boron removal and recovery

Upload: sergio-bazan

Post on 08-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Boron Removal and Recovery

    1/11

    Boron removal by electrocoagulation and recovery

    Mohamed Hasnain Isa a, Ezerie Henry Ezechi a, Zubair Ahmed b,*,Saleh Faraj Magram b, Shamsul Rahman Mohamed Kutty a

    a Civil Engineering Department, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak, Malaysiab Department of Civil Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

    a r t i c l e i n f o

    Article history:

    Received 4 October 2013

    Received in revised form

    9 December 2013

    Accepted 16 December 2013

    Available online 27 December 2013

    Keywords:

    Adsorption kinetics

    Boron

    Electrocoagulation

    Hydrothermal mineralization

    Produced water

    Response surface methodology

    Thermodynamics

    a b s t r a c t

    This work investigated the removal of boron from wastewater and its recovery by elec-

    trocoagulation and hydrothermal mineralization methods respectively. The experimental

    design was developed using Box-Behnken Model. An initial study was performed based on

    four preselected variables (pH, current density, concentration and time) using synthetic

    wastewater. Response surface methodology (RSM) was used to evaluate the effect of pro-

    cess variables and their interaction on boron removal. The optimum conditions were ob-

    tained as pH 6.3, current density 17.4 mA/cm2, and time 89 min. At these applied optimum

    conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved.

    The process was effectively optimized by RSM with a desirability value of 1.0. The results

    showed that boron removal efficiency enhanced with increase in current density and

    treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and

    subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction

    followed pseudo second order kinetic model; evidenced by high correlation and goodness

    of fit. Thermodynamics study showed that mechanism of boron adsorption was chemi-

    sorption and the reaction was endothermic in nature. Furthermore, the adsorption process

    was spontaneous as indicated by negative values of the adsorption free energy. Treatment

    of real produced water using electrocoagulation resulted in 98% boron removal. The hy-

    drothermal mineralization study showed that borate minerals (Inyoite, Takadaite and

    Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of 

    produced water.

    ª 2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    Boron is an essential compound for the manufacture of 

    different products. Boron compounds are widely used in the

    manufacture of glass, ceramics, high quality steel, catalysts,

    cosmetics and flame retardants (Yilmaz et al., 2008a). Boron is

    alsoan essential micronutrient for plants and is readily present

    inthe formof boric acid(H3BO3). Boron exists as undissociated

    boric acid and borate ions in aquatic environment. The func-tions of boron in plants include degradation of carbohydrates,

    sugar translocation, and hormonal action. Boron deficiency

    causes stunted growth, yield loss and even death of plant

    (Yilmaz et al., 2008b). High boron concentration in irrigation

    water, however, can cause severe environmental problem

    because boron compounds form complexes with heavy metals

    present in soil and increase the potential toxicity of these

    *   Corresponding author. Tel.:  þ966 (0)2 6402000x68239; fax: þ966 (0)2 6952179.E-mail addresses: [email protected][email protected] (Z. Ahmed).

     Available online at www.sciencedirect.com

    ScienceDirect 

    j o u r n a l h o m e p a g e :   w w w . e l s e v i e r . c o m / l o c a t e / w a t r e s

    w a t e r r e s e a r c h 5 1 ( 2 0 1 4 ) 1 1 3 e1 2 3

    0043-1354/$  e  see front matter ª  2013 Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.watres.2013.12.024

    https://www.researchgate.net/publication/229092678_An_empirical_model_for_kinetics_of_boron_removal_from_boroncontaining_wastewaters_by_the_electrocoagulation_method_in_a_batch_reactor?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/229092678_An_empirical_model_for_kinetics_of_boron_removal_from_boroncontaining_wastewaters_by_the_electrocoagulation_method_in_a_batch_reactor?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/229092678_An_empirical_model_for_kinetics_of_boron_removal_from_boroncontaining_wastewaters_by_the_electrocoagulation_method_in_a_batch_reactor?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==mailto:[email protected]:[email protected]://www.sciencedirect.com/science/journal/00431354http://www.elsevier.com/locate/watreshttp://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024https://www.researchgate.net/publication/229092678_An_empirical_model_for_kinetics_of_boron_removal_from_boroncontaining_wastewaters_by_the_electrocoagulation_method_in_a_batch_reactor?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://www.elsevier.com/locate/watreshttp://www.sciencedirect.com/science/journal/00431354http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2013.12.024&domain=pdfmailto:[email protected]:[email protected]

  • 8/19/2019 Boron Removal and Recovery

    2/11

    complexes when passedto groundwater(Sekietal.,2006). High

    boron concentrationin surface water makes thewaterunfit for

    consumption because boron has been shown to induce male

    reproductive impediments in laboratory animals orally

    exposed to boric acid and borax (Linder et al., 1990). The World

    Health Organization (WHO, 2011) has set a guideline value for

    boron concentration in drinking water as 2.4 mg/L.

    Presence of boron in various industrial wastewaters, suchas produced water, can cause problems in wastewater recla-

    mation and reuse. Produced water is water trapped in un-

    dergroundstratawhich is brought to the surface together with

    oil and gas during drilling. Produced water is reportedly the

    largest waste-stream of oil and gas exploration with an esti-

    mated 250 million barrels per day compared with about 80

    million barrels per day of oil worldwide (Fakhruâul-Razi et al.,

    2009). The composition of produced water differs from other

    wastewater because produced water has beenconfined within

    underground formations for a very long time (Ezechi et al.,

    2012a). Produced water is being considered as a supplement

    to limited freshwater resource especially in arid areas because

    of its large production volume. One of the impediments to thisusage is the presence of boron at higher than permissible

    concentrations. The large volumetric generation of produced

    water would also suggest the potential for high amount of 

    boron recovery.

    Boron removal from wastewater presents several chal-

    lenges. Membrane process is a widely acceptable method for

    wastewater treatment. However, studies have shown that

    boron can diffuse through membranes in a non-ionic way,

    similar to that of carbonic acid or water (Hou et al., 2010). The

    use of selective ion exchange chelating resins has been shown

    to be effective in boron removal (Kabay et al.,2004). Disposal of 

    the subsequently generated sludge and periodic regeneration

    of resin, however, remain as major challenges. On the otherhand, conventional biological process only removes a small

    amount of boron from wastewater due to its antiseptic nature

    (Malakootian and Yousefi, 2009).

    Electrocoagulation as a treatment process has been used in

    the removal of various water contaminants. Process versa-

    tility, sludge reduction, minimal operator attention and ease

    of operation are some of its advantages. The major action of 

    electrocoagulation depends on the ability of water particles to

    respond to strong electric field in a redox reaction ( Ezechi

    et al., 2010b). Electrocoagulation involves three major mech-

    anisms; formulation of coagulants by electrolytic oxidation of 

    sacrificial anodes, destabilization of the contaminants and

    particulate suspension, breaking of emulsions and aggrega-tion of the destabilized phases to form a floc (Babu et al., 2007).

    The mechanism of aluminium oxidation during electro-

    coagulation is shown below (Balasubramanian et al., 2009).

    Anode:

    Al ðsÞ/Al3þ ðaqÞ þ 3e (1)

    Cathode:

    2H2O  ðlÞ þ 2e / H2   ðgÞ þ 2OH ðaqÞ   (2)

    Aluminum forms polymeric speciesduring oxidation of the

    sacrificial anode. These polymeric species Al6(OH)153þ,

    Al7(OH)174þ, Al8(OH)20

    4þ, Al13O4(OH)247þ, Al13(OH)34

    5þ, etc. transform

    finally into Al(OH)3(s)   according to the following simplified

    equation (Ghosh et al., 2008).

    Al3þ ðaqÞ þ 3H2O  ðlÞ/AlðOHÞ3   ðsÞ þ 3Hþ ðaqÞ   (3)

    The formed Al(OH)3 (s) appears as sweep flocs with large

    surface area which increases its adsorption capacity and aids

    in boron removal from solution. The formed flocs are sepa-

    rated from aqueous medium by sedimentation or flotation.

    Considering that many landfill sites are filled up and

    finding new landfill sites is difficult. Recovery of boron will not

    only mitigate the adverse effect of boron in the environment

    but also provide a means of producing boron compounds for

    industrial use.

    This study focuses on the use of electrocoagulation (EC) for

    boron removal from aqueous solution and its recovery. The

    specific objectives are: (a) to optimize EC removal of boron

    based on significant operating parameters using response

    surface methodology (RSM), (b) to study the boron adsorption

    kinetics and thermodynamics, and (c) to determine the poten-

    tial recovery of boron by hydrothermal mineralization (HM).

    2. Experimental method

    2.1. Characteristics of wastewater

    A preliminary study was conducted with synthetic waste-

    water prepared with appropriate amount of boric acid (H 3BO3)

    and dissolved in 1 L distilled water to yield varying boron

    concentrations of 10, 20 and 30 mg/L. The produced water was

    collected from a local Crude Oil Terminal in Malaysia and was

    characterized with atomic absorption spectrometry (AAS) and

    ion chromatography (IC). A pH meter (Hach Sension 2 pHmeter) and a conductivity meter (Myron L conductivity meter)

    were used to measure the pH and conductivity of the sample

    respectively. The produced water characteristics are shown in

    Table 1.

    Table 1 e  Produced water characteristics.

    Parameter Concentrationa Parameter Concentration

    Boron 15 Bromine 31.2

    pH 7.84 Total

    phosphate

    12

    TSS 136 COD 1560

    TDS 15,829 BOD 883Conductivity 30,000 mS/cm Nitrite 0.03

    Turbidity 72 NTU Copper 2.98

    Aluminum 0.65 Ammonia

    nitrogen

    16.5

    Iron 1.66 TKN 60.7

    Chloride 7546 Sulphate 168

    Sodium 3952 Nitrate 1.9

    Calcium 357 Sulphide 0.21

    Magnesium 600 Phenol 15

    Sulphate 168 Total alkalinity 1546

    Potassium 284 Zinc 0.04

    Hardness 957 Fluoride 0.61

    a All concentrations are expressed in mg/L unless stated

    otherwise.

    w a t e r r e s e a r c h 5 1 ( 2 0 1 4 ) 1 1 3 e1 2 3114

    https://www.researchgate.net/publication/6998762_Removal_of_boron_from_aqueous_solution_by_adsorption_on_Al2O3_based_materials_using_full_factorial_design?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/6998762_Removal_of_boron_from_aqueous_solution_by_adsorption_on_Al2O3_based_materials_using_full_factorial_design?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/6998762_Removal_of_boron_from_aqueous_solution_by_adsorption_on_Al2O3_based_materials_using_full_factorial_design?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/20941985_Effect_of_acute_exposure_to_boric_acid_on_the_male_reproductive_system_of_the_rat?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/20941985_Effect_of_acute_exposure_to_boric_acid_on_the_male_reproductive_system_of_the_rat?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/20941985_Effect_of_acute_exposure_to_boric_acid_on_the_male_reproductive_system_of_the_rat?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/41040003_Boron_removal_from_aqueous_solution_by_direct_contact_membrane_distillation?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/41040003_Boron_removal_from_aqueous_solution_by_direct_contact_membrane_distillation?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/41040003_Boron_removal_from_aqueous_solution_by_direct_contact_membrane_distillation?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/223930858_Removal_and_recovery_of_boron_from_geothermal_wastewater_by_selective_ion_exchange_resins_I_Laboratory_tests?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/223930858_Removal_and_recovery_of_boron_from_geothermal_wastewater_by_selective_ion_exchange_resins_I_Laboratory_tests?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/223930858_Removal_and_recovery_of_boron_from_geothermal_wastewater_by_selective_ion_exchange_resins_I_Laboratory_tests?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==http://-/?-http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024https://www.researchgate.net/publication/41040003_Boron_removal_from_aqueous_solution_by_direct_contact_membrane_distillation?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/223930858_Removal_and_recovery_of_boron_from_geothermal_wastewater_by_selective_ion_exchange_resins_I_Laboratory_tests?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/20941985_Effect_of_acute_exposure_to_boric_acid_on_the_male_reproductive_system_of_the_rat?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/6998762_Removal_of_boron_from_aqueous_solution_by_adsorption_on_Al2O3_based_materials_using_full_factorial_design?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://-/?-

  • 8/19/2019 Boron Removal and Recovery

    3/11

    2.2. Electrocoagulation setup

    The electrocoagulation setup consisted of a 500 mL beaker

    with six aluminium plate electrodes of size

    10 cm   1 cm    0.3 cm. Effects of different operating param-

    eters (pH, current density, initial boron concentration and

    treatment time) were investigated. The electrodes were con-

    nected to a digital DC supply characterized by the ranges of 0e3 A for current and 0e30 V for voltage. A digital ammeter-

    voltmeter was used to regulate the current and voltage.

    After each run of the experiments, the used aluminium elec-

    trodes were dipped in acetone solution for 10 min and rinsed

    with deionized water and dried for 10 min at 105   C to remove

    surface impurities before reuse. Samples were let stand for 2 h

    to allow concentration of flocs prior to analysis for boron.

    Boron concentration was analysed according to standard

    method using carmine reagent. All results are average of three

    analyses. Chemicals and reagents used were analytical grade

    (Merck).

    2.3. Adsorption kinetics

    Boron concentration for the adsorption study was varied in

    the range 10e30 mg/L using a 500 mL beaker. Current density

    12.5 mA/cm2, pH 7, temperature 308 K, and inter-electrode

    spacing 0.5 cm were kept constant. Supernatant was

    collected at different times and analyzed for residual boron

    concentration. The amount of boron adsorbed at equilibrium

    (qe) was calculated using the following equations:

    qe  ¼ ðC0   CeÞ V 

    W   (4)

    W ¼   ITMZF   (5)

    where  C0  is initial boron concentration (mg/L),  Ce  is equilib-

    rium boron concentration (mg/L), V  is volume of sample (L),  W 

    is mass of adsorbent (g), I is current (A), T is time (s), M is molar

    mass of electrode,  Z   is number of electrons involved in the

    redox reaction, and F is Faraday’s constant (C/mol).

    The suitability of both pseudo first order and pseudo sec-

    ond order kinetic models was further evaluated using the chi-

    square (c2) represented as follows (Sundaram et al., 2008):

    c2 ¼

    qexpe     qcale

    2

    qcale(6)

    where qexpe   is experimental adsorption capacity at equilibrium(mg/g), and  qcale   is calculated adsorption capacity at equilib-

    rium (mg/g).

    The   c2 test measures the goodness of fit between the

    experimental equilibrium adsorption capacity and the calcu-

    lated equilibrium adsorption capacity. The value of  c2 for the

    applicable model should be lowest. A good correlation coeffi-

    cient and a low  c2 indicate that the model is applicable.

    2.4. Adsorption thermodynamics

    Thermodynamic parameters which include free energy

    change (DG0), enthalpy of reaction (DH0) and entropy change

    (DS0) can be used to deduce the mechanism of a reaction.

    Observations were made at four different temperatures,

    controlled using a thermostatic warm water bath, to deter-

    mine these parameters. The thermodynamic constant was

    evaluated using the following equations (Shen et al., 2009):

    DG0 ¼ RTlnKc   (7)

    ln Kc  ¼

    DS0

    R  

    DH0

    RT   (8)

    where  Kc   is distribution coefficient,  R  is thermodynamic gas

    constant (8.314 J/mol.K), and  T  is temperature (K).

    2.5. Boron recovery with hydrothermal mineralisation(HM)

    The flocs produced during electrocoagulation were collected

    after settling. They were transferred into an evaporating dish

    and placed in the oven at room temperature for 24 h. Thedried

    flocs were kept in the desiccator for 20 min before grounded

    and 2 g of the flocs were accurately weighed to recover boron.

    40 mL of 3 M HNO3 was used to dissolve the flocs. The solutionwas placed in an orbital shaker for one hour at 150 rpm to

    enable complete dissolution. The pH of the solution was

    adjusted to pH 10 with 1 M NaOH and 0.3 g calcium hydroxide

    Ca(OH)2 was used as the mineralizer. Hydrothermal mineral-

    ization was conducted with a conventional oven for 2 h at

    120   C. Thereafter, the solvent was collected for boron anal-

    ysis and the precipitate was analysed using Simens diffrac-

    tometer (Model D5000) with graphite monochromated Cu Ka

    source operated at 40 kV and 40 mA. The XRD spectrum was

    obtained at scanning angles (2q) ranging from 5 to 150 and at

    scanning speed of 0.04 per second. The microstructure

    properties were analyzed with scanning electron microscope

    (SEM).

    3. Statistical methods and data analysis

    Response surface methodology was employed to determine

    the optimum levels of process parameters. RSM uses a

    collection of mathematical and statistical techniques to

    analyse the effects of several independent variables on the

    response. It is often used in process design, improvement and

    optimization. The methodology is practical as it employs

    experimental data and thus includes the interactive effects of 

    variables on the overall process performance. Box-Behnken

    design was established with the help of the Design Expert6.0.7 software for statistical design of experiment and data

    analysis. The four significant process variables (Yilmaz et al.,

    2008b) considered in this study were: pH (A), current density

    (B), initial boron concentration (C) and time (D) as shown in

    Table 2. Synthetic wastewater was used to determine the

    optimum treatment conditions. The total number of experi-

    ments in this study was 29 including five replicates at the

    centre point for the estimation of error. A second-order

    polynomial model (Equation   (8)), using Design Expert soft-

    ware, was fitted to the experimental data obtained according 

    to the Box-Behnken design; where Y is the response, Xi and X jare variables,   bo is a constant coefficient,   b j,   b jj   and   bij   are

    interaction coefficients of linear, quadratic and the second

    w a t e r r e s e a r c h 5 1 ( 2 0 1 4 ) 1 1 3 e1 2 3   115

    https://www.researchgate.net/publication/23445024_Kinetics_and_thermodynamics_of_sorption_of_nitroaromatic_compounds_to_as-grown_and_oxidized_multiwalled_carbon_nanotubes?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/23445024_Kinetics_and_thermodynamics_of_sorption_of_nitroaromatic_compounds_to_as-grown_and_oxidized_multiwalled_carbon_nanotubes?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==https://www.researchgate.net/publication/23445024_Kinetics_and_thermodynamics_of_sorption_of_nitroaromatic_compounds_to_as-grown_and_oxidized_multiwalled_carbon_nanotubes?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024https://www.researchgate.net/publication/23445024_Kinetics_and_thermodynamics_of_sorption_of_nitroaromatic_compounds_to_as-grown_and_oxidized_multiwalled_carbon_nanotubes?el=1_x_8&enrichId=rgreq-5082a3a3-ef35-4aaf-8b14-6a979260b59e&enrichSource=Y292ZXJQYWdlOzI1OTY5ODY2ODtBUzoxOTYzNjM2Nzg2ODcyNDVAMTQyMzgyODE1Nzc0OA==http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024

  • 8/19/2019 Boron Removal and Recovery

    4/11

    order terms respectively,   k  is the number of studied factors

    and ei is the error. The coded values of the process parameters

    in Eq.   (9)  could be determined by Eq.   (10)   where   Xi   is the

    dimensionless coded value of the ith independent variable,  xiis the uncoded value of the ith independent variable,  x0 is the

    uncoded value of the ith independent variable at the center

    point and  Dx is the step change value between low level (1)

    and high level (þ1) (Zhang et al., 2011).

    Y  ¼   b0 þXk

     j¼1

    b jX j   þXk

     j¼1

    b jjX2 j   þ

    XX

    i     F   <   0.0001) indicate that the

    model is significant. Values of Prob > F less than 0.05 indicate

    that the model terms are significant. ANOVA results for the

    response surface quadratic model are summarized in Table 5.Adequate precision compares the range of the predicted

    values at the design points to the mean prediction error. Its

    value greater than 4 is desirable and confirms the applicability

    of the model for navigation of the design space (Zinatizadeh

    et al., 2007). The adequate precision of 23.088, in the present

    case, shows that the model is acceptable. The   R2 value of 

    0.9769 is in reasonable agreement with the model adjusted  R2

    value of 0.9538 and predicted  R2 value of 0.8740. The agree-

    ment is desirable for a good fit of a model (Mohajeri et al.,

    2010). The R2 value shows that the process can explain about

    97% of the model output. A significant lack of fit suggests that

    there may be some systematic variation unaccounted for in

    the hypothesised model. The lack of fit in this study is not

    significant which is good for the model. In this study, A, B, C,D, A2, C2 are significant model terms. Insignificant model

    terms have limited influence on the model and were excluded.

    Based on the results, the response surface model constructed

    in this study for predicting boron removal efficiency was

    considered reasonable. The final regression model (second-

    order polynomial equation) in terms of coded factors is

    expressed in Equation (11):

    B removal% ¼ 72:90 þ 4:35A þ 12:54B 6:49C þ 9:85D

    33:53A2 þ 4:32C2 (11)

    The suitability of the selected model to provide adequate

    approximation of the real system is also confirmed by the

    diagnosticplots. Such plots include normalprobabilityplots of 

    the studentized residuals and the predicted versus actual

    Table 2 e  Independent variables of the Box-Behnkendesign.

    Level pH Current density(mA/cm2)

    Initial boronconcentration (mg/L)

    Treatmenttime (min)

    1 4 6.25 10 30

    0 7 12.5 20 60

    þ1 10 18.75 30 90

    Table 3 e  Response (boron removal) values for different experimental conditions.

    Run no. pH Currentdensity

    (mA/cm2)

    Initial boronconc. (mg/L)

    Treatmenttime (min)

    Boronremoval (%)

    1 10 6.25 20 60 26

    2 4 12.5 10 60 50

    3 7 12.5 30 30 55

    4 7 12.5 20 60 76

    5 7 18.75 20 90 94

    6 4 12.5 20 30 37.5

    7 7 12.5 20 60 74

    8 7 12.5 20 60 73

    9 7 18.75 20 30 68

    10 7 18.75 10 60 97

    11 7 12.5 30 90 82.7

    12 7 6.25 20 30 49.5

    13 4 12.5 20 90 50

    14 7 12.5 20 60 71.5

    15 10 12.5 20 30 26.5

    16 7 18.75 30 60 87.5

    17 7 6.25 30 60 52

    18 10 12.5 30 60 33.6

    19 10 12.5 20 90 44

    20 4 18.75 20 60 53

    21 7 12.5 10 90 98

    22 4 6.25 20 60 34

    23 7 6.25 10 60 67

    24 10 18.75 20 60 43.5

    25 7 6.25 20 90 64

    26 7 12.5 10 30 78

    27 7 12.5 20 60 70

    28 10 12.5 10 60 41

    29 4 12.5 30 60 42.3

    Table 4 e Analysis of variance result for significant modelterms.

    Sum of squares

    DF Mean square   F value Prob > F

    Boron

    removal

    A 227.07 1 227.07 11.13  

  • 8/19/2019 Boron Removal and Recovery

    5/11

    value plot. These plots are used to judge the adequacy of a

    model. Fig. 1 shows the normal probability plot for the stu-

    dentized residuals for boron removal. Studentized residuals

    represent normal probability plots where the residuals follow

    a normal distribution in which case the points will follow a

    straight line. Some scattering is expected even with normal

    data. It can be deduced from Fig. 1   that the data is evenly

    distributed. As shown in Fig. 2, the predicted and actual values

    are in good agreement.

    4.2. Boron removal efficiency

    The three dimensional (3D) response surface plots (Fig. 3) of 

    the quadratic model were generated by the Design Expert 6.0.7

    software and utilized to assess the interactive effect of the

    independent variables on the response. In  Fig. 3(a), the 3D

    response surface plot was developed as a function of initial pH

    and current density at initial boron concentration 10 mg/L and

    reaction time 90 min. From the plot, removal efficiency

    increased from pH 4 to 7 and decreased towards pH 10. Be-

    tween pH 7e8, removal efficiency was near constant. As

    mentioned by (Bayramoglu et al., 2004), at pH 4e8, Al3þ and

    OH ions generated by electrodes react to form various

    monomeric and polymeric species that finally transform intoinsoluble amorphous Al(OH)3  (s) through complex polymeri-

    sation. Above pH 10, the highly soluble monomeric AlðOHÞ4

    anion concentration increases at the expense of Al(OH)3   (s).

    However, the solubility of aluminum hydroxide is less at pH

    6e8 (Emamjomeh and Sivakumar, 2009). In the present work,

    the removal efficiency was highest (98%) at pH 7. Electro-

    coagulation acted as a pH neutralizer at alkaline pH in this

    study.At pH10, the finalpH (8.8) was observed tobe lower than

    the initial pH. However, at initial pH 4, the final pH (4.4) was

    observed to be higher than the initial pH. The increase in final

    pH at acidic condition has been attributed to the increase in

    hydrogen evolution at the cathode while the decrease in final

    pH at alkaline condition has been attributed to the generationof an alkalinity consumer (AlOH)4 (Vik et al., 1984).

    The collision between particles, release of coagulants and

    amount of coagulants generated at the electrode are

    controlled by the electric current. From Fig. 3(a), removal ef-

    ficiency increased when current density was increased. In-

    crease in current density reduced treatment time. However,

    ohmic heating at high current density increases sample

    temperature, therefore it may not be feasible to increase

    current density beyond 12.5 mA/cm2 in this study. In addition,

    energy consumption increases with increased potential. The

    optimum current density was observed as 12.5 mA/cm 2.

    In Fig. 3(b), the 3D response surface plot was developed as a

    function of initial boron concentration and time at currentdensity 10 mA/cm2 and initial pH 8. Increase in initial boron

    concentration was found to cause a decline in the removal

    efficiency. This can be attributedto thefactthatthe amount of 

    Table 5 e  ANOVA result for response surface quadratic model.

    Sum of squares DF Mean square   F value Prob > F

    Boron removal Model 12069.28 14 862.09 42.25  

  • 8/19/2019 Boron Removal and Recovery

    6/11

    metal ions generated at the same current density for a low

    boron concentration was insufficient for solutions of higher

    boron concentration. It can be seen from Fig. 3(b) that increase

    in time resulted in increase in removal efficiency, due to

    prolonged interaction between the coagulant (Al(OH)3)andthetarget constituent (boron).

    4.3. Optimization

    Numerical conditions optimization for boron removal was

    carried out using the Design Expert software. The desired goal

    for each operational condition (pH, initial boron concentra-

    tion, treatment time and current density) was chosen within

    the range while the response (boron removal) was defined as

    maximum to achieve the highest performance. The pro-

    gramme combines the individual desirabilities into a single

    number, and then searches to maximize this function. The

    model predicted boron removal efficiency of 99.7%

    corresponding to pH 6.3, current density 17.4 mA/cm2, initial

    boron concentration 10.4 mg/L, and reaction time 89 min;

    whereas a removal efficiency of 98% was obtained from the

    experiment. It is, therefore, evident that the model is

    adequate for prediction of boron removal using 

    electrocoagulation.

    4.4. Adsorption kinetics

    To understand the adsorption kinetics of boron using elec-

    trocoagulation, four different adsorption models were

    evaluated.

    4.4.1. Largegren pseudo first order kinetics

    The linearized form of pseudo first order equation is shown

    below (Boparai et al., 2011).

    log 

    qe qt

    ¼ log 

    qe

      k1t

    2:303  (12)

    where qe and  qt are the amount of boron adsorbed at equilib-

    rium (mg/g) on Al(OH)3 and at any time (t) respectively, and k1(min1) is the calculated pseudo first order rate constant of 

    adsorption.

    If the adsorption follows the pseudo first order kinetics, a

    plot of log (qe     qt) versus   t  should be linear.   qe  and   k1  are

    calculated from the intercept and slope of the plot of log 

    (qe qt) versus t respectively. As shown in Fig. 4, the data did

    not completely conform to a linear plot. The points deviated

    from the straight line. Though the correlation coefficient was

    high, the calculated equilibrium adsorption capacity   ðqcale   Þ

    deviated from the experimental equilibrium adsorption ca-

    pacity   ðqexpe   Þ  and the chi-square was high. This implies that

    the adsorption did not completely follow the pseudo first

    order kinetics. The kinetic constants of pseudo first order ki-netics is shown in Table 6.

    4.4.2. Pseudo second order kinetics

    The linearized form of the pseudo second order equation is

    represented below (Ho and McKay, 1998).

    t

    qt¼

      1k2q2e

    þ  t

    qe(13)

    Fig. 3 e  Three dimensional surface plots of boron removal.

    Fig. 4  e  First order kinetic plot of different concentrations.

    pH 7, current density 12.5 mA/cm2, Inter-electrode spacing

    0.5 cm.

    w a t e r r e s e a r c h 5 1 ( 2 0 1 4 ) 1 1 3 e1 2 3118

    http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024

  • 8/19/2019 Boron Removal and Recovery

    7/11

    where qe and  qt are the amount of boron adsorbed at equilib-

    rium (mg/g) on Al(OH)3 and at any time (t) respectively, and k2is the calculated pseudo second order rate constant of 

    adsorption.

    If the adsorption kinetics follows the pseudo second order,

    the plot of  t /qt versus t  should be linear. The  qe and  k2 can be

    calculated from the slope and intercept of plot of  t /qt versus t.

    As shown in Fig. 5, the plot of  t /qt versus  t  was linear for all

    concentrations studied. The correlation coefficient was high,

    the chi-square was very low and the calculated equilibrium

    adsorption capacity  ðqcale   Þ was in agreement with the experi-

    mental equilibrium adsorption capacity   ðqexpe   Þ. This implies

    that the adsorption of boron followed a second order kinetics

    as shown in Table 6.

    4.4.3. Intra-particle diffusion model

    The linearized form of intra-particle diffusion equation is

    represented below (Morris and Weber, 1963).

    qt  ¼ Kidt0:5 þ Ci   (14)

    where  Kid  (mg/g min0.5) is a measure of the diffusion coeffi-

    cient and Ci is the intra-particle diffusion constant (mg/g).

    If intra particle diffusion is the rate limiting step, a plot of 

    fraction of solute adsorbed against the squareroot of time(t0.5)

    should be linear, passing through the origin.   Kid  and   Ci  areobtained from the slope and intercept of the graph respec-

    tively. Ci is directly proportional to the boundary layer thick-

    ness. From the result (Figure not shown), the plot of  qt against

    (t0.5) was observed to be linear but did not pass through the

    origin. This could be due to the boundary layer effect. Addi-

    tionally, the values of  C i  (mg/g) for all boron concentrations

    studied were positive. Kid (mg/g min0.5) and Ci (mg/g) of plot of 

    qt vs t0.5 were found to increase when the initial concentration

    of boron was increased. This implies that intra particle

    diffusion may not be the only transport mechanism, rather

    there could be more than one mechanism involved in the

    transport of boron. The adsorption constants obtained for

    intra-particle diffusion are shown in Table 7.

    4.4.4. Elovich model

    The modified form of Elovich equation is represented as

    (Chien and Clayton, 1980).

    qt  ¼  1b

    lnðabÞ þ  1b

    lnðtÞ   (15)

    where  a  is the initial adsorption rate (mg/g min) and  b  is the

    desorption constant (g/mg) during any experiment.

    The Elovich model does not predict anyprecise mechanism

    but it is helpful in explaining predominantly, chemical

    adsorption on highly heterogeneous adsorbents (Gupta and

    Bhattacharyya, 2006). A plot of   qt  vs ln (t) should be linear.

    The adsorption and desorption constants are calculated from

    the slope and intercept of the plot of qt vsln(t). When data was

    fitted into the Elovich equation, the plot of  qt vs ln (t) gave a

    straight line (Figure not shown). The initial rate of adsorption

    as calculated from the slope was found to increase anddesorption constant as calculated from the intercept was

    observed to decrease as boron concentration was increased.

    The correlation coefficient was also high. Increase in rate of 

    adsorption and decrease in desorption constant as concen-

    tration increases implies that the process is chemisorption.

    The adsorption constant forElovich model is shown in Table 7.

    4.5. Adsorption thermodynamics

    The enthalpy change (DH0) and entropy (DS0) were calculated

    from the slope and intercept of the plot of ln   Kc  versus 1/T

    (Fig. 6). The thermodynamics constants obtained from the plot

    of ln Kc versus 1/T is shown in Table 8. As shown in the Table,the free energies were increasingly negative as temperature

    was increased. Negative free energies (DG0) indicate that the

    Table 6 e  Adsorption constants for first and second order kinetics.

    Co (mg/L)   qexpe   (mg/g) Pseudo-first order Pseudo-second order

    k1 (min  1)   qcale   (mg/g)   R

    2c

    2 k2 (g/mg min)   qcale   (mg.g)   R2

    c2

    10 6.09 0.078 4.45 0.918 0.62 0.017 6.80 0.998 0.08

    20 11.22 0.029 6.56 0.898 3.31 0.084 11.90 0.99 0.04

    30 16.68 0.037 14.06 0.957 0.49 0.037 17.86 0.989 0.08

    Fig. 5 e  Second order kinetic plot of different 

    concentrations. pH 7, current density 12.5 mA/cm2, inter-

    electrode spacing 0.5 cm.

    Table 7 e  Adsorption constants for Intra-ParticleDiffusion and Elovich model.

    Co(mg/L)

    Intra-particle diffusion Elovich model

    ki(mg/g min0.5)

    Ci(mg/g)

    R2 a (mg/g min)  b (g/mg)   R2

    10 0.36 3.132 0.97 1.06 1.55 0.98

    20 0.59 4.809 0.98 1.72 0.99 0.94

    30 1.28 5.017 0.98 3.77 0.499 0.97

    w a t e r r e s e a r c h 5 1 ( 2 0 1 4 ) 1 1 3 e1 2 3   119

    http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024

  • 8/19/2019 Boron Removal and Recovery

    8/11

    adsorption was spontaneous for the temperature range eval-

    uated and the degree of spontaneity of the reaction increases

    with increasing temperature (Li et al., 2010). The positive value

    of the standard enthalpy change (DH0 44.8 kJ/mol) implies that

    the adsorption process is endothermic. Values of enthalpy

    change less than 40 kJ/mol indicates that the process is

    physiosorption while values above 40 kJ/mol indicate a

    chemisorption process (Ma et al., 2011). Accordingly, in thepresent case, the process is chemisorption. The positive value

    of entropy change (DS0 125.04 J/mol) indicates increased

    randomness of the solution interface during the adsorption of 

    boron on the electrocoagulant Al(OH)3.

    4.6. Process advantages and operational cost

    Process evaluation and operational cost are two important

    indices which determine the implementation of a technique.

    In analysing these two indices, factors such as other treat-

    ment methods, environmental and health implications, elec-

    trical energy consumption, electrode consumption, use of 

    chemicals and sludge disposal are considered. One compari-son of interest to this study is chemical coagulation which

    follows the same pollutant removal mechanism as electro-

    coagulation. Their major difference is the mode of introduc-

    tion of coagulants. Whereas coagulants are continuously

    generated over an extended area of the anode material in

    electrocoagulation, point addition of coagulants is done with

    chemical coagulation. The freshly precipitated flocs generated

    in electrocoagulation are more effectively dispersed resulting 

    in increased adsorptive removal of pollutants (Zhu et al.,

    2005). In terms of floc separation, chemical coagulation is

    associated with settling and electrocoagulation is charac-

    terised by both settling and flotation due to air bubbles

    released at the cathode (Holt et al., 2002). During electro-coagulation, the smallest colloidal particles have a higher

    probability of coagulation because the electric field sets them

    in motion and produces a relatively low amount of sludge

    compared to chemical coagulation (Pouet and Grasmick,

    1995). Additionally, secondary pollution is mitigated by elec-

    trocoagulation because the rate of generation of coagulants is

    regulated by the voltage and current while secondary pollu-

    tion may occur at high chemical addition using chemical

    coagulation (Yildiz et al., 2008). Electrocoagulation sludge is

    readily settleable and easy to de-water since it is composed of 

    mainly metallic oxides/hydroxide and its flocs tend to be

    much larger, contain less bound water, have acid resistant

    capacity, are more stable and are easily separated by filtration

    (Avsar et al., 2007). Chemical coagulation is highly sensitive to

    pH change with effective coagulation at pH 6e7 while elec-

    trocoagulation has a pH neutralization effect in a much wide

    pH range (4e9). In literature, comparative reports favour

    electrocoagulation over chemical coagulation (Avsar et al.,

    2007; Zhu et al., 2005).The overall cost was investigated to determine the feasi-

    bility of electrocoagulation compared to other processes. In

    evaluating the overall cost, the following equation was used

    (Olmez-Hanci et al.).

    OPCost ¼ a Cenergy þ b Celectrode þ c Csludge   (16)

    where

    Cenergy  and   Celectrode are amount of consumed electricity

    (kWh/m3) and amount of consumed electrode material (kg 

    electrode/m3) respectively.   Csludge   (kg/m3) is the amount of 

    sludge generated during electrocoagulation. Unit prices used

    in this study (for Malaysia market) were expressed as (a) unit

    prices for electrical energy 35 cents Malaysia Ringgits (MYR)/

    kWh (Tenaga National Malaysia, 2013), (b) unit price for elec-

    trode material (Bayramoglu et al., 2004) ($1.8; current ex-

    change in MYR) RM 5.8/kg (c) Cost associated with sludge

    handling and disposal 50 cents MYR/kg (MIDA, 2013).

    The electrical energy consumption (Cenergy) is an important

    parameter which defines the energy usedup fora process. The

    electrical energy consumptions at a constant potential of 2 V

    was 1.2 kWh/m3, 2.4 kWh/m3 and 3.6 kWh/m3 for 6.25 mA/

    cm2, 12.5 mA/cm2 and 18.75 mA/cm2 respectively as calcu-

    lated using the equation below. Increase in current density

    increased the electrical energy consumption and also

    increased the overall cost.

    ECC ¼IUT

    V   (17)

    where

    ECC   ¼   energy consumption (kWh/m3);   I   ¼   current (A);

    U ¼ voltage (V); T ¼ time (h); V  ¼ volume (L)

    The aluminum electrode consumption (AI consumption)

    with a unit of (g Al/g of Boron) removed was investigated using 

    the Faraday law as expressed below. The electrode con-

    sumption increasedfrom 0.4 g Al/g at 6.25 mA/cm2 to0.81 g Al/

    g at 12.5 mA/cm2. At 18.75 mA/cm2, there was further increase

    in aluminum electrode consumption to 1.22 g Al/g making 

    current density and the corresponding voltages important

    controls of operational cost.

    Fig. 6  e  ln  Kc vs 1/ T   (K); pH 7, initial boron concentration

    20 mg/L, current density 12.5 mA/cm2, inter-electrode

    spacing 0.5 cm.

    Table 8 e  Thermodynamic constants for boronadsorption.

    Temperature (K)   Kc   DG

    (kJ/mol)DH

    (kJ/mol)DS (J/mol.K)

    298 3.60   3.18

    308 6.16   4.66 44.8 125.04

    318 8.75   5.73

    328 12.86   6.96

    w a t e r r e s e a r c h 5 1 ( 2 0 1 4 ) 1 1 3 e1 2 3120

    http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024

  • 8/19/2019 Boron Removal and Recovery

    9/11

    Al consumption ¼  ItM

    ZFW   (18)

    where

    I   ¼   current in amperes (A);   t   ¼   time (s);   M   ¼   molecular

    weight of the electrode material (Aluminum 26.98);

    Z   ¼   number of electrons involved in the redox reaction

    (zAl ¼ 3);  F  ¼  Faraday constant (96,500 C/mol);  W  ¼  weight of 

    treated wastewater (g).

    The amount of sludge generated at 6.25 mA/cm 2, 12.5 mA/

    cm2 and 18.75 mA/cm2 was 0.037 kg, 0.029 kg and 0.021 kg 

    respectively. Sludge generation is influenced by electric

    charge. The unit cost of NaOH (50%) and H 2SO4 (98%) used in

    this study was about 0.018 cents MYR/kg. 0.3e0.5 ml of 1 M

    NaOH and H2SO4 was used to control the pH of each experi-

    ment. The operational cost for the removal of boron in this

    study at optimum conditions is RM 0.88/m3 as depicted in

    Table 9. Electrical energy consumption was the largest

    contributor to the total operational cost for boron removal.

    The unit cost for the electrodialytic treatment of boron

    containing wastewater was estimated at $1.27/m3 for a two-

    step process removing boron and salinity (Turek et al., 2007)

    and MYR 6.33/m3 for adsorption-flocculation (Chong et al.,

    2009). With an operational cost of MYR 0.88/m3 at optimum

    condition, electrocoagulation has comparative advantage in

    terms of cost over some boron removal processes.

    In large installations, the operation is feasible using an

    electrocoagulation reactor equipped with a secondary sedi-

    mentation tank. Installation of parallel perforated rhombus

    shaped electrode materials into the reactor will enhance

    movement of metal ions, improve coagulation, reduce the

    number of electrodes, improve hydrogen bubble generation

    and increase floatation of formed flocs. However, residual

    aluminum concentration should be controlled by operating at

    low electric potential and current. This could increase treat-

    ment time but will not affect operational cost because the

    increased time is compensated by the low electrical energy

    consumption (kWh/m3) and electrode consumption.

    4.7. Boron recovery

    Real produced water containing 15 mg/L boron was used for

    this phase of the study. Electrocoagulation treatment of the

    produced water at pH 7, current density 12.5 mA/cm 2, and

    reaction time 90 min yielded a boron removal efficiency of 

    98%. The flocs thus produced were studied for boron recovery.

    The electrocoagulation flocs were characterized with X-rayfluorescence (XRF) and analysed with X-ray diffractogramme

    (XRD) and Scanning Electron Microscope (SEM) during the

    recovery of boron as a recyclable precipitate. The chemical

    composition of the flocs was obtained to be 2.9% B2O3, 1.3%

    Al2O3, 1.09% Fe2O3, 14.3% CaO, 19.2% MgO, 28.4% NaO, 6.4%

    SiO2, 2.4% K2O, and 24.01% loss on ignition. After hydrother-

    mal mineralization of EC flocs, the results show about 1.1 mg/

    L residue boron concentration indicating about 91.4% recov-

    ery. The SEM analysis of the obtained precipitates showed a

    fibrous root like structure on an irregular beam shape base-

    ment as depicted in Fig. 7.

    XRD investigation of the fibrous root like structure on an

    irregular beam shape basement is shown in Fig. 8. The graph

    showed a bragg reflections possessing broad humps and low

    intensity which indicates that the analyzed phase is a shortrange i.e. more amorphous and little crystalline. The chemical

    speciation of this amorphous phase can be aluminum hy-

    droxide or aluminum oxyhydroxide. This is suspected

    because crystallization of Al hydroxides or oxyhydroxides is a

    very slow process. It is reported that most Al hydroxides and

    Al oxyhydroxides are found to be either poorly crystalline or

    amorphous (Dixon and Weed, 1989).

    Using Eva DiffraPlus indexing software in combination with

    ICDD (International Center for Diffraction Data) database,

    Nifontovite (Ca3B6O6(OH)12$2(H2O), Inyoite

    (CaB3O3(OH)5$4H2O) and Takedaite (Ca3B2O6$2H2O) were

    identified in the flocs. The three identified compounds are

    hydrated calcium borate minerals. From the XRD shown inFig. 8, it can be concluded that Nifontovite could be the fibrous

    root like structure identified from the SEM result while Inyoite

    and Takadaite could be the irregular beam shape basement.

    Table 9 e  Operational cost analysis for electrocoagulation.

    Item Operational parameter values Cost (MYR/m3)

    6.25 mA/cm2 12.5 mA/cm2 18.75 mA/cm2 6.25 mA/cm2 12.5 mA/cm2 18.75 mA/cm2

    Energy consumption 1.2 kWh/m3 2.4 kWh/m3 3.6 kWh/m3 0.42 0.84 1.26

    Electrode plate consumption 0.4 g Al/g 0.81 g Al/g 1.22 g Al/g 0.0024 0.0049 0.0073

    Chemicals 10 ml 10 ml 10 ml 0.018 0.018 0.018

    Sludge disposal 0.037 kg 0.029 kg 0.021 kg 0.006 0.014 0.019

    Total 0.45 0.88 1.3

    Fig. 7  e  SEM result for floc precipitate after hydrothermal

    mineralization at 120 C, 2 h, 0.3 g Ca (OH)2, 2 g

    electrochemical coagulation flocs, pH 10.

    w a t e r r e s e a r c h 5 1 ( 2 0 1 4 ) 1 1 3 e1 2 3   121

    http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024

  • 8/19/2019 Boron Removal and Recovery

    10/11

    The amorphous and poor crystalline nature of aluminiumflocs has been reported in literature. It is reported that

    aluminum produces poor crystalline precipitates in the pres-

    ence of natural organic matter (Masion et al., 1994). This could

    be the reason why the XRD result is more amorphous since

    produced water contains high concentration of organic

    compounds.

    5. Conclusions

    Presence of boron in produced water is one of the reasons that

    hinder its reuse for purposes such as irrigation and drinking.

    The electrochemical technique employed in this study wasable to reduce boron concentration to below the WHO

    permissible level of 2.4 mg/L. Response surface methodology

    was successfully applied to optimise boron removal from

    aqueous solution. At optimal operating conditions of pH 7,

    current density 12.5 mA/cm2, inter-electrode spacing 0.5 cm,

    and treatment time 90 min, 98% removal of boron from pro-

    duced water was achieved. The adsorption of boron followed

    the pseudo second order rate kinetics. The thermodynamics

    study revealed that the adsorption is chemisorption and

    endothermic. The adsorption process showed an increased

    dispersal of particles in the solution and the adsorption was

    spontaneous. Attempt to recover boron as a recyclable pre-

    cipitate from electrocoagulation flocs revealed that Inyoite,Takedaite and Nifontovite can be recovered through hydro-

    thermal mineralization of the electrocoagulation flocs. How-

    ever, selective recovery of individual boron compounds from a

    mixture of produced water electrocoagulation flocs, duration

    of flocs settling, and flocs homogeneity is still a subject of 

    further investigation.

    Acknowledgement 

    This work was funded by Deanship of Scientific Research

    (DSR), King Abdulaziz University (KAU), Jeddah, under

    research grant (no. 135-006-D1434) and Universiti Teknologi

    PETRONAS (UTP), for graduate assistantship to the second

    author. The authors, therefore, acknowledge with thanks for

    the technical and financial support of DSR, KAU and UTP.

    r e f e r e n c e s

    Avsar, Y., Kurt, U., Gonullu, T., 2007. Comparison of classicalchemical and electrochemical processes for treating roseprocessing wastewater. J. Hazar. Mater 148 (1e2), 340e345.

    Babu, R.R., Bhadrinarayana, N.S., Sheriffa Begum, K.M.M.,Anantharaman, N., 2007. Treatment of tannery wastewater byelectrocoagulation. J. Environ. Sci. (China) 19 (12), 1409e1415.

    Balasubramanian, N., Kojima, T., Srinivasakannan, C., 2009.Arsenic removal through electrocoagulation: kinetic andstatistical modeling. Chem. Eng. J. 155 (1e2), 76e82.

    Bayramoglu, M., Kobya, M., Can, O.T., Sozbir, M., 2004. Operating cost analysis of electrocoagulation of textile dye wastewater.Separ. Purif. Technol. 37 (2), 117e125.

    Boparai, H.K., Joseph, M., O’Carroll, D.M., 2011. Kinetics andthermodynamics of cadmium ion removal by adsorption

    onto nano zerovalent iron particles. J. Hazar Mat. 186 (1),458e465.

    Chien, S.H., Clayton, W.R., 1980. Application of Elovich equationto the kinetics of phosphate release and sorption in Soils1. SoilSci. Soc. Am. J. 44 (2), 265e268.

    Chong, M.F., Lee, K.P., Chieng, H.J., Syazwani Binti Ramli, I.I., 2009.Removal of boron from ceramic industry wastewater byadsorption “flocculation mechanism using palm oil mill boiler(POMB) bottom ash and polymer”. Water Res. 43 (13),3326e3334.

    Dixon, J.B., Weed, S.B., 1989. Soil Science Society of America Inc.(SSSA).

    Emamjomeh, M.M., Sivakumar, M., 2009. Review of pollutantsremoved by electrocoagulation and electrocoagulation/flotation processes. J. Environ. Manag. 90 (5), 1663e1679.

    Ezechi, E.H., Isa, M.H., Kutty, S.R.M., 2012a. Boron in producedwater: challenges and improvements: a comprehensivereview. J. Appl. Sci. 12 (5), 402e415.

    Ezechi, E.H., Isa, M.H., Kutty, S.R.M., 2010b. Removal of boronfrom produced water by electrocoagulation. In: 10th WSEASInternational Conference on Environment, Ecosystems andDevelopment (EED’12), Switzerland.

    Fakhruâul-Razi, A., Pendashteh, A., Abdullah, L.C., Biak, D.R.A.,Madaeni, S.S., Abidin, Z.Z., 2009. Review of technologies for oiland gas produced water treatment. J. Hazar. Mater 170 (2â V“3),530e551.

    Ghosh, D., Solanki, H., Purkait, M.K., 2008. Removal of Fe(II) fromtap water by electrocoagulation technique. J. Hazard Mater 155(1), 135e143.

    Gupta, S.S., Bhattacharyya, K.G., 2006. Adsorption of Ni(II) on

    clays. J. Colloid Interface Sci. 295 (1), 21e32.Ho, Y.S., McKay, G., 1998. A comparison of chemisorption kinetic

    models applied to pollutant removal on various sorbents. Proc.Saf. Environ. Prot. 76 (4), 332e340.

    Holt, P.K., Barton, G.W., Wark, M., Mitchell, C.A., 2002. Aquantitative comparison between chemical dosing andelectrocoagulation. Coll. Surf. Physico. Eng. Asp. 211 (2e3),233e248.

    Hou, D., Wang, J., Sun, X., Luan, Z., Zhao, C., Ren, X., 2010. Boronremoval from aqueous solution by direct contact membranedistillation. J. Hazard Mater 177 (1e3), 613e619.

    Kabay, N., Yilmaz, I., Yamac, S., Samatya, S., Yuksel, M.,Yuksel, U., Arda, M., Saglam, M., Iwanaga, T., Hirowatari, K.,2004. Removal and recovery of boron from geothermalwastewater by selective ion exchange resins. I. Laboratory

    tests. React. Funct. Poly. 60 (0), 163e170.

    Fig. 8  e  XRD pattern after hydrothermal mineralization at 

    120 C, 2 h, 0.3 g Ca (OH)2, 2 g electrochemical coagulation

    flocs, pH 10.

    w a t e r r e s e a r c h 5 1 ( 2 0 1 4 ) 1 1 3 e1 2 3122

    http://refhub.elsevier.com/S0043-1354(13)01023-3/sref1http://refhub.elsevier.com/S0043-1354(13)01023-3/sref1http://refhub.elsevier.com/S0043-1354(13)01023-3/sref1http://refhub.elsevier.com/S0043-1354(13)01023-3/sref1http://refhub.elsevier.com/S0043-1354(13)01023-3/sref1http://refhub.elsevier.com/S0043-1354(13)01023-3/sref2http://refhub.elsevier.com/S0043-1354(13)01023-3/sref2http://refhub.elsevier.com/S0043-1354(13)01023-3/sref2http://refhub.elsevier.com/S0043-1354(13)01023-3/sref2http://refhub.elsevier.com/S0043-1354(13)01023-3/sref3http://refhub.elsevier.com/S0043-1354(13)01023-3/sref3http://refhub.elsevier.com/S0043-1354(13)01023-3/sref3http://refhub.elsevier.com/S0043-1354(13)01023-3/sref3http://refhub.elsevier.com/S0043-1354(13)01023-3/sref3http://refhub.elsevier.com/S0043-1354(13)01023-3/sref4http://refhub.elsevier.com/S0043-1354(13)01023-3/sref4http://refhub.elsevier.com/S0043-1354(13)01023-3/sref4http://refhub.elsevier.com/S0043-1354(13)01023-3/sref4http://refhub.elsevier.com/S0043-1354(13)01023-3/sref5http://refhub.elsevier.com/S0043-1354(13)01023-3/sref5http://refhub.elsevier.com/S0043-1354(13)01023-3/sref5http://refhub.elsevier.com/S0043-1354(13)01023-3/sref5http://refhub.elsevier.com/S0043-1354(13)01023-3/sref5http://refhub.elsevier.com/S0043-1354(13)01023-3/sref6http://refhub.elsevier.com/S0043-1354(13)01023-3/sref6http://refhub.elsevier.com/S0043-1354(13)01023-3/sref6http://refhub.elsevier.com/S0043-1354(13)01023-3/sref6http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref8http://refhub.elsevier.com/S0043-1354(13)01023-3/sref8http://refhub.elsevier.com/S0043-1354(13)01023-3/sref8http://refhub.elsevier.com/S0043-1354(13)01023-3/sref8http://refhub.elsevier.com/S0043-1354(13)01023-3/sref9http://refhub.elsevier.com/S0043-1354(13)01023-3/sref9http://refhub.elsevier.com/S0043-1354(13)01023-3/sref9http://refhub.elsevier.com/S0043-1354(13)01023-3/sref9http://refhub.elsevier.com/S0043-1354(13)01023-3/sref10http://refhub.elsevier.com/S0043-1354(13)01023-3/sref10http://refhub.elsevier.com/S0043-1354(13)01023-3/sref10http://refhub.elsevier.com/S0043-1354(13)01023-3/sref10http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref12http://refhub.elsevier.com/S0043-1354(13)01023-3/sref12http://refhub.elsevier.com/S0043-1354(13)01023-3/sref12http://refhub.elsevier.com/S0043-1354(13)01023-3/sref12http://refhub.elsevier.com/S0043-1354(13)01023-3/sref13http://refhub.elsevier.com/S0043-1354(13)01023-3/sref13http://refhub.elsevier.com/S0043-1354(13)01023-3/sref13http://refhub.elsevier.com/S0043-1354(13)01023-3/sref14http://refhub.elsevier.com/S0043-1354(13)01023-3/sref14http://refhub.elsevier.com/S0043-1354(13)01023-3/sref14http://refhub.elsevier.com/S0043-1354(13)01023-3/sref14http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref16http://refhub.elsevier.com/S0043-1354(13)01023-3/sref16http://refhub.elsevier.com/S0043-1354(13)01023-3/sref16http://refhub.elsevier.com/S0043-1354(13)01023-3/sref16http://refhub.elsevier.com/S0043-1354(13)01023-3/sref16http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref17http://refhub.elsevier.com/S0043-1354(13)01023-3/sref16http://refhub.elsevier.com/S0043-1354(13)01023-3/sref16http://refhub.elsevier.com/S0043-1354(13)01023-3/sref16http://refhub.elsevier.com/S0043-1354(13)01023-3/sref16http://refhub.elsevier.com/S0043-1354(13)01023-3/sref16http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref15http://refhub.elsevier.com/S0043-1354(13)01023-3/sref14http://refhub.elsevier.com/S0043-1354(13)01023-3/sref14http://refhub.elsevier.com/S0043-1354(13)01023-3/sref14http://refhub.elsevier.com/S0043-1354(13)01023-3/sref14http://refhub.elsevier.com/S0043-1354(13)01023-3/sref13http://refhub.elsevier.com/S0043-1354(13)01023-3/sref13http://refhub.elsevier.com/S0043-1354(13)01023-3/sref13http://refhub.elsevier.com/S0043-1354(13)01023-3/sref12http://refhub.elsevier.com/S0043-1354(13)01023-3/sref12http://refhub.elsevier.com/S0043-1354(13)01023-3/sref12http://refhub.elsevier.com/S0043-1354(13)01023-3/sref12http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref11http://refhub.elsevier.com/S0043-1354(13)01023-3/sref10http://refhub.elsevier.com/S0043-1354(13)01023-3/sref10http://refhub.elsevier.com/S0043-1354(13)01023-3/sref10http://refhub.elsevier.com/S0043-1354(13)01023-3/sref10http://refhub.elsevier.com/S0043-1354(13)01023-3/sref9http://refhub.elsevier.com/S0043-1354(13)01023-3/sref9http://refhub.elsevier.com/S0043-1354(13)01023-3/sref9http://refhub.elsevier.com/S0043-1354(13)01023-3/sref9http://refhub.elsevier.com/S0043-1354(13)01023-3/sref8http://refhub.elsevier.com/S0043-1354(13)01023-3/sref8http://refhub.elsevier.com/S0043-1354(13)01023-3/sref8http://refhub.elsevier.com/S0043-1354(13)01023-3/sref8http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref7http://refhub.elsevier.com/S0043-1354(13)01023-3/sref6http://refhub.elsevier.com/S0043-1354(13)01023-3/sref6http://refhub.elsevier.com/S0043-1354(13)01023-3/sref6http://refhub.elsevier.com/S0043-1354(13)01023-3/sref6http://refhub.elsevier.com/S0043-1354(13)01023-3/sref5http://refhub.elsevier.com/S0043-1354(13)01023-3/sref5http://refhub.elsevier.com/S0043-1354(13)01023-3/sref5http://refhub.elsevier.com/S0043-1354(13)01023-3/sref5http://refhub.elsevier.com/S0043-1354(13)01023-3/sref5http://refhub.elsevier.com/S0043-1354(13)01023-3/sref4http://refhub.elsevier.com/S0043-1354(13)01023-3/sref4http://refhub.elsevier.com/S0043-1354(13)01023-3/sref4http://refhub.elsevier.com/S0043-1354(13)01023-3/sref4http://refhub.elsevier.com/S0043-1354(13)01023-3/sref3http://refhub.elsevier.com/S0043-1354(13)01023-3/sref3http://refhub.elsevier.com/S0043-1354(13)01023-3/sref3http://refhub.elsevier.com/S0043-1354(13)01023-3/sref3http://refhub.elsevier.com/S0043-1354(13)01023-3/sref3http://refhub.elsevier.com/S0043-1354(13)01023-3/sref2http://refhub.elsevier.com/S0043-1354(13)01023-3/sref2http://refhub.elsevier.com/S0043-1354(13)01023-3/sref2http://refhub.elsevier.com/S0043-1354(13)01023-3/sref2http://refhub.elsevier.com/S0043-1354(13)01023-3/sref1http://refhub.elsevier.com/S0043-1354(13)01023-3/sref1http://refhub.elsevier.com/S0043-1354(13)01023-3/sref1http://refhub.elsevier.com/S0043-1354(13)01023-3/sref1http://refhub.elsevier.com/S0043-1354(13)01023-3/sref1

  • 8/19/2019 Boron Removal and Recovery

    11/11

    Li, Q., Yue, Q.-Y., Su, Y., Gao, B.-Y., Sun, H.-J., 2010. Equilibrium,thermodynamics and process design to minimize adsorbentamount for the adsorption of acid dyes onto cationic polymer-loaded bentonite. Chem. Eng. J. 158 (3), 489e497.

    Linder, R.E., Strader, L.F., Rehnberg, G.L., 1990. Effect of acuteexposure to boric acid on the male reproductive system of therat. J. Toxicol. Environ. Health 31 (2), 133e146.

    Ma, J., Jia, Y., Jing, Y., Yao, Y., Sun, J., 2011. Kinetics and

    thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dyes Pigments 93 (1e3), 1441e1446.

    Malakootian, M., Yousefi, N., 2009. The efficiency of electrocoagulation process using aluminum electrodes inremoval of hardness from water. Iran. J. Environ. Health Sci.Eng. 6 (2), 131e136.

    Masion, A., Thomas, F., Tchoubar, D., Bottero, J.Y., Tekely, P.,1994. Chemistry and structure of Al(OH)/Organic precipitates.A small-Angle x-ray scattering study. 3. Depolymerization of the Al13 polycation by organic ligands. Langmuir 10 (11),4353e4356.

    Malaysian Investment Development Authority (MIDA), 2013.Scheduled Waste Treatment Rates. Available: http://www.mida.gov.my/env3/index.php?page¼scheduled-waste-treatment-rates.

    Mohajeri, L., Aziz, H.A., Isa, M.H., Zahed, M.A., 2010. A statisticalexperiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments. Biores. Technol. 101(3), 893e900.

    Morris, W., Weber, W., 1963. Kinetics of adsorption on carbonfrom solution. J. Sanit. Eng. Div. 89 (2), 31e60.

    Olmez-Hanci, T., Kartal, Z., Arslan-Alaton, I. Electrocoagulation of commercial naphthalene sulfonates: process optimizationand assessment of implementation potential. J. Environ.Manag. 99(0), 44e51.

    Pouet, M.F., Grasmick, A., 1995. Urban wastewater treatment byelectrocoagulation and flotation. Water Sci. Technol. 31 (3e4),275e283.

    Seki, Y., Seyhan, S., Yurdakoc, M., 2006. Removal of boron fromaqueous solution by adsorption on Al2O3 based materials

    using full factorial design. J. Hazard Mater 138 (1), 60e66.Shen, X.E., Shan, X.Q., Dong, D.M., Hua, X.Y., Owens, G., 2009.

    Kinetics and thermodynamics of sorption of nitroaromatic

    compounds to as-grown and oxidized multiwalled carbonnanotubes. J. Colloid Interface Sci. 330 (1), 1e8.

    Sundaram, C.S., Viswanathan, N., Meenakshi, S., 2008.Defluoridation chemistry of synthetic hydroxyapatite at nanoscale: equilibrium and kinetic studies. J. Hazard Mater 155(1e2), 206e215.

    Tenaga National Malaysia, 2013. Pricing and Tariff for Electricity.Turek, M., Dydo, P., Trojanowska, J., Bandura, B., 2007.

    Electrodialytic treatment of boron-containing wastewater.Desalination 205 (1e3), 185e191.

    Vik, E.A., Carlson, D.A., Eikum, A.S., Gjessing, E.T., 1984.Electrocoagulation of potable water. Water Res. 18 (11),1355e1360.

    World Health Organization (WHO), 2011. Guidelines for Drinking-water Quality. Available: http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf .

    Yildiz, Y.I., Koparal, A.S., Keskinler, B., 2008. Effect of initial pHand supporting electrolyte on the treatment of watercontaining high concentration of humic substances byelectrocoagulation. Chem. Eng. J. 138 (1e3), 63e72.

    Yilmaz, A.E., Boncukcuog lu, R., KocakerUm, M.M.,Kocadag istan, E., 2008a. An empirical model for kinetics of boron removal from boron containing wastewaters by the

    electrocoagulation method in a batch reactor. Desalination230 (1e3), 288e297.

    Yilmaz, A.E., Boncukcuoglu, R., Kocakerim, M.M., Yilmaz, M.T.,Paluluoglu, C., 2008b. Boron removal from geothermal watersby electrocoagulation. J. Hazard Mater 153 (1e2), 146e151.

    Zhang, H., Ran, X., Wu, X., Zhang, D., 2011. Evaluation of electro-oxidation of biologically treated landfill leachate using response surface methodology. J. Hazard Mater 188 (1e3),261e268.

    Zhu, B., Clifford, D.A., Chellam, S., 2005. Comparison of electrocoagulation and chemical coagulation pretreatment forenhanced virus removal using microfiltration membranes.Water Res. 39 (13), 3098e3108.

    Zinatizadeh, A.A.L., Mohamed, A.R., Mashitah, M.D.,Abdullah, A.Z., Isa, M.H., 2007. Optimization of pre-treated

    palm oil mill effluent digestion in an up-flow anaerobic sludgefixed film bioreactor: a comparative study. Biochem. Eng. J. 35(2), 226e237.

    w a t e r r e s e a r c h 5 1 ( 2 0 1 4 ) 1 1 3 e1 2 3   123

    All i t t f d li d i bl li k d t bli ti R hG t l tti d d th i di t l

    http://refhub.elsevier.com/S0043-1354(13)01023-3/sref18http://refhub.elsevier.com/S0043-1354(13)01023-3/sref18http://refhub.elsevier.com/S0043-1354(13)01023-3/sref18http://refhub.elsevier.com/S0043-1354(13)01023-3/sref18http://refhub.elsevier.com/S0043-1354(13)01023-3/sref18http://refhub.elsevier.com/S0043-1354(13)01023-3/sref19http://refhub.elsevier.com/S0043-1354(13)01023-3/sref19http://refhub.elsevier.com/S0043-1354(13)01023-3/sref19http://refhub.elsevier.com/S0043-1354(13)01023-3/sref19http://refhub.elsevier.com/S0043-1354(13)01023-3/sref20http://refhub.elsevier.com/S0043-1354(13)01023-3/sref20http://refhub.elsevier.com/S0043-1354(13)01023-3/sref20http://refhub.elsevier.com/S0043-1354(13)01023-3/sref20http://refhub.elsevier.com/S0043-1354(13)01023-3/sref20http://refhub.elsevier.com/S0043-1354(13)01023-3/sref21http://refhub.elsevier.com/S0043-1354(13)01023-3/sref21http://refhub.elsevier.com/S0043-1354(13)01023-3/sref21http://refhub.elsevier.com/S0043-1354(13)01023-3/sref21http://refhub.elsevier.com/S0043-1354(13)01023-3/sref21http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://www.mida.gov.my/env3/index.php?page=scheduled-waste-treatment-rateshttp://www.mida.gov.my/env3/index.php?page=scheduled-waste-treatment-rateshttp://www.mida.gov.my/env3/index.php?page=scheduled-waste-treatment-rateshttp://www.mida.gov.my/env3/index.php?page=scheduled-waste-treatment-rateshttp://refhub.elsevier.com/S0043-1354(13)01023-3/sref24http://refhub.elsevier.com/S0043-1354(13)01023-3/sref24http://refhub.elsevier.com/S0043-1354(13)01023-3/sref24http://refhub.elsevier.com/S0043-1354(13)01023-3/sref24http://refhub.elsevier.com/S0043-1354(13)01023-3/sref24http://refhub.elsevier.com/S0043-1354(13)01023-3/sref25http://refhub.elsevier.com/S0043-1354(13)01023-3/sref25http://refhub.elsevier.com/S0043-1354(13)01023-3/sref25http://refhub.elsevier.com/S0043-1354(13)01023-3/sref26http://refhub.elsevier.com/S0043-1354(13)01023-3/sref26http://refhub.elsevier.com/S0043-1354(13)01023-3/sref26http://refhub.elsevier.com/S0043-1354(13)01023-3/sref26http://refhub.elsevier.com/S0043-1354(13)01023-3/sref26http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref28http://refhub.elsevier.com/S0043-1354(13)01023-3/sref28http://refhub.elsevier.com/S0043-1354(13)01023-3/sref28http://refhub.elsevier.com/S0043-1354(13)01023-3/sref28http://refhub.elsevier.com/S0043-1354(13)01023-3/sref28http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref30http://refhub.elsevier.com/S0043-1354(13)01023-3/sref31http://refhub.elsevier.com/S0043-1354(13)01023-3/sref31http://refhub.elsevier.com/S0043-1354(13)01023-3/sref31http://refhub.elsevier.com/S0043-1354(13)01023-3/sref31http://refhub.elsevier.com/S0043-1354(13)01023-3/sref31http://refhub.elsevier.com/S0043-1354(13)01023-3/sref32http://refhub.elsevier.com/S0043-1354(13)01023-3/sref32http://refhub.elsevier.com/S0043-1354(13)01023-3/sref32http://refhub.elsevier.com/S0043-1354(13)01023-3/sref32http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdfhttp://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdfhttp://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref36http://refhub.elsevier.com/S0043-1354(13)01023-3/sref36http://refhub.elsevier.com/S0043-1354(13)01023-3/sref36http://refhub.elsevier.com/S0043-1354(13)01023-3/sref36http://refhub.elsevier.com/S0043-1354(13)01023-3/sref36http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref38http://refhub.elsevier.com/S0043-1354(13)01023-3/sref38http://refhub.elsevier.com/S0043-1354(13)01023-3/sref38http://refhub.elsevier.com/S0043-1354(13)01023-3/sref38http://refhub.elsevier.com/S0043-1354(13)01023-3/sref38http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://dx.doi.org/10.1016/j.watres.2013.12.024http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref39http://refhub.elsevier.com/S0043-1354(13)01023-3/sref38http://refhub.elsevier.com/S0043-1354(13)01023-3/sref38http://refhub.elsevier.com/S0043-1354(13)01023-3/sref38http://refhub.elsevier.com/S0043-1354(13)01023-3/sref38http://refhub.elsevier.com/S0043-1354(13)01023-3/sref38http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref37http://refhub.elsevier.com/S0043-1354(13)01023-3/sref36http://refhub.elsevier.com/S0043-1354(13)01023-3/sref36http://refhub.elsevier.com/S0043-1354(13)01023-3/sref36http://refhub.elsevier.com/S0043-1354(13)01023-3/sref36http://refhub.elsevier.com/S0043-1354(13)01023-3/sref36http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref35http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://refhub.elsevier.com/S0043-1354(13)01023-3/sref34http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdfhttp://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdfhttp://refhub.elsevier.com/S0043-1354(13)01023-3/sref32http://refhub.elsevier.com/S0043-1354(13)01023-3/sref32http://refhub.elsevier.com/S0043-1354(13)01023-3/sref32http://refhub.elsevier.com/S0043-1354(13)01023-3/sref32http://refhub.elsevier.com/S0043-1354(13)01023-3/sref31http://refhub.elsevier.com/S0043-1354(13)01023-3/sref31http://refhub.elsevier.com/S0043-1354(13)01023-3/sref31http://refhub.elsevier.com/S0043-1354(13)01023-3/sref31http://refhub.elsevier.com/S0043-1354(13)01023-3/sref31http://refhub.elsevier.com/S0043-1354(13)01023-3/sref30http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref29http://refhub.elsevier.com/S0043-1354(13)01023-3/sref28http://refhub.elsevier.com/S0043-1354(13)01023-3/sref28http://refhub.elsevier.com/S0043-1354(13)01023-3/sref28http://refhub.elsevier.com/S0043-1354(13)01023-3/sref28http://refhub.elsevier.com/S0043-1354(13)01023-3/sref28http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref27http://refhub.elsevier.com/S0043-1354(13)01023-3/sref26http://refhub.elsevier.com/S0043-1354(13)01023-3/sref26http://refhub.elsevier.com/S0043-1354(13)01023-3/sref26http://refhub.elsevier.com/S0043-1354(13)01023-3/sref26http://refhub.elsevier.com/S0043-1354(13)01023-3/sref26http://refhub.elsevier.com/S0043-1354(13)01023-3/sref25http://refhub.elsevier.com/S0043-1354(13)01023-3/sref25http://refhub.elsevier.com/S0043-1354(13)01023-3/sref25http://refhub.elsevier.com/S0043-1354(13)01023-3/sref24http://refhub.elsevier.com/S0043-1354(13)01023-3/sref24http://refhub.elsevier.com/S0043-1354(13)01023-3/sref24http://refhub.elsevier.com/S0043-1354(13)01023-3/sref24http://refhub.elsevier.com/S0043-1354(13)01023-3/sref24http://www.mida.gov.my/env3/index.php?page=scheduled-waste-treatment-rateshttp://www.mida.gov.my/env3/index.php?page=scheduled-waste-treatment-rateshttp://www.mida.gov.my/env3/index.php?page=scheduled-waste-treatment-rateshttp://www.mida.gov.my/env3/index.php?page=scheduled-waste-treatment-rateshttp://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref22http://refhub.elsevier.com/S0043-1354(13)01023-3/sref21http://refhub.elsevier.com/S0043-1354(13)01023-3/sref21http://refhub.elsevier.com/S0043-1354(13)01023-3/sref21http://refhub.elsevier.com/S0043-1354(13)01023-3/sref21http://refhub.elsevier.com/S0043-1354(13)01023-3/sref21http://refhub.elsevier.com/S0043-1354(13)01023-3/sref20http://refhub.elsevier.com/S0043-1354(13)01023-3/sref20http://refhub.elsevier.com/S0043-1354(13)01023-3/sref20http://refhub.elsevier.com/S0043-1354(13)01023-3/sref20http://refhub.elsevier.com/S0043-1354(13)01023-3/sref20http://refhub.elsevier.com/S0043-1354(13)01023-3/sref19http://refhub.elsevier.com/S0043-1354(13)01023-3/sref19http://refhub.elsevier.com/S0043-1354(13)01023-3/sref19http://refhub.elsevier.com/S0043-1354(13)01023-3/sref19http://refhub.elsevier.com/S0043-1354(13)01023-3/sref18http://refhub.elsevier.com/S0043-1354(13)01023-3/sref18http://refhub.elsevier.com/S0043-1354(13)01023-3/sref18http://refhub.elsevier.com/S0043-1354(13)01023-3/sref18http://refhub.elsevier.com/S0043-1354(13)01023-3/sref18