boolean algebra and logic gates - basavaraj talawar · outline boolean algebra basic theorems,...

122
Boolean Algebra and Logic Gates Chapter 2 – Boolean Algebra & Logic Gates Mano & Ciletti, 6ed.

Upload: others

Post on 25-Jul-2020

18 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Algebra and Logic Gates

Chapter 2 ndash Boolean Algebra amp Logic GatesMano amp Ciletti 6ed

OutlineBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

George Boole

(1815 ndash 1864)

An Investigation of the Laws of Thought (1854)

Boolean Algebrandash Operations conjunction

( ) disjunction ( ) and) disjunction (or) or) negation (not)

ndash Fundamental in digital electronics

ndash Provided in all modern programming languages

Boolean Algebra Switching Algebra

ndash Shannon 1938 a two-valued Boolean algebra

ndash Represents properties of bistable electrical switching circuits

Boolean Algebra Algebraic structure

ndash Set of elements B

ndash Two binary operators + and ndash Huntington postulates are satisfied

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 2: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

OutlineBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

George Boole

(1815 ndash 1864)

An Investigation of the Laws of Thought (1854)

Boolean Algebrandash Operations conjunction

( ) disjunction ( ) and) disjunction (or) or) negation (not)

ndash Fundamental in digital electronics

ndash Provided in all modern programming languages

Boolean Algebra Switching Algebra

ndash Shannon 1938 a two-valued Boolean algebra

ndash Represents properties of bistable electrical switching circuits

Boolean Algebra Algebraic structure

ndash Set of elements B

ndash Two binary operators + and ndash Huntington postulates are satisfied

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 3: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

George Boole

(1815 ndash 1864)

An Investigation of the Laws of Thought (1854)

Boolean Algebrandash Operations conjunction

( ) disjunction ( ) and) disjunction (or) or) negation (not)

ndash Fundamental in digital electronics

ndash Provided in all modern programming languages

Boolean Algebra Switching Algebra

ndash Shannon 1938 a two-valued Boolean algebra

ndash Represents properties of bistable electrical switching circuits

Boolean Algebra Algebraic structure

ndash Set of elements B

ndash Two binary operators + and ndash Huntington postulates are satisfied

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 4: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Algebra Switching Algebra

ndash Shannon 1938 a two-valued Boolean algebra

ndash Represents properties of bistable electrical switching circuits

Boolean Algebra Algebraic structure

ndash Set of elements B

ndash Two binary operators + and ndash Huntington postulates are satisfied

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 5: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Algebra Algebraic structure

ndash Set of elements B

ndash Two binary operators + and ndash Huntington postulates are satisfied

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 6: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 7: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 8: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 9: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 10: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 11: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 12: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 13: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 14: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 15: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 16: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 17: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 18: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 19: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 20: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 21: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 22: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 23: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 24: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 25: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 26: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 27: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 28: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 29: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 30: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 31: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 32: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 33: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 34: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 35: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 36: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 37: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 38: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 39: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 40: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 41: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 42: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 43: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 44: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 45: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 46: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 47: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 48: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 49: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 50: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 51: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 52: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 53: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 54: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 55: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 56: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 57: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 58: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 59: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 60: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 61: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 62: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 63: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 64: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 65: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 66: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 67: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 68: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 69: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 70: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 71: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 72: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 73: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 74: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 75: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 76: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 77: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 78: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 79: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 80: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 81: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 82: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 83: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 84: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 85: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 86: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 87: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 88: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 89: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 90: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 91: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 92: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 93: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 94: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 95: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 96: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 97: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 98: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 99: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 100: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 101: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 102: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 103: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 104: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 105: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 106: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 107: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 108: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 109: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 110: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 111: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 112: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 113: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 114: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 115: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 116: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 117: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 118: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 119: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 120: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Page 121: Boolean Algebra and Logic Gates - Basavaraj Talawar · Outline Boolean Algebra Basic Theorems, Huntington Postulates DeMorgan’s Law Boolean Functions, Implementation Complements,

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal