boundary layer over the snow: results from the 2012 … · s. argentini 1 isac – cnr area di...

40
S. Argentini S. Argentini 1 ISAC – CNR Area di Ricerca di Roma Tor Vergata,Via del Fosso del Cavaliere, 100 00133 Roma, ISAC – CNR Area di Ricerca di Roma Tor Vergata,Via del Fosso del Cavaliere, 100 00133 Roma, Italy, Italy, [email protected] [email protected] SUMMARY SUMMARY The site The site The instrumentation The instrumentation Wind field Wind field PBL thermal structure, PBL height PBL thermal structure, PBL height summer, winter summer, winter BOUNDARY LAYER OVER THE SNOW: RESULTS FROM BOUNDARY LAYER OVER THE SNOW: RESULTS FROM THE 2012-2013 EXPERIMENTAL FIELD AT CONCORDIA THE 2012-2013 EXPERIMENTAL FIELD AT CONCORDIA STATION, DOME C, ANTARCTICA STATION, DOME C, ANTARCTICA

Upload: hahuong

Post on 18-Feb-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

S. Argentini S. Argentini

11 ISAC – CNR Area di Ricerca di Roma Tor Vergata,Via del Fosso del Cavaliere, 100 00133 Roma, ISAC – CNR Area di Ricerca di Roma Tor Vergata,Via del Fosso del Cavaliere, 100 00133 Roma, Italy, Italy, [email protected]@isac.cnr.it

  

SUMMARYSUMMARY

The siteThe site

The instrumentationThe instrumentation

Wind fieldWind field

PBL thermal structure, PBL heightPBL thermal structure, PBL height

summer, wintersummer, winter

BOUNDARY LAYER OVER THE SNOW: RESULTS FROM BOUNDARY LAYER OVER THE SNOW: RESULTS FROM THE 2012-2013 EXPERIMENTAL FIELD AT CONCORDIA THE 2012-2013 EXPERIMENTAL FIELD AT CONCORDIA

STATION, DOME C, ANTARCTICASTATION, DOME C, ANTARCTICA

SITE : Concordia station, Dome C, East AntarcticaSITE : Concordia station, Dome C, East Antarctica

74.1 °S, 123.3 °E74.1 °S, 123.3 °E

Height:    3233 m a.s.lHeight:    3233 m a.s.l

FIELD EXPERIMENT:FIELD EXPERIMENT:

December 2011 December 2011

toto

January 2013January 2013

INSTRUMENTATIONINSTRUMENTATION

Kipp & Zonen pyrgeometers Kipp & Zonen pyrgeometers 

and pyranometers and pyranometers 

AWS Milos520AWS Milos520SML-sodarSML-sodar

Thermo-anemometer Thermo-anemometer Metek Metek USA-1 sonic USA-1 sonic 

December 2011 to January 2013December 2011 to January 2013

Available measurements:Available measurements:

Sodar: thermal structure, mixing height)Sodar: thermal structure, mixing height)

Sonic anemometer : momentum and heat fluxes, wind Sonic anemometer : momentum and heat fluxes, wind speed and direction, turbulencespeed and direction, turbulence

Radiometers: short & long wave radiation up & downRadiometers: short & long wave radiation up & down

SLM Sodar

high frequency (high resolution , low range, Surface Layer studies)

low frequency (low resolution, higher range, PBL studies )

3 emitting horn antennas to increase the signal intensity

(and signal-to-noise ratio )1 larger diameter receiving antenna

Electronic parts minimized

antenna preamplifier

power amplifier for the burst amplification

Surface Layer Mini Sodar (SLM Sodar) Surface Layer Mini Sodar (SLM Sodar)

Parameters

Carrier frequency 2000 Hz 4850 Hz

Pulse repetition rate 200 ms 10 ms

Maximum range 895 m 294 m

Lowest level 31 m 2 m

Vertical resolution 34 m 2 m

following… Surface Layer Sodar – 3Dfollowing… Surface Layer Sodar – 3D

PBL THERMAL STRUCTUREPBL THERMAL STRUCTURE

SUMMERSUMMER

PBL behaviour (28 December, 2011PBL behaviour (28 December, 2011

Transition from stable (Ho < 0) to unstable (Ho > 0)Transition from stable (Ho < 0) to unstable (Ho > 0)

Maximum of temperature, wind speed, Ho,TKE  1200 -1800 LSTMaximum of temperature, wind speed, Ho,TKE  1200 -1800 LST

Ho < 0Ho < 0

Ho > 0Ho > 0

Ho < 0Ho < 0

PBL height estimate PBL height estimate 

RCS = Range Corrected SignalRCS = Range Corrected Signal

Maximum of Maximum of backscatterebackscattered signal d signal “range “range corrected”corrected”

Minimum of first derivative of Minimum of first derivative of the backcattered signal the backcattered signal intensity “range corrected”intensity “range corrected”

ABL regime Shape of the RCS Applied method

Stable ABLContinuous decrease with heightElevated maximum in RCS

Maximum RCS curvatureRCS first derivative minimum

Convective ABL

Elevated maximum in RCS Height of the maximum

The spectral analysis showed that most frequent are The spectral analysis showed that most frequent are high frequency waves (period 90 - 120 s)high frequency waves (period 90 - 120 s)

Meteorological parameters during the summerMeteorological parameters during the summer

WarmingWarming

eventsevents

WarmingWarming

eventsevents

SUMMER : PBL height daily behaviourSUMMER : PBL height daily behaviour

GB model for convective PBL VS SLM-SodarGB model for convective PBL VS SLM-Sodar

SUMMER : PBL height distributionSUMMER : PBL height distribution

MLH  MLH  vsvs  T  T**,u*,Ho,u*,Ho

PBL THERMAL STRUCTUREPBL THERMAL STRUCTURE

WINTERWINTER

stable stratifications with waves stable stratifications with waves warming eventswarming events

0 20 40 60 80 1000

5

10

15

20

Height (m)

Occurrence (%)

Concordia - Dome C, Apr-Oct 2012

Turbulent Layer

0 50 100 150 200 250 3000

10

20

30

40

50

Height (m)

Occurrence (%)

Inversion Layer

Heights of Surface Turbulent Layer and Inversion Layer         

Apr-Oct  2012

Height (m) Mean (m) Median (m) Std (m)

Turbulent Layer 23 16 20

Inversion Layer 133 125 63

Surface-based Surface-based Turbulent Layer Turbulent Layer occupies only the occupies only the 

lowest  10-30% of the lowest  10-30% of the whole inversion layerwhole inversion layer

WAVES WAVES

4 4 4 DAYS WAVES MORE THAN 35 % OF THE TIME 4 DAYS WAVES MORE THAN 35 % OF THE TIME

Cat eyesCat eyes

2 frequencies2 frequencies

Gravity  waves  Gravity  waves  modulating  modulating  

surface layer   surface layer                                                                   

        

WIND WIND DISTRIBUTIONDISTRIBUTION

WestWest

EastEast

SudSud

NordNord

Cyclones approach to the Antarctic continent from the lowerCyclones approach to the Antarctic continent from the lower

latitudes, these cyclones advect warm air and clouds over the Antarcticlatitudes, these cyclones advect warm air and clouds over the Antarctic

Continent which ‘modify’ the usual surface inversion.Continent which ‘modify’ the usual surface inversion.

The intrusion of marine air massesThe intrusion of marine air masses

a)a) contribute to the ice sheet’s surface mass balance through precipitation; contribute to the ice sheet’s surface mass balance through precipitation; 

b)b) Contribution  to  climate  change  because  it  is  a  very  important  source  of Contribution  to  climate  change  because  it  is  a  very  important  source  of energy and moisture for the interior of Antarctica. energy and moisture for the interior of Antarctica. 

WARMING EVENTSWARMING EVENTS

13 June 13 June 20122012

-80 -70 -60 -50 -40 -300

1

2

3

4

5

6

7

8

9

10

Heig

ht agl (k

m )

Temperature (οC)

08/0612/0613/0616/06

0 20 40 60 80Relative humidity (%)

Concordia, Dome C, 08-16/06/2012, 1200 UTC

0 10 20 30 40

Wind speed (m s-1)0 90 180 270 360

Wind direction (deg)

WARMING 13 JUNE WARMING 13 JUNE

13 June 201213 June 2012

Warming event summer: 10 January, Warming event summer: 10 January, 20122012

MERCIMERCI

December 2011 – May 2012December 2011 – May 2012

June 2012 – November 2012June 2012 – November 2012

WAVESWAVESThe existence of gravity waves in the atmosphere requires stable conditionsThe existence of gravity waves in the atmosphere requires stable conditions

otherwise a wave pattern cannot be createdotherwise a wave pattern cannot be created

Gravity waves carry momentum and energy between different points in theGravity waves carry momentum and energy between different points in the

atmosphere, produce turbulence, trigger convection, affect the mean flowatmosphere, produce turbulence, trigger convection, affect the mean flow

WE WANT TO STUDYWE WANT TO STUDY

Generation mechanisms of the gravity wavesGeneration mechanisms of the gravity waves The role of gravity waves in mesoscale and PBL phenomena (microscale The role of gravity waves in mesoscale and PBL phenomena (microscale phenomena)phenomena)

Interaction of gravity waves  with turbulenceInteraction of gravity waves  with turbulence

Sodar is a remote sensing device useful in Sodar is a remote sensing device useful in

revealing and measuring such wavesrevealing and measuring such waves

4 4 4 DAYS WAVES MORE THAN 35 % OF THE TIME 4 DAYS WAVES MORE THAN 35 % OF THE TIME

Cat eyesCat eyes

2 frequencies2 frequencies

Gravity  waves  Gravity  waves  modulating  modulating  

surface layer   surface layer                                                                   

        

PBL heigth PBL heigth

daily daily

behaviourbehaviour

RadiosoundingsRadiosoundings

-80 -70 -60 -50 -40 -300

1

2

3

4

5

6

7

8

9

10

Hei

ght a

gl (km

)

Temperature (οC)

07/0509/0514/05

0 20 40 60 80Relative humidity (%)

Concordia, Dome C, 07-14/05/2012, 1200 UTC

0 10 20 30 40

Wind speed (m s-1)0 90 180 270 360

Wind direction (deg)

RadiosoundingsRadiosoundings

-80 -70 -60 -50 -40 -300

1

2

3

4

5

6

7

8

9

10

Hei

ght a

gl (km

)

Temperature (οC)

19/0721/0724/07

0 20 40 60 80Relative humidity (%)

Concordia, Dome C, 19-24/07/2012, 1200 UTC

0 10 20 30 40

Wind speed (m s-1)0 90 180 270 360

Wind direction (deg)

WAVESWAVESThe existence of gravity waves in the atmosphere requires stable conditionsThe existence of gravity waves in the atmosphere requires stable conditions

otherwise a wave pattern cannot be createdotherwise a wave pattern cannot be created

Gravity waves carry momentum and energy between different points in theGravity waves carry momentum and energy between different points in the

atmosphere, produce turbulence, trigger convection, affect the mean flowatmosphere, produce turbulence, trigger convection, affect the mean flow

WE WANT TO STUDYWE WANT TO STUDY

Generation mechanisms of the gravity wavesGeneration mechanisms of the gravity waves The role of gravity waves in mesoscale and PBL phenomena (microscale The role of gravity waves in mesoscale and PBL phenomena (microscale phenomena)phenomena)

Interaction of gravity waves  with turbulenceInteraction of gravity waves  with turbulence

Sodar is a remote sensing device useful in Sodar is a remote sensing device useful in

revealing and measuring such wavesrevealing and measuring such waves

The spectral analysis showed that most frequent are The spectral analysis showed that most frequent are high frequency waves (period 90 - 120 s)high frequency waves (period 90 - 120 s)

Proposal: Arctic and Antartica: influence of the Proposal: Arctic and Antartica: influence of the Atmospheric Boundary Layer on CLIMATe Atmospheric Boundary Layer on CLIMATe (ABLCLIMAT)(ABLCLIMAT) Monitor the PBL structure to evidence major atmospheric Monitor the PBL structure to evidence major atmospheric

processes processes

Investigate the origin, and impact of the Antarctic warming Investigate the origin, and impact of the Antarctic warming events on PBLevents on PBL

Study the origin, and characteristics of the waves in the Study the origin, and characteristics of the waves in the stable PBL stable PBL

Estimate the PBL height and verify/improve parameterization Estimate the PBL height and verify/improve parameterization for the stable/unstable PBLsfor the stable/unstable PBLs

Warming eventsWarming events