2015 Physio-Control, Inc., Redmond WA, USA. GDR 3306627_A

  • 10/30/2020

    14

    Christian Tönnes I Slide 27 I 30.10.2020

    Gastric/Neuro/… Stimulator

    A lot of Spikes >40Hz

    Some devices can be turned of with a magnet

    ©2015 Physio-Control, Inc., Redmond WA, USA. GDR 3306627_A

    Christian Tönnes I Slide 28 I 30.10.2020

    Powerline

    Constant 50 Hz noise

    Use 50 Hz filter

    Or move Patient/Cables away from Powerlines

    ©2015 Physio-Control, Inc., Redmond WA, USA. GDR 3306627_A

  • 10/30/2020

    15

    Christian Tönnes I Slide 29 I 30.10.2020

    Reversed lead

    ECG is reversed: Electrodes are switched

    Correct placement

    http://www.mauvila.com/ECG/ecg_artifact.htm

    Christian Tönnes I Slide 30 I 30.10.2020

    Chest compression

    Artifacts created by chest compression during resuscitation (right side, Postshock)

    Rhythm pre shock is a ventricular fibrillation

  • 10/30/2020

    16

    Christian Tönnes I Slide 31 I 30.10.2020

    ECG PATHOLOGIES

    Christian Tönnes I Slide 32 I 30.10.2020

    Some Sinus node Abnormalities

    • Sinus Bradycardia, Sinus Tachycardia

    • Too slow, too fast

    • Premature atrial contraction

    • There is another part of the atrium acting as a sinus node

    • Two shapes for p-Waves and/or QRS

    • Arrhythmic heart beat

    • Multifocal atrial tachycardia

    • Like PAC but many additional sinus nodes

    https://commons.wikimedia.org/wiki/File:Multifocal_atrial_tachycardia_-_MAT.png

  • 10/30/2020

    17

    Christian Tönnes I Slide 33 I 30.10.2020

    Some Atrial Abnormalities

    • Atrial Flutter

    • Fast atrial activation, many p-Waves

    • Only some are transmitted by the AV node

    • Atrial Fibrillation

    • chaotic, fast, activation of atria

    • Irregular QRS complex

    https://commons.wikimedia.org/wiki/File:Atrial_Flutter_Unlabeled.jpg

    https://www.uni-heidelberg.de/presse/ruca/2010-2/3med.html

    Christian Tönnes I Slide 34 I 30.10.2020

    Some atrioventricular node abnormalities

    • AV Node reentrant tachycardia

    • Circular electric pathway at AV node

    • AV node reactivates itself and atria

    • AV Blocks:

    • 1. Degree: longer delay

    • 2. Degree Mobitz I: delay gets longer, until missing QRS

    • 2. Degree Mobitz II: missing transmission

    • 3. Degree: no relation between QRS and P-waves

    https://commons.wikimedia.org/wiki/File:AV_nodal_reentrant_tachycardia.png

    https://commons.wikimedia.org/wiki/File:Heart_block.png

  • 10/30/2020

    18

    Christian Tönnes I Slide 35 I 30.10.2020

    Some ventricular abnormalities

    • Premature ventricular contraction “extra heart beat”

    • Ventricular tachycardia

    • Very fast but synchronized activation of ventricles

    • Ventricular fibrillation

    • Fast, chaotic activation of ventricles

    • No heart beat -> No pulse

    https://commons.wikimedia.org/wiki/File:PVC10.JPG

    http://hqmeded-ecg.blogspot.com/2013/02/regular-wide-complex-tachycardia-what.htmlhttps://acls-algorithms.com/rhythms/ventricular-fibrillation/

    Christian Tönnes I Slide 36 I 30.10.2020

    THINGS ONE CAN DO WITH ECG

  • 10/30/2020

    19

    Christian Tönnes I Slide 37 I 30.10.2020

    Vectorcardiography

    Display electric activity as position and direction

    𝑋 = 0.172 𝑉1 + 0.074 𝑉2 − 0.122 𝑉3 − 0.231 𝑉4

    −0.239 𝑉5 − 0.194 𝑉6 − 0.156 𝐼 + 0.010 𝐼𝐼

    𝑌 = 0.057 𝑉1 − 0.019 𝑉2 − 0.106 𝑉3 − 0.022 𝑉4

    +0.041 𝑉5 + 0.048 𝑉6 − 0.227 𝐼 + 0.887 𝐼𝐼

    𝑍 = 0.229 𝑉1 + 0.310 𝑉2 + 0.246 𝑉3 + 0.063 𝑉4

    −0.055 𝑉5 − 0.108 𝑉6 − 0.022 𝐼 − 0.102 𝐼𝐼

    Yang, H., Bukkapatnam, S.T. & Komanduri, R. Spatiotemporal representation of cardiac vectorcardiogram (VCG) signals. BioMed Eng OnLine 11, 16 (2012). https://doi.org/10.1186/1475-925X-11-16

    Christian Tönnes I Slide 38 I 30.10.2020

    Automated rhythm analysis

    Using deep learning/machine learning

    Using statistics and decision trees:

    • Frequency

    • Rhythmic/Arhythmic

    • Timing of PQ/QRS/ST ECG parts

    Ribeiro, A.H., Ribeiro, M.H., Paixão, G.M.M. et al.Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun 11, 1760 (2020). https://doi.org/10.1038/s41467-020-15432-4

  • 10/30/2020

    20

    Christian Tönnes I Slide 39 I 30.10.2020

    How to compare Automated Rhythm analysis results

    Ground truth defined by physicians

    Compare algorithm results with statistics:

    • Sensitivity (Correctly detected rhythm)

    • Specificity (Detected absence of rhythm)

    • True Positive & False Positive

    • True Negative & False Negatives

    • Positive predictive value PPV

    • If algorithm detects a rhythm how likely is it that this rhythm is present

    You want high Sensitivity/Specificity/PPVE. Manibardo et al., "ECG-based Random Forest Classifier for Cardiac Arrest Rhythms," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 1504-1508, doi: 10.1109/EMBC.2019.8857893.

    Rhythm diagnosed by physician

    Rhy

    thm

    dia

    gno

    sed

    by a

    lgo

    rithm

    Christian Tönnes I Slide 40 I 30.10.2020

    Rhythm analysis using Deep Learning

    Neural network to analyze ECG

    Input is the data from 12 leads

    • Doesn’t need to be this way. A neural network could also use the raw data from the electrodes

    Outputs which rhythms the network has found

    • Multiple diagnosis can be found

    • Confidence for a diagnosis can also be returned

    Zhu, H., Cheng, C., Yin, H., Li, X., Zuo, P., Ding, J., ... & Hu, S. (2020). Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study. The Lancet Digital Health.

  • 10/30/2020

    21

    Christian Tönnes I Slide 41 I 30.10.2020

    Automated rhythm analysis during CPR

    Rhythm analysis during cardio pulmonary resuciation

    Reduce no-flow time

    Needs to remove Chest Compression artifacts

    Fumagalli, F., Silver, A. E., Tan, Q., Zaidi, N., & Ristagno, G. (2018). Cardiac rhythm analysis during ongoing cardiopulmonary resuscitation using the Analysis During Compressions with Fast Reconfirmation technology. Heart rhythm, 15(2), 248-255.

    Christian Tönnes I Slide 42 I 30.10.2020

    Rhythm analysis using smartwatch / wearable

    Acquire a single lead (usually I), also called iECG

    • One arm wears the watch,

    • the other touches an electrode on the watch

    Can be used to detect arterial fibrillation

    Also possible but not an ECG: Photoplethysmogram

    • Heart rate and blood flow analysis

    • Using LED + Photosensor

    • Similar to Oximetry

    Raja, J. M., Elsakr, C., Roman, S., Cave, B., Pour-Ghaz, I., Nanda, A., ... & Khouzam, R. N. (2019). Apple Watch, Wearables, and Heart Rhythm: where do we stand?. Annals of Translational Medicine, 7(17).

  • 10/30/2020

    22

    Christian Tönnes I Slide 43 I 30.10.2020

    ELECTROENCEPHALOGRAPHYEEG

    Christian Tönnes I Slide 44 I 30.10.2020

    EEG Short

    Many (2/3/4/10) electrodes on the head

    Measure electrical activity of brain parts

    Voltage: ~ 5-100 μV (0.005-0.1 mV)

    Signal separated by Frequency:

    Delta Waves : 0.1-4 Hz

    Theta Waves: 4-8 Hz

    Alpha Waves: 8-13 Hz

    Beta Waves: 13-30 Hz

    Gamma Waves: >30 Hz

    https://commons.wikimedia.org/wiki/File:EEG_cap.jpg

    https://commons.wikimedia.org/wiki/File:ElectroEncephalogram.png

  • 10/30/2020

    23

    Christian Tönnes I Slide 45 I 30.10.2020

    EEG Waves / Frequencies

    Average over all neurons in the area around the electrode

    Signal is similar to 1/f noise (pink noise)

    Division into frequency bands is purely historic

    Physicians analyze by finding and interpret patterns

    https://commons.wikimedia.org/wiki/File:Eeg_raw.svg

    Christian Tönnes I Slide 46 I 30.10.2020

    Delta Waves

    Normal:

    • Adults, front brain, during sleep (slow-wave sleep)

    • Children, rear brain

    Pathologic:

    • Delta wave activity corresponds with sleep disorders

    • Disruption of delta waves increases risk of diabetes Type II

    • Schizophrenia reduces delta waves during sleep

    • Parkinson’s show disrupted delta waves

    https://commons.wikimedia.org/wiki/File:Eeg_delta.svg

  • 10/30/2020

    24

    Christian Tönnes I Slide 47 I 30.10.2020

    Theta Waves

    Normal:

    • In Cortical areas, during meditation, drowsiness, sleep

    • Not present during deep sleep

    • Spikes if a response/action is repressed

    Regular Waves 4-10Hz in Hippocampus are also called (hippocampal) theta waves

    • Waves are removed if medial septal area is damaged or inactivated

    • Very regular

    https://commons.wikimedia.org/wiki/File:Eeg_theta.svg

    Christian Tönnes I Slide 48 I 30.10.2020

    Alpha Waves

    Normal:

    • While awake Occipital lobe (rear brain, visual processing):

    • Reduced with open eyes or during sleep

    • During REM sleep, frontal-central

    Pathological:

    • Alpha wave intrusion during sleep, disrupts delta waves, sleep disorders

    https://commons.wikimedia.org/wiki/File:Eeg_alpha.svg

  • 10/30/2020

    25

    Christian Tönnes I Slide 49 I 30.10.2020

    Beta Waves

    Normal:

    • During wake time

    • Associated with thinking, concentrating

    • At motor cortex: movement, higher if movement is suppressed

    • Artificial stimulation slows movement

    https://commons.wikimedia.org/wiki/File:Eeg_beta.svg

    Christian Tönnes I Slide 50 I 30.10.2020

    Gamma Waves

    Normal:

    • During wake time

    High noise from (eye) muscles!

    • Gamma waves correlate to eye movement (saccade)

    Pathological:

    • Depression or Bipolar disorder have altered gamma waves

    • Schizophrenia reduces activity

    https://commons.wikimedia.org/wiki/File:Eeg_gamma.svg

  • 10/30/2020

    26

    Christian Tönnes I Slide 51 I 30.10.2020

    Mu wave

    Frequency: 7.5 – 12.5 Hz (overlaps with alpha waves)

    Only long the motor cortex

    Suppressed if mirror neurons are active

    Interesting for Brain-computer interfaces:

    • Mu waves can be changed by thinking about doing something

    • Different locations correspond to different body parts

    • Generally left brain -> right body, and the reverse

    Christian Tönnes I Slide 52 I 30.10.2020

    Sensorimotor rhythm waves (SMR Wave)

    Frequency: 12.5 – 15.5 Hz (low beta waves)

    Only along the motor cortex

    Get stronger during motion, or imaging to do the motion

    Might be used for Brain-Computer interfaces

    • Useful for disabled people

  • 10/30/2020

    27

    Christian Tönnes I Slide 53 I 30.10.2020

    Brain-Computer Interface

    Common Theme in Science Fiction:

    • Matrix, Star Trek (Borg), Ghost in the Shell, Altered Carbon, RoboCop, Neuromancer, Pacific Rim, Chappie ...

    • Control Computers like a third arm

    In Science: still under development

    Differentiation to Neuroprosthetics:

    • Neuroprosthetics replace functions of the brain or other neural structures:

    • Cochlear implants (Replaces inner ear), Retinal implants, Pacemaker

    • Sometimes used interchangeably to Brain-Computer Interfaces

    Christian Tönnes I Slide 54 I 30.10.2020

    Invasive Brain-Computer Interface

    Electrodes inside the brain

    - Needs surgery

    + Better signal, Low noise

    + High spatial resolution

    Examples:

    • 1987 Human with acquired blindness sees light (shades of gray, very small field, low framerate)

    • ~2002: Human with locked-in syndrome controls a mouse cursor

    • 2002 Update of 1987 BCI, blind person could drive a car (slowly, on a parking lot)

    • 2004 Dobelle, inventor of the BCI for blindness dies, the patients developed problems with their visions that nobody could fix. They are now blind again.

    • 2005: Tetraplegic human controls a robot hand

  • 10/30/2020

    28

    Christian Tönnes I Slide 55 I 30.10.2020

    BrainGate

    Invasive Brain-Computer Interface

    Controls a robot arm

    Tetraplegic person can grab a bottle and drink from it

    Christian Tönnes I Slide 56 I 30.10.2020

    Partially invasive Brain-Computer Interface

    Inside the Skull, outside the brain

    - Needs Surgery

    + Better Signal, low noise

    + High spatial resolution

    + Less risk of injury to the Brain

    Examples:

    • 2004: Teenager plays Space Invaders

  • 10/30/2020

    29

    Christian Tönnes I Slide 57 I 30.10.2020

    Non-invasive Brain-Computer Interface

    Electrodes on the skin

    - High noise, low signal strength

    - More Artifacts from motion, moving electrodes, bad conductivity, hair

    + No surgery needed

    + Easy, fast installation, reusable, removable

    Examples:

    • 1977 Control of a mouse cursor

    • 1988 Text input

    Christian Tönnes I Slide 58 I 30.10.2020

    Brain-Computer Interfaces

    To Play at home:

    • OpenEEG project (Seen on previous slides) http://openeeg.sourceforge.net/

    • OpenBCI http://openbci.com/

    • SmartphoneBCI https://icibici.github.io/smartphone-bci-hardware/

    https://commons.wikimedia.org/wiki/File:UCM3.jpg

  • 10/30/2020

    30

    Christian Tönnes I Slide 59 I 30.10.2020

    Neurochips

    Neurons grown on semiconductor (computer) chips

    Depending on design:

    • Possible to access each neuron individually, or

    • High spatial resolution

    Neurons are susceptible to bacteria, need sustenance

    1997: First neurochip, 16 neurons.

    2004: Aircraft simulation controlled by a neurochip with 25k neurons, grid of 60 electrodes.

    https://thesis.library.caltech.edu/1399/2/thesis_je.pdf

    Christian Tönnes I Slide 60 I 30.10.2020

    ELECTRO*GRAPHYE*G

  • 10/30/2020

    31

    Christian Tönnes I Slide 61 I 30.10.2020

    Tongue

    Electropalatography:

    • Measure how the tongue is used for articulation

    • Electrodes on

    • Right: O = contact, . = no contact

    • Articulation of the word “catkin” /kæt.kɪn/ (excerpt)

    https://commons.wikimedia.org/wiki/File:Epg-frames.JPG

    https://commons.wikimedia.org/wiki/File:Electropalate-vertical.jpg

    Christian Tönnes I Slide 62 I 30.10.2020

    Ear

    Electrocochleography:

    • Measure potentials generated in the inner ear (cochlea)

    • Electrodes either invasive (needles), or on skin

    • A short (100ms) broadband sound is played to the patient

    • Record frequencies between 10Hz and 1.5kHz

  • 10/30/2020

    32

    Christian Tönnes I Slide 63 I 30.10.2020

    Eye

    Electrooculography:

    • Measure eye movement

    • Pair of electrodes, above/below or left/right of eye

    • Measured potentials changed depending on the eye position

    Electronystagmography:

    • Used to record nystagmus (involuntary eye movement)

    • Electrodes are placed around the eye

    Christian Tönnes I Slide 64 I 30.10.2020

    Muscles

    Electromyography

    Electrodes on skin, or with needles inside the muscle

    Normal:

    • No electricity if muscle is not used

    • More strength used -> more action potentials

    • Fully Contracted muscle -> unordered appearance of potentials

    • Muscle fatigue -> higher amplitudes, lower frequency, longer potential duration

  • 10/30/2020

    33

    Christian Tönnes I Slide 65 I 30.10.2020

    EMG nonmedical uses

    Measure:

    • Sense isometric muscle use (no visible movement)

    • Muscles used for speech, but without creating actual sound

    Use:

    • Control devices with motionless gestures

    • Speech control in noisy environments or for people with certain speech disorders

    • Video Game Controller (Microsoft, Facebook)

    Christian Tönnes I Slide 66 I 30.10.2020

    Abdomen

    Electrogastrogram or Electrogastroenterogram

    Electrodes on the skin

    Measure activity in waves per minute

    Stomach: 0.03-0.07 Hz = 3 waves / min

    Duodenum: 0.18-0.25 Hz = 12 waves / min

  • 10/30/2020

    34

    Christian Tönnes I Slide 67 I 30.10.2020

    Questions for this Lecture

    Send me an email:

    [email protected]

    Phone:+49 (0) 621 383 4603

    Or ask during the live lecture:

    19.11.2020 13:00