boundary value problems in spherical...

45
Boundary Value Problems in Spherical Coordinates Y. K. Goh 2009 Y. K. Goh Boundary Value Problems in Spherical Coordinates

Upload: vuongkhue

Post on 12-May-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Boundary Value Problems in Spherical

Coordinates

Y. K. Goh

2009

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Outline

I Laplacian Operator in spherical coordinates

I Legendre Functions

I Spherical Bessel Functions

I Initial-value problem for heat flow in a sphere

I The three-dimensional wave equation

I Laplace Eq. in a sphere and exterior to a sphere

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplacian Operator in Spherical Coordinates

Laplacian Operator in SphericalCoordinates

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplacian Operator in Spherical Coordinates

Spherical Coordinates

I (r, θ, φ) : x = r cosφ sin θ, y = r sinφ sin θ, z = r cos θ

I ∇2u =1

r2

∂r

(r2∂u

∂r

)+

1

r2 sin θ

∂θ

(sin θ

∂u

∂θ

)+

1

r2 sin2 θ

∂2u

∂φ2

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Legendre’s Equations and Legendre’s Functions

Legendre’s Equation arises naturally when solving some PDEin Spherical Coordinate systems. Usually it forms part of theSturm-Liouville problem which requires it to have boundedeigenfunctions over a fixed domain.

Definition (Legendre’s Equation)The Legendre’s Equations is a family of differential equationsdiffer by the parameter λ in the following form

(1− x2)y′′ − 2xy′ + λy = 0, (1)

ord

dx

[(1− x2)

dy

dx

]+ λy = 0. (2)

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Legendre’s Equations and Legendre’s Functions

The Legendre’s equation is a linear 2nd order ODE.

I x = ±1 are two singular points of the ODE.

I A solution near the ordinary point x = 0 is a power series

y =∞∑

n=−∞

anxn, an = 0,∀n < 0.

I The radius of convergence for the power series is thedistance from the centre of the series to the nearestsingular point, i.e. R = 1.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Legendre’s Equations and Legendre’s Functions

I Substitue the power series into the ODE, we will obtainthe recurrecnce relation

an+2 =n(n+ 1)− λ

(n+ 2)(n+ 1)an, n = 0, 1, 2, . . . .

I The recurrence relation gives two series solutions knownas the Legendre’s functions, where one is an oddfunction and the other one is an even function.

I By using convergence tests, we can show that the twoseries are convergence for |x| < 1.

I However, the series are generally not convergent atx = ±1, except if λ = `(`+ 1).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Legendre’s Polynomials

For the case of λ = `(`+ 1) :

I When n = `, an+2 =n(n+ 1)− `(`+ 1)

(n+ 2)(n+ 1)an = 0,

=⇒ a`+2 = a`+4 = a`+6 = · · · = 0.

I Thus, one of the series solution becomes a polynomial.

I After normalization, we obtain the LegendrePolynomial of degree `,

P`(x) =1

2`

N∑n=0

(−1)n(2`− 2n)!

n!(`− n)!(`− 2n)!x`−2n, (3)

where N = `/2 if ` is even or (`− 1)/2 is ` is odd.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Legendre function of the second kind

For the case of λ = `(`+ 1) :I The Legendre’s equation of order n, for ` = 0, 1, 2, . . .

(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0,−1 < x < 1.

I A solution is the Legendre Polynomial of degree `, P`(x).I The other solution is a series solution known as the

Legendre function of the second kind, Q`(x).I Q`(x) converges on the −1 < x < 1 but unbounded in−1 ≤ x ≤ 1.

I Since P`(x) and Q`(x) are linearly independent, thus thegeneral solution to the ODE is

y = c1P`(x) + c2Q`(x).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Properties of Legendre Polynomials

I Symmetry: Pn(x) is even if n is even, and odd if n is odd.I End points: Pn(1) = 1, and P (−1) = (−1)n for all n.I Boundedness :|Pn(x)| ≤ 1 for all n and x in [−1, 1].I Zeros: Pn(x) has n distinct zeros in [−1, 1].

I Orthogonality:

∫ 1

−1

Pm(x)Pn(x) dx =2

2n+ 1δmn.

I Rodrigues’ Formula: Pn(x) =1

2nn!

dn

dxn(x2 − 1)n.

I Generating function:

Φ(x, t) = (1− 2xt+ t2)−1/2 =∞∑n=0

Pn(x)tn.

I Pn(x) =1

n!

dn

dtn[Φ(x, t)]t=0.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Graphs of Legendre Polynomials

Figure: Legendre Polynomials, Pn(x).

I P0(x) = 1

I P1(x) = x

I P2(x) = 12(3x2 − 1)

I P3(x) = 12(5x3 − 3x)

I P4(x) =18(35x4 − 30x2 + 3)

I P5(x) =18(63x5 − 70x3 + 15x)

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Graphs of Legendre functions of the second kind

Figure: Legendre functions, Qn(x).

I Q0(x) = 12

ln(

1+x1−x

)I Q1(x) = x

2ln(

1+x1−x

)− 1

I Q2(x) = 3x2−14

ln(

1+x1−x

)− 3x

2

I Q3(x) =5x3−3x

2ln(

1+x1−x

)− 5x2

2+ 2

3

I Q4(x) =35x4−30x2+3

16ln(

1+x1−x

)− 35x3

8+

55x24

.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Legendre Series Expansions

I Orthogonality of Legendre Polynomial

〈Pm|Pn〉 =

∫ 1

−1

Pm(x)Pn(x) dx =2

2n+ 1δmn.

I The Legendre series expansions for f(x),−1 ≤ x ≤ 1 is

f(x) =∞∑n=0

cnPn(x)

I Where the generalized Fourier coefficient cn is

cn =〈Pn|f〉‖Pn‖2

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Legendre Series Expansions

Examples

I Find the first three terms of the Legendre series expansionfor the function

f(x) =

{0, −1 ≤ x < 0,

1, 0 ≤ x ≤ 1.

I Find the Legendre series expansion for f(x) = x2 + x− 4,defined over the interval −1 ≤ x ≤ 1.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Associated Legendre Functions

DefinitionThe Associated Legendre’s Equation is defined as

(1−x2)y′′−2xy′+

[n(n+ 1)− m2

1− x2

]y = 0, −1 < x < 1,

(4)or

d

dx

[(1− x2)

dy

dx

]+

[n(n+ 1)− m2

1− x2

]y = 0, −1 < x < 1.

(5)

The solution to the associated Legendre’s equation is denotedas Pm

n (x) and Qmn (x) respectively.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Properties of Associated Legendre Functions

I Associated Legendre function of degree n and order m:Pmn (x), n = 0, 1, 2, . . . , |m| ≤ n .

I Legendre polynomial: P 0n(x) = Pn(x).

I Rodrigues’ Formula:

Pmn (x) = (−1)m(1− x2)m/2

dm

dxm[Pn(x)].

I Negative order: Pmn (x) = (−1)m

(n+m)!

(n−m)!P−mn (x).

I Orthogonality:∫ 1

−1

Pmk (x)Pm

l (x) dx =2

2k + 1

(k +m)!

(k −m)!δkl, |m| ≤ k, l.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Associated Legendre Functions

I P 00 (x) = 1

I P 11 (x) = −

√1− x2, P 0

1 (x) = x, P−11 (x) = −1

2P 1

1 (x)

I P 22 (x) = 3(1− x2), P 1

2 (x) = −3x√

1− x2,P 0

2 (x) = 12(3x2 − 1), P−1

2 (x) = −16P 1

2 (x),P−2

2 (x) = 124P 2

2 (x),

I P 33 (x) = −15(1− x2)3/2, P 2

3 (x) = 15x(1− x2),P 1

3 (x) = −32(5x2 − 1)(1− x2)1/2, P 0

3 (x) = 12(5x3 − 3x),

P−13 (x) = − 1

12P 1

3 (x), P−23 (x) = 1

120P 2

3 (x),P−3

3 (x) = − 1720P 3

3 (x).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Graphs of Associated Legendre Functionss

Figure: Associated LegendreFunctions, Pmn (x).

Figure: Associated LegendreFunctions, Qmn (x).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Associated Legendre Series Expansions

I Orthogonality of associated Legendre functions

〈Pmk |Pm

l 〉 =

∫ 1

−1

Pmk (x)Pm

l (x) dx =2

2k + 1

(k +m)!

(k −m)!δkl.

I The associated Legendre series expansions of order m forf(x),−1 ≤ x ≤ 1 is

f(x) =∞∑n=m

cnPmn (x)

I Where the generalized Fourier coefficient cn is

cn =〈Pm

n |f〉‖Pm

n ‖2, n = m,m+ 1,m+ 2, . . . .

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Associated Legendre Series Expansions

Example

I The associated Legendre series expansion of order m = 2for

f(x) =

{0, −1 ≤ x < 0,

1, 0 ≤ x ≤ 1,

is given by f(x) =∞∑n=m

cnPmn (x). The first few

coefficients are

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Spherical Harmonics Functions

DefinitionThe spherical harmonic function is defined as

Y mn (θ, φ) =

√2n+ 1

(n−m)!

(n+m)!Pmn (cos θ)eimφ. (6)

I Orthogonality:

〈Y mn |Y m′

n′ 〉 =

∫ π

θ=0

∫ 2π

φ=0

Y m∗n Y m′

n′ sin θ dθ dφ = δnn′δmm′

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Spherical Harmonics Series Expansions

A function f(θ, φ) defined in 0 ≤ θ < π and 0 ≤ φ < 2π canbe expressed as a spherical harmonics expansion

f(θ, φ) =∞∑n=0

n∑m=−n

cmn Ymn (θ, φ),

where the coefficient cmn is given by

cmn =〈Y m

n |f〉‖Y m

n ‖2= 〈Y m

n |f〉,

since Y mn has be normalized to ‖Y m

n ‖2 = 〈Y mn |Y m

n 〉 = 1.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Spherical Harmonics Functions

Figure: Spherical Bessel’s function, jn(x).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Spherical Bessel Functions

I Spherical Bessel’s equation

x2y′′ + 2xy′ + [x2 − n(n+ 1)]y = 0 (7)

I Two linearly independent solutions are the sphericalBessel’s functions of the first and second kinds.

I jn(x) =

√π

2xJn+1/2(x) = (−x)n

(1

x

d

dx

)nsinx

x.

I yn(x) =

√π

2xYn+1/2(x) = −(−x)n

(1

x

d

dx

)ncosx

x.

I Similar to the Bessel’s functions, jn(x) is bounded nearx = 0, but not bounded at x = 0 for yn(x).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Spherical Bessel’s Functions of the first kind

Figure: Spherical Bessel’s function,jn(x).

I j0(x) =sinx

x

I j1(x) =sinx

x2− cosx

xI j2(x) =(

3

x2− 1

)sinx

x− 3 cosx

x2

I j3(x) =

(15

x3− 6

x

)sinx

x−(

15

x2− 1

)cosx

x

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Spherical Bessel’s Functions of the second kind

Figure: Spherical Bessel’s function,yn(x).

I y0(x) = −cosx

x

I y1(x) = −cosx

x2− sinx

xI y2(x) =(

1− 3

x2

)cosx

x− 3 sinx

x2

I y3(x) =(6

x− 15

x3

)cosx

x−(

15

x2− 1

)sinx

x

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. inside a sphere (radial symmetry)

A Dirichlet’s problem inside a sphere with radial symmetry.

I u is radial symmetry, i.e. u(r, θ, φ) = u(r, θ)

I PDE: Laplace Eq. ∇2u(r, θ) = 0, 0 < r < L, 0 ≤ θ < π.

I1r2

∂r

(r2∂u

∂r

)+

1r2 sin θ

∂θ

(sin θ

∂u

∂θ

)= 0.

I Boundary ConditionsI u(L, θ) = f(θ), 0 ≤ θ < π.

I Regularity Conditions: |u| <∞ in 0 < r < L.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. inside a sphere (radial symmetry)

I Separation of variables: u(r, θ) = R(r)Θ(θ)

I ODEs:{r2R′′ + 2rR′ − λR = 0, 0 < r < L; (Euler Eq.)

Θ′′ + cot θΘ′ + λΘ = 0, 0 ≤ θ < π. (Legendre Eq.)

I B.C.: u(L, θ) = f(θ) acts like initial condition.I The ODE for θ can be converted to Legendre by making

a change of variable s = cos θ.I =⇒ (1− s2)Θ′′ − 2sΘ′ + λΘ = 0, −1 < s < 1,I Bounded solution is only possible for Legendre’s

equation when λ = n(n+ 1), n = 0, 1, 2, . . . , i.e.Θ ∝ Pn(s) = Pn(cos θ).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. inside a sphere (radial symmetry)

I Re-write the set of ODEs and corresponding boundedsolutions inside a sphere for n = 0, 1, 2, . . . are{r2R′′ + 2rR′ − n(n+ 1)R = 0, =⇒ R(r) = Cnr

n

Θ′′ + cot θΘ′ + n(n+ 1)Θ = 0, =⇒ Θ(θ) = Pn(cos θ)

I General solution:

u(r, θ) =∞∑n=0

CnrnPn(cos θ), 0 < r < L, 0 <≤ θ < π.

I “Initial” condition gives: CnLn =〈Pn|f〉‖Pn‖2

=

2n+ 1

2

∫ π

0

f(θ)Pn(cos θ) sin θ dθ, n = 0, 1, 2, . . . .

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. inside a sphere (radial symmetry)

Example

I Solve the Dirichlet problem for the Laplace Equationinside a sphere with f(θ) = L cos2 θ.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. exterior to a sphere (radial symmetry)

A Dirichlet’s problem outside a sphere with radial symmetry.

I u is radial symmetry, i.e. u(r, θ, φ) = u(r, θ)I PDE: Laplace Eq. ∇2u(r, θ) = 0, r > L, 0 ≤ θ < π.

I1r2

∂r

(r2∂u

∂r

)+

1r2 sin θ

∂θ

(sin θ

∂u

∂θ

)= 0.

I Boundary ConditionsI u(L, θ) = f(θ), 0 ≤ θ < π.

I Regularity Conditions: |u| <∞ in r > L.

I Separation of variables: u(r, θ) = R(r)Θ(θ) =⇒{r2R′′ + 2rR′ − n(n+ 1)R = 0, =⇒ R(r) = Dnr

−n−1

Θ′′ + cot θΘ′ + n(n+ 1)Θ = 0, =⇒ Θ(θ) = Pn(θ).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. exterior to a sphere (radial symmetry)

I General solution:

u(r, θ) =∞∑n=0

Dnr−n−1Pn(cos θ).

I “Initial” condition gives:

DnL−n−1 =

〈Pn|f〉‖Pn‖2

.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. exterior to a sphere (radial symmetry)

Example

I Find the solution to the Dirichlet’s problem for Laplaceequation exterior to a sphere with the initial conditionu(L, θ) = sin θ.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. interior to a sphere

A Dirichlet’s problem inside a sphere.

I PDE: Laplace Eq. ∇2u(r, θ) = 0, 0 < r < L, 0 ≤ θ < π.

I 1r2

∂∂r

(r2 ∂u∂r

)+ 1

r2 sin θ∂∂θ

(sin θ ∂u∂θ

)+ 1

r2 sin2 θ∂2u∂φ2 = 0.

I Boundary ConditionsI Periodic B.C.: u(r, θ, φ) = u(r, θ, φ+ 2π).I u(L, θ, φ) = f(θ, φ), 0 ≤ θ < π, 0 ≤ φ < 2π.

I Regularity Conditions: |u| <∞ in 0 < r < L.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. interior to a sphere

I Separation of variables: u(r, θ, φ) = R(r)Θ(θ)Φ(φ) =⇒Φ′′ + λΦ = 0, 0 ≤ φ < π

r2R′′ + 2rR′ − µR = 0, 0 < r < L

Θ′′ + cot θΘ′ + (µ− λ csc2 θ)Θ = 0, 0 ≤ θ < π.

I Periodic B.C. :u(r, θ, φ) = u(r, θ, φ+ 2π), 0 ≤ φ < 2π =⇒

I SL-problem Φ′′ + λΦ = 0, Φ(φ) = Φ(φ+ 2π)I Eigenvalues, λ = λm = m2,m = 0, 1, 2, . . . .I Eigenfunctions, Φm(φ) = Am cosmφ+Bm sinmφ; or

more often for the case of Spherical coordinate problems,the eigenfunctions are writen as Φm(φ) = eimφ.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. interior to a sphere

I ODE for Θ :Θ′′ + cot θΘ′ + (µ−m2 csc2 θ)Θ = 0, 0 ≤ θ < π.

I Could be converted to associated Legendre’s equation bychanging the variable s = cos θ.

I (1− s2)Θ′′ − 2sΘ′ +[µ− m2

1−s2

]Θ = 0

I The associated Legendre’s equation has boundedsolution only when µ = n(n+ 1).

I The bounded solution is the associated Legendrefunction of the first kind, Θmn(θ) = Pmn (cos θ).

I Combining eigenfunctions for φ and θ:I Θmn(θ)Φm(φ) ∝ Y m

n (θ, φ).I The spherical harmonics function is defined as

Y mn (θ, φ) =

√2n+14π

(n−m)!(n+m)!P

mn (cos θ)eimφ.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Laplace Eq. interior to a sphere

I ODE for r: r2R′′ + 2rR′ − n(n+ 1)R = 0 is an Eulerequation:

I The bounded solution is R(r) ∝ rn, 0 < r < L.

I General solution:

u(r, θ, φ) =∞∑n=0

n∑m=−n

CnmrnY m

n (θ, φ).

I “Initial” condition: u(L, θ, φ) = f(θ, φ), gives thegeneralized Fourier coefficients

cnmLn =〈Y m

n |f〉‖Y m

n ‖2=

∫ 2π

0

∫ π

0

Y m∗n (θ, φ)f(θ, φ) sin θ dθ dφ

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Initial-value problem for heat flow in a sphere

Consider the Dirichlet’s problem for heat equation in a sphere

I PDE:∂u∂t

= c2(

1r2

∂∂r

(r2 ∂u

∂r

)+ 1

r2 sin θ∂∂θ

(sin θ ∂u

∂θ

)+ 1

r2 sin2 θ∂2u∂φ2

),

0 < r < L, 0 ≤ θ < π, 0 ≤ φ < 2π, t > 0.

I Boundary conditions:I periodic boundary: u(r, θ, φ, t) = u(r, θ, φ+ 2π, t).I u(L, θ, φ, t) = 0.

I Regularity condition: |u| <∞ inside the sphere.

I Initial condition: u(r, θ, φ, 0) = f(r, θ, φ).

I Separation of variables : u = T (t)R(r)Θ(θ)Φ(φ).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Initial-value problem for heat flow in a sphere

I ODEsT ′ + c2λ2T = 0 t > 0

Φ′′ +m2Φ = 0 0 ≤ φ < 2π

Θ′′ + cot θΘ′ + (n(n+ 1)−m2 csc2 θ)Θ = 0, 0 ≤ θ < π

r2R′′ + 2rR′ + (λ2r2 − n(n+ 1))R = 0 0 < r < L.

I B.C. :Φ(0) = Φ(2π), =⇒ Φm(φ) = Ame

imφ,m = 0,±1,±2, . . .

|Θ| <∞ =⇒ Θmn(θ) = Pmn (cos θ), n ≥ |m|

R(L) = 0. =⇒ Rk(r) = jn (λnkr) , k = 1, 2, . . .

here, λnk = αnk/L and αnk is the kth root of nth orderspherical Bessel function, jn(x).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Initial-value problem for heat flow in a sphere

I The remaining ODE for t has the solutionTkn(t) ∝ e−(cλn

k )2t

I General solution:

u(r, θ, φ, t) =∞∑k=1

∞∑n=0

n∑m=−n

Akmne−(cλn

k )2tjn(λnkr)Pmn (cos θ)eimφ

or

u(r, θ, φ, t) =∞∑k=1

∞∑n=0

n∑m=−n

akmne−(cλn

k )2tjn(λnkr)Ymn (θ, φ)

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

Initial-value problem for heat flow in a sphere

I The generalized Fourier coefficient

akmn =

∫ L0

∫ 2π

0

∫ π0f(r, θ, φ)jn(λnkr)Y

mn (θ, φ) r2 sin θ dθ dφ dr∫ L

0

∫ 2π

0

∫ π0|jn(λnkr)Y

mn (θ, φ)|2 r2 sin θ dθ dφ dr

,

k = 1, 2, . . . , n = 0, 1, 2, . . . ,m = 0,±1,±2, . . . ,±n.

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

The three-dimensional wave equation

Consider the Dirichlet’s problem for wave equation in a sphere

I PDE: ∂2u∂t2

=

c2(

1r2

∂∂r

(r2 ∂u

∂r

)+ 1

r2 sin θ∂∂θ

(sin θ ∂u

∂θ

)+ 1

r2 sin2 θ∂2u∂φ2

),

0 < r < L, 0 ≤ θ < π, 0 ≤ φ < 2π, t > 0.I Boundary conditions:

I periodic boundary: u(r, θ, φ, t) = u(r, θ, φ+ 2π, t).I u(L, θ, φ, t) = 0.

I Regularity condition: |u| <∞ inside the sphere.I Initial condition:

I u(r, θ, φ, 0) = f(r, θ, φ).I ∂u

∂t (r, θ, φ, 0) = g(r, θ, φ).I Separation of variables : u = T (t)R(r)Θ(θ)Φ(φ).

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

The three-dimensional wave equation

I ODEsT ′′ + c2λ2T = 0 t > 0

Φ′′ +m2Φ = 0 0 ≤ φ < 2π

Θ′′ + cot θΘ′ + (n(n+ 1)−m2 csc2 θ)Θ = 0, 0 ≤ θ < π

r2R′′ + 2rR′ + (λ2r2 − n(n+ 1))R = 0 0 < r < L.

I B.C. :Φ(0) = Φ(2π), =⇒ Φm(φ) = Ame

imφ,m = 0,±1,±2, . . .

|Θ| <∞ =⇒ Θmn(θ) = Pmn (cos θ), n ≥ |m|

R(L) = 0. =⇒ Rk(r) = jn (λnkr) , k = 1, 2, . . .

I ODE for t has the solution T (t) = A cos cλnkt+B sin cλnkt

Y. K. Goh

Boundary Value Problems in Spherical Coordinates

The three-dimensional wave equation

I General solution: u(r, θ, φ, t) =∞∑k=1

∞∑n=0

n∑m=−n

(akmn cos cλnkt+ bkmn sin cλnkt)jn(λnkr)Ymn (θ, φ).

I Fourier coefficients:

akmn =

∫ L0

∫ 2π

0

∫ π0f(r, θ, φ)jn(λnkr)Y

mn (θ, φ) r2 sin θ dθ dφ dr∫ L

0

∫ 2π

0

∫ π0|jn(λnkr)Y

mn (θ, φ)|2 r2 sin θ dθ dφ dr

,

bkmn =

∫ L0

∫ 2π

0

∫ π0g(r, θ, φ)jn(λnkr)Y

mn (θ, φ) r2 sin θ dθ dφ dr

cλnk∫ L

0

∫ 2π

0

∫ π0|jn(λnkr)Y

mn (θ, φ)|2 r2 sin θ dθ dφ dr

,

k = 1, 2, . . . , n = 0, 1, 2, . . . ,m = 0,±1,±2, . . . ,±n.Y. K. Goh

Boundary Value Problems in Spherical Coordinates

THE END

Y. K. Goh

Boundary Value Problems in Spherical Coordinates