borang pengesahan status thesis

Upload: fatihah-tyah

Post on 06-Apr-2018

247 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Borang Pengesahan Status Thesis

    1/21

    PSZ 19 : 16 (Pind. 1/97)

    UNIVERSITI TEKNOLOGI MALAYSIA

    BORANG PENGESAHAN STATUS TESIS

    JUDUL : COMPARISON OF ULTIMATE CAPACITY OF A PILEBASED ON IN SITU TESTING AND THEORETICAL

    FORMULA

    SESI PENGAJIAN : 2004/2005

    Saya

    (HURUF BESAR)

    mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah)* ini disimpan di PerpustakaanUniversiti Teknologi Malaysia dengan syarat-syarat kegunaan seperti berikut:

    1. Tesis adalah hakmilik Universiti Teknologi Malaysia.

    2. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk tujuanpengajian sahaja.

    3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara

    institusi pengajian tinggi.

    4. ** Sila tanda ( )

    SULIT (Mengandungi maklumat yang berdarjah keselamatan ataukepentingan Malaysia seperti yang termaktud di dalam AKTA

    RAHSIA RASMI 1972)

    TERHAD (Mengandungi maklumat TERHAD yang telah ditentukanoleh organisasi/badan di masa penyelidikan dijalankan)

    TIDAK TERHAD

    Disahkan oleh

    (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

    Alamat Teta: 1491, TMN RIVERVIEW,

    JLN DAYA, PENDING,

    93450 KUCHING,

    SARAWAK.

    PM DR. KHAIRUL ANUAR KASSIM

    Nama Penyelia

    Tarikh: OKTOBER 2004 Tarikh: OKTOBER 2004

    Catatan : * Potong yang tidak berkenaan.** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

    berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempohtesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

    Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara

    penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau LaporanProjek Sarjana Muda (PSM).

    CHAI LEE LIN

  • 8/2/2019 Borang Pengesahan Status Thesis

    2/21

    Saya akui bahawa saya telah membaca karya ini dan pada pandangan saya karya ini

    adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan ijazah Sarjana

    Muda Kejuruteraan Awam

    Tandatangan : ..

    Nama Penyelia : PM Dr. Khairul Anuar Kassim

    Tarikh : ..

  • 8/2/2019 Borang Pengesahan Status Thesis

    3/21

    COMPARISON OF ULTIMATE CAPACITY OF A PILEBASED ON

    IN SITU TESTING AND THEORETICAL FORMULA

    CHAI LEE LIN

    This report is submitted

    as a partial fulfillment of the requirement for the award of the Bachelor

    Degree in Civil Engineering

    Faculty of Civil Engineering

    Universiti Teknologi Malaysia

    OKTOBER, 2004

  • 8/2/2019 Borang Pengesahan Status Thesis

    4/21

    Saya akui karya ini adalah hasil kerja saya sendiri kecuali nukilan dan ringkasan yang

    tiap-tiap satunya telah saya jelaskan sumbernya.

    Tandatangan : ..

    Nama Penulis : CHAI LEE LIN

    Tarikh : ..

    ii

  • 8/2/2019 Borang Pengesahan Status Thesis

    5/21

    To My Parents, beloved and friends....

    Thank you for all your advice,

    Word by word,

    Thank you for all the support,

    Day by day,

    Thank you for the cheer you bring to my life.

    iii

  • 8/2/2019 Borang Pengesahan Status Thesis

    6/21

    ACKNOLEDGEMENTS

    I wish to acknowledge my deepest appreciation and gratefulness to my

    supervisor, PM. Dr. Khairul Anuar Kassim, for his valuable guidance, advice and

    suggestions throughout this study.

    My grateful is also dedicated to Ir. Loh Leh Goh, Engineers, Mr. Michael Hii

    and Mr. Lim Wee Han in KTA Consultant as well as Mr. Lee Siak Fong for their

    valuable discussions and assistance during the data collection and results analysis

    period.

    Finally, but not means least, I wish to express my thanks to my family and

    friends for their encouragement, caring care and understanding.

    Thank you very much to all of you.

    iv

  • 8/2/2019 Borang Pengesahan Status Thesis

    7/21

    ABSTRACT

    The common problem faced by designers is the calculated ultimate pile

    capacity from static analysis often gives poor agreement with in situ testing methods.

    This study is specifically focused on comparison of ultimate pile capacity based on in

    situ testings and theoretical formula as well as established the criteria for the

    differences between various methods. The differences were established throughcomparison of ultimate capacity among three most commonly used methods, i.e. the

    static load test, static analysis and three pile driving formulas. The results of study

    indicated that ultimate capacity from load test result achieve the highest value,

    followed by static analysis and pile driving formulas respectively. From the driving

    formulas, Gates Formula achieved higher ultimate capacity as well as shows a closer

    value to the static analysis and load test results. Comparison between ultimate capacity

    from load test results (Chins method) and static analysis (Meyerhofs method) showed

    the differences ranging from 21.61% to 27.74%. The larger difference was established

    when the base stratum is of clayey soil where the clay formula needs to be used where

    it gave an underestimated value. Static analysis can be correlated to load test results

    with a linear relationship of QuSA = 0.76QuLT. Comparison between load test and pile

    driving formulas shows the ultimate capacity from load test was 60 % to 90% higher

    than the three driving formulas, namely Modified ENR Formula, Hiley Formula and

    Gates Formula. It is expected that ultimate capacity from driving formulas would be

    even lower and achieve a higher differences when the particular site involved more

    clay layer as remolding of soils during driving has created greater disturbance to

    clayey soil. Ultimate capacity from load test results is more reliable as it is based on

    actual loading and site condition.

    v

  • 8/2/2019 Borang Pengesahan Status Thesis

    8/21

    ABSTRAK

    Masalah yang biasa dihadapi oleh pereka bentuk geoteknik adalah rekabentuk

    kapasiti mutlak cerucuk melalui analisa statik sering memberikan pembezaan ketara

    terhadap kaedah ujian in-situ. Kajian ini fokus kepada perbandingan antara kapasiti

    mutlak yang dikira melalui ujian in-situ dan persamaan teori serta membincangkan

    kriteria yang menentukan perbezaan antara berlainan kaedah tersebut. Perbezaantersebut diperolehi daripada perbandingan antara kapasiti mutlak yang dikira daripada

    tiga kaedah yang paling umum digunakan, iaitu ujian beban statik, analisa statik dan

    tiga persamaan pemacuan cerucuk. Keputusan daripada kajian mendapati kapasiti

    mutlak yang diberi oleh ujian beban adalah paling tinggi, diikuti oleh analisis static

    dan persamaan pemacuan cerucuk masing-masing. Antara persamaan-persamaan

    pemacuan pula, persamaan Gates memberi kapasiti mutlak yang lebih tinggi serta

    menunjukkan nilai yang lebih dekat dengan kapasiti dari analisa statik dan ujian beban.

    Perbandingan antara kapasiti mutlak cerucuk dari ujian beban (Kaedah Chin) dengan

    analisa statik (Kaedah Meyerhof) menunjukkan perbezaan antara 21.61% hingga

    27.74%. Perbezaan yang lebih tinggi telah dicapai apabila tanah pada dasar cerucuk

    adalah jenis tanah liat yang mana persamaan tanah liat diperlukan kerana ia memberinilai di bawah anggaran sebenar. Keputusan dari analisa statik menunjukkan

    hubungan linear dengan keputusan ujian beban melalui persamaan QuSA = 0.76QuLT.

    Perbandingan antara ujian beban dan persamaan pemacuan menunjukkan kapasiti

    mutlak dari ujian beban adalah 60% hingga 90% lebih tinggi dari tiga persamaan

    pemacuan dipilih, iaitu Persamaan ENR Ubahsuai, Hiley dan Gates. Adalah dijangka

    nilai kapasiti yang lebih rendah lagi akan perolehi dari persamaan pemacuan serta

    perbezaan lebih ketara didapati jika tapak tersebut memiliki lebih banyak lapisan tanah

    liat kerana pergerakan tanah semasa pemacuan telah menyebabkan lebih gangguan

    kepada tanah liat. Kapasiti mutlak cerucuk dari ujian beban adalah lebih benar kerana

    ia berdasarkan pembebanan dan keadaan tanah yang sebenar.

    vi

  • 8/2/2019 Borang Pengesahan Status Thesis

    9/21

    CONTENTS

    CHAPTER CONTENT PAGE

    TITLE i

    DECLARATION ii

    DEDICATION iii

    ACKNOWLEDGEMENTS iv

    ABSTRACK v

    ABSTRAK vi

    CONTENTS vii

    LIST OF TABLE xiii

    LIST OF FIGURE xiv

    LIST OF SYMBOL xvi

    LIST OF APPENDIX xviii

    CHAPTER 1 INTRODUCTION

    1.1 Introduction 1

    1.2 Background Problem And Importance Of

    The Study 2

    1.3 Objective 3

    1.4 Scope Of Study 3

    CHAPTER 2 PILE FOUNDATIONS

    2.1 Pile Foundation 5

    vii

  • 8/2/2019 Borang Pengesahan Status Thesis

    10/21

    2.2 Classification Of Pile 7

    2.2.1 Classification By Method Of

    Load Transmission 7

    2.2.1.1 End Bearing Piles 7

    2.2.1.2 Friction Piles 8

    2.2.2 Classification By Method Of

    Installation 10

    2.2.2.1 Displacement Piles 10

    2.2.2.2 Replacement Piles 10

    2.2.3 Spun Pile 11

    2.3 Pile Installation Methods 12

    2.3.1 Pile Driving Methods 12

    2.3.1.1 Drop Hammers 13

    2.3.1.2 Diesel Hammers 13

    2.3.1.3 Vibrating 14

    2.3.1.4 Jetting 14

    2.3.2 Boring Methods 15

    2.3.2.1 Continuous Flight Auger 15

    2.3.2.2 Underreaming 15

    2.4 Subsurface Investigation For Piling 15

    2.4.1 Subsurface Access Methods 16

    2.4.1.1 Borings 17

    2.4.2 Sampling For Soils And Rocks 18

    2.4.3 In-situ Testing 19

    2.4.3.1 Standard Penetration Test 20

    2.4.4 Borehole Log 20

    2.5 Pile Testing 22

    2.5.1 Pile Load Test 22

    2.5.1.1 Equipment And Procedure 23

    CHAPTER 3 ULTIMATE PILE CAPACITY

    3.1 Ultimate Capacity Of Driven Pile 27

    3.2 Static Analysis 27

    viii

  • 8/2/2019 Borang Pengesahan Status Thesis

    11/21

    3.2.1 Static Analysis For Estimating Pile

    Capacity In Cohesiveless Soil 28

    3.2.1.1 Method Based On Standard

    Penetration Test 28

    3.2.1.2 Method Based On Static

    Cone Penetration 30

    3.2.2 Static Analysis For Estimating Pile

    Capacity In Cohesive Soil 31

    3.2.2.1 End Bearing Capacity, Qb 31

    3.2.2.2 Frictional Resistance In

    Clay, Qs 34

    3.2.3 Negative Skin Friction 38

    3.2.3.1 Total Overburden Pressure

    Method 38

    3.2.3.2 Effective Overburden

    Pressure Method 39

    3.3 Pile Driving Formulas 40

    3.3.1 Concept Of Pile Driving Formulas 41

    3.3.2 Commonly Used Pile Driving

    Formulas 42

    3.3.2.1 Modified Engineering News

    Record Formula 42

    3.3.2.2 Hiley Formula 43

    3.3.2.3 Gates Method 44

    3.3.2.4 Danish Method 45

    3.4 Estimation Of Ultimate Capacity From

    Pile Load Test 46

    3.4.1 Chins Method 47

    CHAPTER 4 METHODOLOGY

    4.1 The Research Design Study 50

    4.2 Data Requirement 52

    ix

  • 8/2/2019 Borang Pengesahan Status Thesis

    12/21

    4.3 Methods 52

    4.4 Description Of The Selected Sites 54

    4.4.1 Soil Investigation For The Selected

    Sites 56

    4.4.1.1 Borehole 56

    4.4.1.2 Standard Penetration test 56

    4.4.2 Geotechnical Information Of The

    Selected Sites 57

    4.5 Formulas Used In The Study 58

    4.5.1 Static Analysis 58

    4.5.2 Pile Driving Formulas 60

    4.5.2.1 Modified ENR Formula 60

    4.5.2.2 Hiley Formula 61

    4.5.2.3 Gates Formula 61

    CHAPTER 5 RESULT AND ANALYSIS

    5.1 Introduction 62

    5.2 Calculations Example 63

    5.2.1 Static Analysis 63

    5.2.1.1 Calculation Example

    Meyerhofs Method 63

    5.2.1.2 Summary Of Ultimate

    Capacity From Static

    Analysis 66

    5.2.2 Pile Driving Formula 67

    5.2.2.1 Modified ENR Formula 67

    5.2.2.2 Hiley Formula 68

    5.2.2.3 Gates Formula 70

    5.2.2.4 Comparison OF Ultimate

    Capacity From Pile Driving

    Formulas 70

    5.2.3 Pile Load Test - Chins Method 73

    x

  • 8/2/2019 Borang Pengesahan Status Thesis

    13/21

    5.2.3.1 Calculation Example 73

    5.2.3.2 Interpretation Of Load

    Test Result By Chins

    Method Stability Plot 74

    5.2.3.3 Estimation Of Ultimate

    Pile Capacity From

    Stability Plot 75

    5.2.3.4 Summary Of Ultimate

    Capacity From Load Test

    Results 76

    5.3 Comparison Of Ultimate Pile Capacity, Qu 77

    5.3.1 Comparison Of Ultimate Capacity

    Between Theoretical Formula And

    In-situ Testings 77

    5.3.2 Comparison Between Static Analysis

    And Load Test Results 80

    5.3.3 Comparison Between Static Analysis

    And Pile Driving Formulas 84

    5.3.4 Comparison Between Load Test

    Results And Pile Driving Formulas 87

    CHAPTER 6 CONCLUSION AND RECOMMENDATION

    6.1 Conclusion 90

    6.1.1 Comparison Between Different Pile

    Driving Formulas 91

    6.1.2 Comparison Between Load Test

    Results And Static Analysis 91

    6.1.3 Comparison Between Load Test

    Results And Pile Driving Formulas 92

    6.2 Factor That Affect Accuracy Of Analysis

    Results 94

    xi

  • 8/2/2019 Borang Pengesahan Status Thesis

    14/21

    6.3 Recommendation 94

    REFERENCES 95

    APPENDIX 98-163

    LIST OF TABLE

    xii

  • 8/2/2019 Borang Pengesahan Status Thesis

    15/21

    TABLE NO. TITLE PAGE

    2.1 Typical subsurface access investigation methods 16

    2.2 Commonly used soil and rock samplers and their applications 18

    2.3 Typical in-situ tests and their application 19

    3.1 Typical value for the undrained shear strength of cohesive soils 35

    3.2 Typical values for the rated efficiency of the hammer, E 43

    3.3 Coefficient of restitution between the ram and the pile cap, n 43

    3.4 Temporary compression in inches 44

    5.1 Summary of ultimate capacity from static analysis 67

    5.2 Summary of ultimate capacity from pile driving formulas 70

    5.3 Load-settlement relationship of the pile 73

    5.4 Summary of ultimate capacity from load test results 76

    5.5 Summary of ultimate capacity from load test results, pile

    driving formulas and static analysis 77

    5.6 Comparison of ultimate pile capacity, Qu from load test

    results and static analysis 80

    5.7 Comparison of ultimate capacity from static analysis and

    pile driving formulas 84

    5.8 Comparison of ultimate capacity from load test results and

    pile driving formulas 87

    LIST OF FIGURE

    xiii

  • 8/2/2019 Borang Pengesahan Status Thesis

    16/21

    FIGURE NO. TITLE PAGE

    2.1 Principal types of pile : (a) precast RC pile, (b) steel H pile,

    (c) shell pile, (d) concrete pile cast as driven tube

    withdrawn, (e) bored pile (cast in-situ), (f) under-reamed

    bored pile (cast in-situ) 6

    2.2 Classification of bearing pile types 8

    2.3 Example of End Bearing Pile Preformed Timber Pile and

    In-situ Reinforced Concrete Pile 9

    2.4 Using friction pile to support a downward load 9

    2.5 Using friction pile to support a upward load 9

    2.6 Soil is being displaced downwards and sideways when the

    pile is driven into the ground 10

    2.7 The hole is excavated by means of an auger drill 11

    2.8 Pre-stressed spun concrete piles 12

    2.9 Typical single acting diesel hammer 13

    2.10 Operational cycle for single acting diesel hammer 14

    2.11 Wash boring 18

    2.12 A sample of borehole log 21

    2.13 Test load arrangement using Kentledge 25

    2.14 Sketch of typical setup for test reference beam 26

    2.15 Pile loading tests: (a) Maintained load test, (b) Constant

    rate of penetration test 263.1 Bearing capacity factor, Nq 29

    3.2 Variation of the maximum values of Nc* and Nq*

    with friction angle, 32

    3.3 Janbus bearing capacity factors 33

    3.4 Variation ofwith undrained cohesive of clay 35

    3.5 Variation ofwith pile embedment length 37

    3.6 Pile subjected to negative friction 40

    xiv

  • 8/2/2019 Borang Pengesahan Status Thesis

    17/21

    3.7 Schematic diagram of pile driving 41

    3.8 Modulus of elasticity of the pile materials, Ep 46

    3.9 (a) Typical routine load settlement curve, s vs. Q;

    (b) Single straight line relationship, s vs. s/Q;

    (c) Bilinear relationship, s vs. s/Q For Piles. 48

    3.10 The Chins method for estimation of ultimate load 49

    3.11 Stability plot the bearing capacity of pile is

    Skin friction plus end bearing 49

    4.1 Steps of the study 51

    4.2 Locality plan for the selected sites 55

    5.1 Comparison of ultimate capacity from pile driving formulas 71

    5.2 Stability plot 74

    5.3 Ultimate capacity from load test results, pile driving formulas

    and static analysis 78

    5.4 Correlation factor for ultimate capacity from load test result

    and static analysis 82

    5.5 Comparison of ultimate capacity based on static analysis

    and pile driving formulas 85

    5.6 Comparison of ultimate capacity based on load test result

    and pile driving formulas 88

    LIST OF SYMBOL

    xv

  • 8/2/2019 Borang Pengesahan Status Thesis

    18/21

    Qu

    Qb

    Qs

    Ab

    qb

    As

    s

    o

    NqN

    qf

    DbLb

    B

    N

    N

    Ks

    vo

    CKD

    CKdave

    Cu

    Ap

    C

    qp

    q

    Nq*

    p

    L

    'v

    L

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    Ultimate pile capacity

    Load carrying capacity of the pile point

    Frictional resistance

    Nominal plan area of the pile base

    Characteristic value per unit area of base

    Nominal surface area of the pile in soil layer

    Characteristic value of the resistance per unit of the shaft in

    soil layer

    Effective overburden pressure at the pile base

    Bearing capacity factor

    Resistance value per unit of the shaft in soil layer

    Length of pile embedded in the sand

    Diameter of pile

    Value of standard penetration resistance in the vicinity of the

    pile base

    average value of standard penetration resistance over the

    embedded length of pile within the sand stratum

    Coefficient of horizontal soil stress

    Average effective overburden pressure

    Angle of wall friction

    Point resistance of cone

    Average point resistance of cone per unit of the pile shaft

    Undrained shear strength

    Area of pile tip

    Cohesion of the soil supporting the pile tip

    Unit point resistance

    Effective vertical stress at the level of the pile tip

    Bearing capacity factors

    Empirical adhesion factor

    Unit friction resistance at any depth z

    Perimetre of pile section

    Incremental pile length over which p and are taken constant

    Vertical effective stresses

    Length of piles

    xvi

  • 8/2/2019 Borang Pengesahan Status Thesis

    19/21

    LIST OF APPENDIX

    APPENDIX TITLE PAGE

    A1 Manufacturing process of spun pile 1 98

    A2 Manufacturing process of spun pile 2 99

    B1 Project 1 : Record Of Boring, sheet 1 100

    B2 Project 1 : Record Of Boring, sheet 2 101

    B3 Project 1 : Record Of Boring, sheet 3 102

    B4 Project 1 : Record Of Boring, sheet 4 103

    C1 Project 2 : Record Of Boring, sheet 1 104

    C2 Project 2 : Record Of Boring, sheet 2 105

    C3 Project 2 : Record Of Boring, sheet 3 106

    C4 Project 2 : Record Of Boring, sheet 4 107

    D1 Project 3 : Record Of Boring, sheet 1 108

    D2 Project 3 : Record Of Boring, sheet 2 109

    D3 Project 3 : Record Of Boring, sheet 3 110

    D4 Project 3 : Record Of Boring, sheet 4 111

    E1 Project 4 : Record Of Boring, sheet 1 112

    E2 Project 4 : Record Of Boring, sheet 2 113

    E3 Project 4 : Record Of Boring, sheet 3 114

    E4 Project 4 : Record Of Boring, sheet 4 115

    F1 Project 5 : Record Of Boring, sheet 1 116

    F2 Project 5 : Record Of Boring, sheet 2 117

    F3 Project 5 : Record Of Boring, sheet 3 118

    F4 Project 5 : Record Of Boring, sheet 4 119

    G1 Project 6 : Record Of Boring, sheet 1 120

    xviii

  • 8/2/2019 Borang Pengesahan Status Thesis

    20/21

    G2 Project 6 : Record Of Boring, sheet 2 121

    G3 Project 6 : Record Of Boring, sheet 3 122

    G4 Project 6 : Record Of Boring, sheet 4 123

    H Piled Foundation Static Analysis Criteria correlation factor 124

    I1 Breakdown of skin friction and end bearing capacity value

    for Project 1 125

    I2 Breakdown of skin friction and end bearing capacity value

    for Project 2 126

    I3 Breakdown of skin friction and end bearing capacity value

    for Project 3 127

    I4 Breakdown of skin friction and end bearing capacity value

    for Project 4 128

    I5 Breakdown of skin friction and end bearing capacity value

    for Project 5 129

    I6 Breakdown of skin friction and end bearing capacity value

    for Project 6 130

    J Summary of driving record for the six selected sites 131

    K1 Project 1 : Modified ENR Formula 132

    K2 Project 1 : Hiley Formula 133

    K3 Project 1 : Gates Formula 134

    L1 Project 2 : Modified ENR Formula 135

    L2 Project 2 : Hiley Formula 136

    L3 Project 2 : Gates Formula 137

    M1 Project 3 : Modified ENR Formula 138

    M2 Project 3 : Hiley Formula 139

    M3 Project 3 : Gates Formula 140

    N1 Project 5 : Modified ENR Formula 141

    N2 Project 5 : Hiley Formula 142

    N3 Project 5 : Gates Formula 143

    O1 Project 6 : Modified ENR Formula 144

    O2 Project 6 : Hiley Formula 145

    O3 Project 6 : Gates Formula 146

    P Table D. 5 - Partial list of typical diesel hammer 147

    Q Standard Products Properties 148

    xix

  • 8/2/2019 Borang Pengesahan Status Thesis

    21/21

    R1 Project 1 : Load-Settlement Relationship of The Pile 149

    R2 Project 1 : Stability plot 150

    R3 Project 1 : Interpretation Of Ultimate Pile Capacity 151

    S1 Project 2 : Load-Settlement Relationship of The Pile 152

    S2 Project 2 : Stability plot 153

    S3 Project 2 : Interpretation Of Ultimate Pile Capacity 154

    T1 Project 3 : Load-Settlement Relationship of The Pile 155

    T2 Project 3 : Stability plot 156

    T3 Project 3 : Interpretation Of Ultimate Pile Capacity 157

    U1 Project 5 : Load-Settlement Relationship of The Pile 158

    U2 Project 5 : Stability plot 159

    U3 Project 5 : Interpretation Of Ultimate Pile Capacity 160

    V1 Project 6 : Load-Settlement Relationship of The Pile 161

    V2 Project 6 : Stability plot 162

    V3 Project 6 : Interpretation Of Ultimate Pile Capacity 163

    xx