boosting electrocatalytic water splitting via metal ...10.1007/s12274-020-262… · figure s5 cv...

7
Electronic Supplementary Material Boosting electrocatalytic water splitting via metal-metalloid com- bined modulation in quaternary Ni-Fe-P-B amorphous compound Wukui Tang, Xiaofang Liu ( ), Ya Li, Yanhui Pu, Yao Lu, Zhiming Song, Qiang Wang, Ronghai Yu ( ), and Jianglan Shui ( ) School of Materials Science and Engineering, Beihang University, Beijing 100083, China Supporting information to https://doi.org/10.1007/s12274-020-2627-x Figure S1 XRD patterns of all the synthesized amorphous catalysts. Figure S2 FESEM images of control samples: (a) Ni-B, (b) Ni-Fe-B, (c) Ni-P-B, and (d) Ni-Fe-P-B NPs. Address correspondence to Xiaofang Liu, [email protected]; Ronghai Yu, [email protected]; Jianglan Shui, [email protected]

Upload: others

Post on 09-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Boosting electrocatalytic water splitting via metal ...10.1007/s12274-020-262… · Figure S5 CV curves measured for amorphous HER catalysts: (a) Ni-B, (b) Ni-P-B, (c) Ni-Fe-B, (d)

Electronic Supplementary Material

Boosting electrocatalytic water splitting via metal-metalloid com-bined modulation in quaternary Ni-Fe-P-B amorphous compoundWukui Tang, Xiaofang Liu (), Ya Li, Yanhui Pu, Yao Lu, Zhiming Song, Qiang Wang, Ronghai Yu (), and Jianglan Shui ()

School of Materials Science and Engineering, Beihang University, Beijing 100083, China Supporting information to https://doi.org/10.1007/s12274-020-2627-x

 Figure S1 XRD patterns of all the synthesized amorphous catalysts.

 Figure S2 FESEM images of control samples: (a) Ni-B, (b) Ni-Fe-B, (c) Ni-P-B, and (d) Ni-Fe-P-B NPs.

Address correspondence to Xiaofang Liu, [email protected]; Ronghai Yu, [email protected]; Jianglan Shui, [email protected]

Page 2: Boosting electrocatalytic water splitting via metal ...10.1007/s12274-020-262… · Figure S5 CV curves measured for amorphous HER catalysts: (a) Ni-B, (b) Ni-P-B, (c) Ni-Fe-B, (d)

Nano Res.

| www.editorialmanager.com/nare/default.asp

2

 

 Figure S3 XPS survey spectrum of Ni-Fe-P-B.

 Figure S4 (a) B 1s spectra of Ni-B and Ni-P-B, (b) P 2p spectrum of Ni-P-B.

 Figure S5 CV curves measured for amorphous HER catalysts: (a) Ni-B, (b) Ni-P-B, (c) Ni-Fe-B, (d) Ni-Fe-P-B with varying scan rate from 20 to 120 mV s-1 (including 20, 40, 60, 80, 100 and 120 mV s-1) between non-Faradic potential window (0.05 ~ 0.15 V vs. RHE).

 

 

 

Page 3: Boosting electrocatalytic water splitting via metal ...10.1007/s12274-020-262… · Figure S5 CV curves measured for amorphous HER catalysts: (a) Ni-B, (b) Ni-P-B, (c) Ni-Fe-B, (d)

Nano Res.

www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano Research

3

 

 Figure S6 CV curves measured for amorphous OER catalysts: (a) Ni-B, (b) Ni-P-B, (c) Ni-Fe-B, (d) Ni-Fe-P-B with varying scan rate from 20 to 120 mV s-1 between non-Faradic potential window (1.1 ~ 1.2 V vs. RHE), e) fitted lines based on current density acquired from CV test, f) Cdl of amorphous catalysts calculated from fitted lines.

 Figure S7 Cathodic LSV curves for Ni-B and Ni-P-B synthesized with different initial molar ratio of metal precursor (NiCl2) and reducing agents (NaH2PO2 and NaBH4).

 

 

 

 

Page 4: Boosting electrocatalytic water splitting via metal ...10.1007/s12274-020-262… · Figure S5 CV curves measured for amorphous HER catalysts: (a) Ni-B, (b) Ni-P-B, (c) Ni-Fe-B, (d)

Nano Res.

| www.editorialmanager.com/nare/default.asp

4

 

 Figure S8 High-resolution XPS spectra of (a) Ni 2p, (b) Fe 2p, (c) P 2p, (d) B 1s, (e) O 1s in pristine Ni-Fe-P-B and post-OER Ni-Fe-P-B. The peaks of O1, O2 and O3 in O 1s spectra represent oxygen in metal oxide, hydroxyl group and surface-absorbed water molecular, respectively. f) Comparison of surface component of pristine Ni-Fe-P-B and post-OER Ni-Fe-P-B.

 Figure S9 XRD pattern of Ni-Fe-P-B after 12 h OER test.

Page 5: Boosting electrocatalytic water splitting via metal ...10.1007/s12274-020-262… · Figure S5 CV curves measured for amorphous HER catalysts: (a) Ni-B, (b) Ni-P-B, (c) Ni-Fe-B, (d)

Nano Res.

www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano Research

5

 Figure S10 Comparison of the Ni 2p3/2 spectra of post-OER Ni-B and post-OER Ni-Fe-P-B.

 Figure S11 (a) SEM image and (b) XRD pattern of the crystalline Ni-Fe-P-B.

 Figure S12 Comparison of (a) cathodic and (b) anodic polarization curves of amorphous Ni-Fe-P-B and crystalline Ni-Fe-P-B.

 Figure S13 Comparison of polarization curve for overall water splitting of noble-based RuO2||Pt/C and Ni-Fe-P-B.

Page 6: Boosting electrocatalytic water splitting via metal ...10.1007/s12274-020-262… · Figure S5 CV curves measured for amorphous HER catalysts: (a) Ni-B, (b) Ni-P-B, (c) Ni-Fe-B, (d)

Nano Res.

| www.editorialmanager.com/nare/default.asp

6

 Figure S14 (a) Comparison of the raw and IR-compensated LSV curve of overall water splitting measured for NiFePB@CFP electrodes in 1 M KOH, (b) Nyquist plot of NiFePB@CFP electrodes mesured at cell voltage of 1.7 V.

 Figure S15 Chronopotentiometry curves of Ni-Fe-P-B@CFP electrode tested as (a) cathode and (b) anode at constant current density of 100 mA cm-2 (IR-corrected).

 Figure S16 SEM images of (a) post-HER and (b) post-OER Ni-Fe-P-B.

Table S1 Bulk composition of amorphous catalysts measured by ICP-MS.

Composition (at.%) Sample

Ni Fe P B (M1+M2)/(X1+X2) Ni-B 66.7 —— —— 33.3 2.00

Ni-P-B (2:3:6) 68.2 —— 15.7 14.1 2.14 Ni-P-B (1:3:3) 70.7 —— 17.8 10.5 2.41 Ni-P-B (2:6:3) 76.2 —— 12.5 11.3 3.20

Ni-Fe-B 53.6 11.8 —— 35.6 1.80 Ni-Fe-P-B 58.3 12.2 18.6 10.9 2.39

Table S2 Comparison of OER performance of as-prepared Ni-Fe-P-B catalyst and the latest reported Ni, Fe or Co-based metal-metalloid compound catalysts.

Catalyst Electrolyte Loading (mg cm-2) Tafel slope (mV dec-1) OER overpotential @10 mA cm-2 (mV) Reference Ni-Fe-P-B 1 M KOH 0.3 38 269 This work

Ni2P 1 M KOH 0.38 47 290 [1] Co-P films 1 M KOH 2.7 47 345 [2]

Ni-P NP film 1 M KOH 3.2 58 310 [3] Co2B-500 0.1 M KOH 0.21 45 380 [4]

Page 7: Boosting electrocatalytic water splitting via metal ...10.1007/s12274-020-262… · Figure S5 CV curves measured for amorphous HER catalysts: (a) Ni-B, (b) Ni-P-B, (c) Ni-Fe-B, (d)

Nano Res.

www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano Research

7

NiFe3N 1 M KOH 0.35 46 280 [5] Co0.9S0.58P0.42 1 M KOH — 48 266 [6]

Co/CoP-5 1 M KOH 0.88 — 283 [7] Fe-Co-2.3Ni-B 1 M KOH 0.3 38 274 [8]

Ni-Fe-B 1 M KOH 0.2 43 251 [9] FeB2 1 M KOH 0.2 52 296 [10]

Ni-Bi@NiB 1 M KOH 0.3 52 302 [11] Co-Ni-P film 1 M KOH — 67 340 [12]

NiB0.45-250 1 M KOH 1.4 58 296 [13] Ni2Fe1 NFs 1 M KOH 0.2 70 190 [14]

Co-B/C 1 M KOH 0.16 75 320 [15]

Table S3 Comparison of the overall water splitting performance of as-prepared Ni-Fe-P-B catalyst and the recently reported Ni, Fe or Co-based bifunctional catalysts.

Catalyst Electrolyte Loading (mg cm-2) OWS voltage @10 mA cm-2 (V) Reference Ni-Fe-P-B@Carbon fiber paper 1 M KOH 6.0 1.58 This work

Ni2P@Ni foam 1 M KOH 5.0 1.63 [1] Co-P film 1 M KOH 3.7 1.65 [2]

Ni-P film@Ni foam 1 M KOH 3.2 1.67 [3] Co2B-500@Carbon cloth 3 M KOH 5.0 1.81 [4]

Ni-B@Ni foam 1 M KOH 12.3 1.69@15 mA cm-2 [16] Fe-Co-2.3Ni-B@Carbon cloth 1 M KOH 4.0 1.66 [10]

Co-Ni-P film@Ti plate 1 M KOH — 1.65 [12] Co-3Mo-B@Ni foam 1 M KOH — 1.69 [17] Co/CoP-5@Ni foam 1 M KOH 5.0 1.66@20 mA cm-2 [7] Co-Ni-B@Ni foam 1 M KOH — 1.72 [18]

PO-Ni/Ni-CNF@Ni foam 1 M KOH 8.0 1.69 [19] np-(Ni0.67Fe0.33)4P5 1 M KOH — 1.62 [20]

NiCoFeB 1 M KOH 0.5 1.81 [21]

References [1] L.-A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci. 8 (2015) 2347-2351. [2] N. Jiang, B. You, M.L. Sheng, Y.J. Sun, Angew. Chem. Int. Ed. 54 (2015) 6251-6254. [3] C. Tang, A.M. Asiri, Y.L. Luo, X.P. Sun, Chemnanomat 1 (2015) 558-561. [4] J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z.Y. Sun, C. Somsen, M. Muhler, W. Schuhmann, Adv. Energy Mater. 6 (2016) 1502313. [5] X.D. Jia, Y.F. Zhao, G.B. Chen, L. Shang, R. Shi, X.F. Kang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Energy Mater. 6 (2016) 1502585. [6] Z.F. Dai, H.B. Geng, J. Wang, Y.B. Luo, B. Li, Y. Zong, J. Yang, Y.Y. Guo, Y. Zheng, X. Wang, Q.Y. Yan, Acs Nano 11 (2017) 11031-11040. [7] Z.-H. Xue, H. Su, Q.-Y. Yu, B. Zhang, H.-H. Wang, X.-H. Li, J.-S. Chen, Adv. Energy Mater. 7 (2017) 1602355. [8] J.M.V. Nsanzimana, Y.C. Peng, Y.Y. Xu, L. Thia, C. Wang, B.Y. Xia, X. Wang, Adv. Energy Mater. 8 (2018) 1701475. [9] G. Liu, D.Y. He, R. Yao, Y. Zhao, J.P. Li, Nano Res. 11 (2018) 1664-1675. [10] H. Li, P. Wen, Q. Li, C.C. Dun, J.H. Xing, C. Lu, S. Adhikari, L. Jiang, D.L. Carroll, S.M. Geyer, Adv. Energy Mater. 7 (2017) 1700513. [11] W.J. Jiang, S. Niu, T. Tang, Q.H. Zhang, X.Z. Liu, Y. Zhang, Y.Y. Chen, J.H. Li, L. Gu, L.J. Wan, J.S. Hu, Angew. Chem. Int. Ed. 56 (2017) 6572-6577. [12] Y. Pei, Y. Yang, F.F. Zhang, P. Dong, R. Baines, Y.C. Ge, H. Chu, P.M. Ajayan, J.F. Shen, M.X. Ye, ACS Appl. Mater. Interfaces 9 (2017) 31887-31896. [13] J. Jiang, M. Wang, W.S. Yan, X.F. Liu, J.X. Liu, J.L. Yang, L.C. Sun, Nano Energy 38 (2017) 175-184. [14] S.F. Fu, J.H. Song, C.Z. Zhu, G.L. Xu, K. Amine, C.J. Sun, X.L. Li, M.H. Engelhard, D. Du, Y.H. Lin, Nano Energy 44 (2018) 319-326. [15] Y.Q. Li, H.B. Xu, H.Y. Huang, L.G. Gao, Y.Y. Zhao, T.L. Ma, Electrochem. Commun. 86 (2018) 140-144. [16] Y. Liang, X. Sun, A.M. Asiri, Y. He, Nanotechnology 27 (2016) 12LT01. [17] S. Gupta, N. Patel, R. Fernandes, S. Hanchate, A. Miotello, D.C. Kothari, Electrochim. Acta 232 (2017) 64-71. [18] N. Xu, G.X. Cao, Z.J. Chen, Q. Kang, H.B. Dai, P. Wang, J. Mater. Chem. A 5 (2017) 12379-12384. [19] Z.Y. Wu, W.B. Ji, B.C. Hu, H.W. Liang, X.X. Xu, Z.L. Yu, B.Y. Li, S.H. Yu, Nano Energy 51 (2018) 286-293. [20] W.C. Xu, S.L. Zhu, Y.Q. Liang, Z.D. Cui, X.J. Yang, A. Inoue, J. Mater. Chem. A 6 (2018) 5574-5579. [21] Y. Li, B. Huang, Y. Sun, M. Luo, Y. Yang, Y. Qin, L. Wang, C. Li, F. Lv, W. Zhang, S. Guo, Small 15 (2019) 1804212.