bounce1

31
Prof. D. R. Wilton Note 4 Note 4 Transmission Lines Transmission Lines (Bounce Diagram) (Bounce Diagram) ECE 3317

Upload: charan-macharlas

Post on 29-Apr-2017

212 views

Category:

Documents


0 download

TRANSCRIPT

Prof. D. R. Wilton

Note 4 Note 4 Transmission LinesTransmission Lines

(Bounce Diagram)(Bounce Diagram)

ECE 3317

Step Response

The concept of the bounce diagram is illustrated for a unit step response on a terminated line.

RL

z = 0 z = L

V0 [V]

t = 0+

-

Rg

( )gV t Z0

t

( )gV t

( ) ( )0gV t V u t=

0V

Step Response (cont.)

The wave is shown approaching the load.

RL

z = 0 z = L

V0 [V]

t = 0+

-

Rg

( )gV t Z0

dct = 0 t = t1 t = t2V +

00

0g

ZV VR Z

+⎛ ⎞

= ⎜ ⎟⎜ ⎟+⎝ ⎠

Generator circuit initially sees line characteristic impedance in series with generator impedance; hence by voltage divider

00

0

( / ) ( / )d dg

ZV t z c V u t z cR Z

+ ⎛ ⎞− = −⎜ ⎟⎜ ⎟+⎝ ⎠

or

Bounce Diagram

z = 0

RL

z = L

V0 [V]

t = 0+

-

Rg

( )gV t Z0

d

LTc

=

00

0g

ZV VR Z

+⎛ ⎞

= ⎜ ⎟⎜ ⎟+⎝ ⎠

0

0

gg

g

R ZR Z

⎛ ⎞−Γ = ⎜ ⎟⎜ ⎟+⎝ ⎠

0

0

LL

L

R ZR Z

⎛ ⎞−Γ = ⎜ ⎟+⎝ ⎠

0t =

T

2T

3T

4T

5T

6T

LΓgΓ

V +

L V +Γ

g L V +Γ Γ

2g L V +Γ Γ

2 2g L V +Γ Γ

2 3g L V +Γ Γ

0

V +

(1 )L V ++Γ

(1 )L g L V ++Γ +Γ Γ

2(1 )L g L g L V ++Γ +Γ Γ +Γ Γ

2 2(1 )g L V ++ +Γ Γ

2 3(1 )g L V ++ +Γ Γ

z

t↓

Propagating voltages

Net line voltages

Steady-State Solution

2 2 3 3 2 2 3 3

0

( , ) (1 ) (1 )

(1 )1 1 1

1

g L g L g L L g L g L g L

L L

g L g L g L

L

L

V z V V

VV V

R ZR

+ +

+++

∞ = +Γ Γ +Γ Γ +Γ Γ + + Γ +Γ Γ +Γ Γ +Γ Γ +

Γ +Γ= + =

−Γ Γ −Γ Γ −Γ Γ

−+

=

Sum of all right-traveling waves Sum of all left-traveling waves

( )( )( )( )

( )( )

( )( ) ( )( )

0 0

0 0

0 00

00 0

0 0

00 0

0 00

00 0 0 0

1

1

g L

g Lgg L

g L

Lg L

L

gg L g L

R Z R Z

R Z R Z

Z Z VR ZR Z R Z

R Z R Z

R Z R Z R ZR Z Z V

R ZR Z R Z R Z R Z

+ +×

+ +

⎛ ⎞⎜ ⎟ ⎛ ⎞+⎝ ⎠ ⎜ ⎟⎜ ⎟+⎛ ⎞− ⎛ ⎞− ⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

⎛ ⎞−+ + +⎜ ⎟ ⎛ ⎞+⎝ ⎠= ⎜ ⎟⎜ ⎟++ + − − − ⎝ ⎠

Adding all infinite number of bounces, we have:

( )0

111

n

nz

zz

=

=−

<

∑Note: We’ve usedthe geometric series formula:

Steady-State SolutionSimplifying, we have:

( )( )

( )( ) ( )( )

( )( )

( )( ) ( )( )

( )( ) ( )( )

00 0

0 00

00 0 0 0

0 00 0

000 0 0 0

0 0

0 0 0 0

0 02 20 0 0 0

1( , )

2

2

2

Lg L

L

gg L g L

Lg L

L

gg L g L

L

g L g L

L

g L L g g L

R Z R Z R ZR Z ZV z V

R ZR Z R Z R Z R Z

R R Z R ZR Z Z V

R ZR Z R Z R Z R Z

R Z VR Z R Z R Z R Z

R Z VR R Z R Z R Z R R Z

⎛ ⎞−+ + +⎜ ⎟ ⎛ ⎞+⎝ ⎠∞ = ⎜ ⎟⎜ ⎟++ + − − − ⎝ ⎠

⎛ ⎞+ +⎜ ⎟ ⎛ ⎞+⎝ ⎠= ⎜ ⎟⎜ ⎟++ + − − − ⎝ ⎠

=+ + − − −

=+ + + − −

( )

( )

0 0

0 0

0 0

0

22

L g

L

L g

L

L g

R Z R Z

R Z VR Z R Z

R VR R

+ +

=+

=+

Steady-State Solution

0( , ) L

L g

RV z VR R

⎛ ⎞∞ = ⎜ ⎟⎜ ⎟+⎝ ⎠

Hence we finally have:

This is just the voltage divider equation, as if the transmission line were not present!

Note: the steady-state solution does not depend on the transmission line length or characteristic impedance.

Example

z = 0

RL = 25 [Ω]

z = L

V0 = 4 [V]

t = 0+

-

Rg = 225 [Ω]

( )gV t Z0 = 75 [Ω] T = 1 [ns]

0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z0

00

1 [V]g

ZV VR Z

+ = =+

0

0

12

gg

g

R ZR Z

⎛ ⎞−Γ = =⎜ ⎟⎜ ⎟+⎝ ⎠

0

0

12

LL

L

R ZR Z

⎛ ⎞−Γ = = −⎜ ⎟+⎝ ⎠

Example (cont.)The bounce diagram can be used to get an “oscilloscope trace” at any point on the line.

[ns]t1 2 3 4 5

1 [V]

0.5 [V] 0.375 [V] 0.4375 [V]

0.25 [V]

34( , ) ( )V L t oscilloscope trace

steady state voltage: 0( , ) 0.400 [V]L

L g

RV z VR R

⎛ ⎞∞ = =⎜ ⎟⎜ ⎟+⎝ ⎠

0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z

34

z L=

0.75 [ns]

1.25 [ns]

2.75 [ns]

3.25 [ns]

The bounce diagram can also be used to get a “snapshot” of the line voltage at any point in time.

Example (cont.)

0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z

3.75 [ns]t =

L/4

[m]z4L

0.375 [V]0.25 [V]

( , 3.75 [ns]) ( )V z snapshot

2L 3

4L L

To obtain a current bounce diagram from voltage diagram, multiply forward-traveling voltages by 1/Z0 , backward-traveling voltages by -1/Z0 .

0

1

2

3

4

5

6

1

12

14

116

132

0

1

1.5

1.25

1.125

1.1875

164

−1.203125

[ns]t↓ 1

8−

1.21875

0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z

Note: This diagram is for the normalized current, which we define as Z0 I(z,t).

[m]z

voltage Z0 x current

Example (cont.)

0

1

2

3

4

5

6

1

12

14

116

132

0

1

1.5

1.25

1.125

1.1875

164

−1.203125

[ns]t↓ 1

8−

1.21875

[m]z

Note: We can also just change the signs of the reflection coefficients, as shown.

0

1

2

3

4

5

6

1

12

14

116

132

0

1

1.5

1.25

1.125

1.1875

164

−1.203125

[ns]t↓ 1

8−

1.21875

12

IgΓ = − 1

2ILΓ =

[m]z

Note: These diagrams are for the normalized current, defined as Z0 I(z,t).

IΓ = −Γ

Z0 x current Z0 x current

Example (cont.)

0

1

2

3

4

5

6

1

12

14

116

132

0

1

1.5

1.25

1.125

1.1875

164

−1.203125

[ns]t↓ 1

8−

1.21875

12

IgΓ = − 1

2ILΓ =

[m]z

Z0 x current

oscilloscope trace of current

Example (cont.)

steady state current: 0( , ) 0.016 [A] ;L g

VI zR R

⎛ ⎞∞ = =⎜ ⎟⎜ ⎟+⎝ ⎠

( )( )0 ( , ) 0.016 75 1.20[A]Z I z ∞ = =

1 2 3 4 5

1

1.5

1.125 1.18751.25

30 4( , )Z I L t

[ ]t ns

2.75 [ns]

3.25 [ns]

0.75 [ns]

1.25 [ns]

Example (cont.)

0

1

2

3

4

5

6

1

12

14

116

132

0

1

1.5

1.25

1.125

1.1875

164

−1.203125

[ns]t↓ 1

8−

1.21875

12

IgΓ = − 1

2ILΓ =

[m]z

Z0 x current

3.75 [ns]t =

L/4

snapshot of current

[m]z4L

1.1251.25

0 ( , 3.75 [ns])Z I z

2L 3

4L L

ExampleReflection and Transmission Coefficients at a

Junction Between Two Lines of Differing Characteristic Impedance

RL = 50 [Ω]V0 = 4 [V]

150 75 1225 3

413

J

J JT

+

+ +

−Γ = =

= +Γ =

75 150 1225 3

213

J

J JT

− −

−Γ = = −

= +Γ =

KVL: TJ = 1 + ΓJ(since voltage and current must be continuous across the junction)

z = 0 z = L

t = 0+

-

Rg = 225 [Ω]

( )gV t Z0 = 75 [Ω] Z0 = 150 [Ω]

T = 1 [ns]T = 1 [ns]junction

Example (cont.)

0

1

2

3

4

12gΓ =

1 [V]

0.3333 [V]

0.1667[V]

0[V]1 [V]

1.3333 [V]

1.5000 [V][ns]t↓

12LΓ = −

1.3333 [V]

0.6667 [V]−

0 [V]

1.3333 [V]

0.6667 [V]-0.4444 [V]0.0555 [V]

-0.3888 [V]1.1111 [V] 1.1111 [V]

0.2222 [V]0.2222 [V]0.4444 [V]

Bounce Diagram for Cascaded Lines

V0 = 4 [V]

[m]z

150 75 1225 3

213

J

J JT

+

− −

−Γ = =

= +Γ =

413

75 150 1225 3

J J

J

T + +

= +Γ =

−Γ = = −

z = 0

RL = 50 [Ω]

z = L

t = 0+

-

Rg = 225 [Ω]

( )gV t Z0 = 75 [Ω] Z0 = 150 [Ω]

T = 1 [ns]T = 1 [ns]

Pulse Response

Superposition can be used to get the response due to a pulse.

( ) ( ) ( )0gV t V u t u t W⎡ ⎤= − −⎣ ⎦

t

( )gV t 0V

W

We thus subtract two bounce diagrams, with the second one being a shifted version of the first one.

RL

z = 0 z = L

Vg (t)+

-

Rg

( )gV t Z0+-

Example: Pulse

RL = 25 [Ω]

z = 0.75 L

z = 0 z = L

Rg = 225 [Ω]

Z0 = 75 [Ω] T = 1 [ns]Vg (t) +-

W = 0.25 [ns]

V0 = 4 [V]

t

( )gV t 0V

W

1 [V]V + =

Example: Pulse

-

0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0 [V]

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

0.75 [ns]

1.25 [ns]

2.75 [ns]

3.25 [ns]

4.75 [ns]

5.25 [ns]

1.25

2.25

3.25

4.25

5.25

6.25

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0 [V]

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[m]zW0.25

1.00 [ns]

1.50 [ns]

3.00[ns]

3.50[ns]

5.00 [ns]

5.50 [ns]

z = 0.75 LW = 0.25 [ns]

Example: Pulse (cont.)

RL = 25 [Ω]

z = 0.75 L

z = 0 z = L

Rg = 225 [Ω]

Z0 = 75 [Ω] T = 1 [ns]Vg (t) +-

W = 0.25 [ns]

V0 = 4 [V]

t

( )gV t 0V

W

oscilloscope trace of voltage

[ns]t1 2 3 4 5

1 [V]

0.5 [V]−

0.125 [V]

0.25 [V]−

34( , )V L t

0.0625 [V]

0.03125 [V]−

Example: Pulse (cont.)

-

t = 1.5 [ns]

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[m]zW

L / 4

0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

1.25

2.25

3.25

4.25

5.25

6.25

0.25

L / 2

Example: Pulse (cont.)

snapshot of voltage

[m]z

0.5 [V]−

( , 1.5 [ns])V z

L0.5L 0.75L0.25L

t = 1.5 [ns]

RL = 25 [Ω]

z = 0 z = L

Rg = 225 [Ω]

Z0 = 75 [Ω] T = 1 [ns]Vg (t) +-

W = 0.25 [ns]

V0 = 4 [V]

t

( )gV t 0V

W

W

Capacitive Load

C

z = 0 z = L

V0 [V]

t = 0+

-

Z0

( )gV t Z0

Note: The generator is assumed to be matched to the transmission line for convenience (we wish to focus on the effects of the capacitive load).

0gΓ =Hence

The reflection coefficient is now a function of time.

Capacitive Load

CL

z = 0 z = L

V0 [V]

t = 0+

-

Z0

( )gV t Z0

0t =

T

2T

3T

( )L tΓ0gΓ =

V +

( )L t V +Γ

0V +

( )( )1 L t V ++Γ

t

z0

00 0

0 / 2

ZV VZ Z

V

+ ⎛ ⎞= ⎜ ⎟+⎝ ⎠=

Capacitive Load (cont.)

CL

z = 0 z = L

V0 [V]

t = 0+

-

Z0

( )gV t Z0

At t = 0: capacitor acts as a short circuit. ( )0 1LΓ = −

At t = ∞: capacitor acts as an open circuit. ( ) 1LΓ ∞ =

Between t = 0 and t = ∞, there is an exponential time-constant behavior.

( ) ( ) ( )/1 1 1 ,t TL t e t Tτ− −⎡ ⎤Γ = + − − ≥⎣ ⎦

0 LZ Cτ =

( ) ( ) ( ) ( ) /0 tF t F F F e τ−⎡ ⎤= ∞ + − ∞⎣ ⎦

Time-constant formula: Hence we have:

(valid for t < T)

Capacitive Load (cont.)

CL

z = 0 z = L

V0 [V]

t = 0+

-

Z0

( )gV t Z0

0t =

T

2T

3T

( )L tΓ0gΓ =

V +

( )L t V +Γ

0V +

( )( )1 L t V ++Γ

t

z

t

V(0,t)

T 2T

V0 / 2

V0 steady-state

Inductive Load

At t = 0: inductor as a open circuit. ( )0 1LΓ =

At t = ∞: inductor acts as a short circuit. ( ) 1LΓ ∞ = −

Between t = 0 and t = ∞, there is an exponential time-constant behavior.

( ) ( ) ( )/1 1 1 ,t TL t e t Tτ− −⎡ ⎤Γ = − + − − ≥⎣ ⎦

0/LL Zτ =

LL

z = 0 z = L

V0 [V]

t = 0+

-

Z0

( )gV t Z0

(valid for t < T)

Inductive Load (cont.)

0t =

T

2T

3T

( )L tΓ0gΓ =

V +

( )L t V +Γ

0V +

( )( )1 L t V ++Γ

t

z

t

V(0,t)

T 2T

V0 / 2

V0

steady-state

LL

z = 0 z = L

V0 [V]

t = 0+

-

Z0

( )gV t Z0

Time-Domain Reflectometer (TDR)This is a device that is used to look at reflections on a line, to look for potential problems such as breaks on the line.

t

V(0,t)

resistive load, RL > Z0

t

V(0,t)

resistive load, RL < Z0

1[V] 1[V]LΓ

z = 0

load

z = L

V0 = 2[V]

t = 0+

-

Z0

( )gV t Z0

matched source inside the TDR

Time-Domain Reflectometer (cont.)

z = 0

load

z = L

V0 [V]

t = 0+

-

Z0

( )gV t Z0

(matched source)

capacitive load inductive load

t

V(0,t)

t

V(0,t)1[V] 1[V]

Example of a commercial product

The 20/20 Step Time Domain Reflectometer (TDR) was designed to provide a clear picture of coaxial or twisted pair cable lengths and to pin- point cable faults.

AEA Technology, Inc.

Time-Domain Reflectometer (cont.)