bose-einstein correlations t. csörgő, s. hegyi, t. novák and w. a. zajc (kfki rmki budapest &...

25
Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension of QCD fractal structure of QCD jets – anomalous dimension • Bose-Einstein in plane wave approximation: •Central limit theorem (CLT): Gaussian sources •Generalized CLT: Lévy stable laws • Two and three particle correlations T. Cs, S. Hegyi, W. A. Zajc, nucl-th/0310042, Eur. Phys. J. C (2004) in press T. Cs, S. Hegyi, W. A. Zajc, nucl-th/0402035, Nukleonika in press

Post on 21-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Bose-Einstein correlations

T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc

(KFKI RMKI Budapest & Nijmegen & Columbia, New York)

& the anomalous dimension of QCD

• fractal structure of QCD jets – anomalous dimension

• Bose-Einstein in plane wave approximation:

•Central limit theorem (CLT): Gaussian

sources

•Generalized CLT: Lévy stable laws

• Two and three particle correlations

• Measuring the anomalous dimension with

BEC/HBT

T. Cs, S. Hegyi, W. A. Zajc, nucl-th/0310042, Eur. Phys. J. C (2004) in pressT. Cs, S. Hegyi, W. A. Zajc, nucl-th/0402035, Nukleonika in pressT. Cs, T. Novák et al in preparation

Page 2: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

(Multi)fractal jets in QCDB. Andersson, P. Dahlquist, G. Gustafson, Nucl. Phys. B328 (1989) 76 G. Gustafson, A. Nilsson, Nucl. Phys. B355 (1991) 106, Z. Phys. C52 (1991) 533G. Gustafson, Nucl. Phys. B392 (1993) 251 J. Samueslon, Yu. Dokshitzer, W. Ochs, G. Wilk ...

Page 3: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

(Multi)fractal jets in QCD

The baseline forms a (multi)fractal, and the fractal dimension isgiven by the anomalous dimension of QCD: 1 + (3

s/ 2 )0.5

Lund string, with string tension of 1 GeV/fm: maps the fractal in momentum space to coordinate space, without changing the fractal dimension.

Page 4: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Selfsimilarity, Lévy stable laws

Page 5: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Bose-Einstein C: Plane wave approximation

Page 6: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Extra Assumption: ANALYTICITY

Page 7: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Limit distributions, Lévy laws

The characteristic function for limit distributions is known also in the case, when the elementary process has infinite mean or infinite variance. The simplest case, forsymmetric distributions is:

This is not analytic function. The only case, when it is analytic, corresponds to the = 2 case. The general form of the correlation function is

where 0 < <= 2 is the Lévy index of stability.4 parameters: center x0, scale R, index of stability asymmetry parameter

EXACT result

explanatory note

Page 8: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Examples in 1d

Cauchy or Lorentzian distribution, = 1

Asymmetric Levy distribution, has a finite, one sided support, = 1/2, = 1

Page 9: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Lévy sources and BE/HBT correlations

= 0.4: very peaked correlation function, strongly decreasing source density with power-law tail

BEC/HBT

Source density(linear-linear)

Source density(log-log)

s=r/R scaled coordinate

Page 10: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Lévy sources and BE/HBT correlations

= 0.8: peaked correlation function, decreasing source density with power-law tail

BEC/HBT

Source density(linear-linear)

Source density(log-log)

s=r/R scaled coordinate

Page 11: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Lévy sources and BE/HBT correlations

= 1.2: less peaked correlation function, less decreasing source density with power-law tail

BEC/HBT

Source density(linear-linear)

Source density(log-log)

s=r/R scaled coordinate

Page 12: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Lévy sources and BE/HBT correlations

= 1.6: correlation function can be mistaken as Gaussian source by eye looks like a Gaussian on lin-lin scale,but has a power-law tail on the log-log scale

BEC/HBT

Source density(linear-linear)

Source density(log-log)

s=r/R scaled coordinate

Page 13: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Lévy sources and BE/HBT correlations

= 2.0: really Gaussian correlation function, really Gaussian source density,power-law tail is gone

BEC/HBT

Source density(linear-linear)

Source (log-log)

s=r/R scaled coordinate

Page 14: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

3d generalizationThe case of symmetric Levy distributions is solved by

with the following multidymensional Bose-Einstein correlations

and the corresponding space-time distribution is given by the integral, related to the R-1, the inverse of the radius matrix

Page 15: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

2d Lévy sources, linear scale

= 0.6

s=rx

2/X2 + ry

2/Y2 scaled coordinate: 1d problem for symmetric Lévy sources

Page 16: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

2d Lévy sources, linear scale

= 0.8

Page 17: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

2d Lévy sources, linear scale

= 1.2

Page 18: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

2d Lévy sources, linear scale

= 1.6

Page 19: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

2d Lévy sources, linear scale

= 2.0

Finally, a Gaussian case!

Page 20: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

2d Lévy sources, log -linear scale

= 0.6

For < 2: power-law tail

= 2.0

Page 21: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Asymmetric Lévy & 3-particle correlations

Normalized three-particle cumulant correlation function

Page 22: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Fits to NA22 and UA1 Bose-Einstein (BEC) data

s(QCD) = 2(BEC)/6

UA1: 0.1 ~ 0.125 +- 0.005NA22 0.14 ~ 0.23 +- 0.05

within errors even the runningof s(QCD) is seen from BEC

Page 23: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Summary and outlook

check the existence of the Lévy exponent in collisions in p+p, d+Au and Au+Au @ RHIC,

Insert an extra parameter : Index of stability when Gaussians start to failwhen Gaussians works seemingly well

relate a to the properties of QCDLevy index of stability <-> anomalous dimension of QCD

Prediction: running of (BEC) as given by the well-known (QCD)

Interpretation in soft Au+Au: different domain, for far from second order phase transition, thermal source:but near to the critical point: related to critical exponents ofthe phase transition.

Page 24: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

Really Model Independent Method

• HBT or B-E: often believed to be dull Gaussians

• In fact: may have rich and interesting stuctures

• Experimental conditions for model independent

study:

• C(Q) const for Q infinity

• C(Q) deviates from this around Q= 0

• Expand C(Q) in the abstract Hilbert space of

orthogonal functions, identify the measure in H with

the zeroth order shape of C(Q).

• Method works not only for Bose-Einstein correlations

but for other observables too.• T. Cs, S. Hegyi, Phys. Lett. B489 (2000) 489, hep-ph/9912220

Page 25: Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension

2d Edgeworth expansions

Example of NA35 S+Ag 2d correlation data, and a Gaussian fit to it (lhs) which misses the peak around q=0. The rhs shows a 2d Edgeworth expansion fit to E802 Si+Au data at AGS (upper panel) compared to a 2d Gaussian fit for the same data set (lower panel).Note the difference in the vertical scales.