breitbach sem

Upload: kamran-jamil

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Breitbach Sem

    1/38

    Chemical Approaches

    to the Detection of ExplosivesAnthony S. Breitbach

    Under the supervision ofHelen E. Blackwell, PhD

    February 12, 2009

  • 8/3/2019 Breitbach Sem

    2/38

    Outline

    2

    Explosives

    Explosive Detection

    Colorimetric Tests

    Amplifying Fluorescent Polymers

    Enzymatic-Facilitated Chemical Sensors

  • 8/3/2019 Breitbach Sem

    3/38

    Explosives are Classified by Performance

    Singh, S.J. Hazard. Mater. 2007, 144, (1-2), 15-28.3

    ExplosivesEnergetic material that can undergo a very rapid

    combustion releasing large amounts of energy .

    Low

    Subsonic Combustion

    High

    Supersonic Combustion

    Pyrotechnics Propellants Primary Secondary

    Initiators Main charge

    Pb(N3)2

    TNT

  • 8/3/2019 Breitbach Sem

    4/38

    Why are Compounds Explosive?

    4

    Exothermic combustion

    Release large amounts of energy and gas

    Internal oxidant

    N-oxides (NO, NO2, NO3) as source of O

    Nitromethane (NM)cH [kJ/mol] -709.2

    Combustion velocity [km/s] 6.49

    MethanecH [kJ/mol] -890.8

    Combustion velocity [km/s] 1.4-1.64

    Akhavan, J. Kirk-Othmer Encycl. Chem Technol., 5th ed.; Wiley: New York, 2005; Vol. 10, pp 719-744.

  • 8/3/2019 Breitbach Sem

    5/38

    Nitro Groups Easily Incorporated By Nitration

    5

    N-nitration

    Aryl-nitration

    O-nitration

    Nitramines

    Nitroaromatics

    Nitrate Esters

    Nitration via electrophilic substitution with nitronium ion

    Olah, G. A. Nitration Methods and Mechanisms; VCH Publishers: New York, 1989.

  • 8/3/2019 Breitbach Sem

    6/38

    The Usual Suspects

    6

    Nitro

    Aliphatics

    Acid Salts

    Nitro

    AromaticsNitrate Esters

    Peroxides

    Nitramines

    2,4,6-trinitroluene (TNT)

    DV 7.07km/s

    Nitromethane (NM)

    DV 6.49 km/s

    Ammonium Nitrate

    Triacetone triperoxide (TATP)

    DV 5.2 km/s

    Hexamethylene triperoxide diamine (HMTD)

    DV 4.5 km/s

    Nitroglycerine(NG)

    DV 8.08 km/s

    Trinitro-triazacylohextane (RDX)

    DV 8.63 km/s

    Keshavarz, M. H.J. Hazard. Mater. 2007, 141, (3), 536-539.

  • 8/3/2019 Breitbach Sem

    7/38

    Detection Needed for Safety

    7

    Airports reduced number

    of scheduled flights by

    30% to allow increase

    time for security checks

    120 million

    unexploded landmines

    in 62 countries

    unaccounted for

    Kill or injure 30,000

    people each year

    TNT classed as toxic at >2ng/mL

    Forensics

    Homeland Security Global de-mining

    Environmental Detection and Remediation

    Singh, S.J. Hazard. Mater. 2007, 144, (1-2), 15-28.

  • 8/3/2019 Breitbach Sem

    8/38

    Canines Are Unreliable and Costly

    8

    PROS: Display high selectivity and sensitivity (up to 500ppt)

    CONS: Unreliable, high cost and maintenance

    High demand for new approaches to explosive detection

    Habib, M. K. Biosens. Bioelectron. 2007, 23, (1), 1-18.

  • 8/3/2019 Breitbach Sem

    9/38

    Chemosensors Lead the Way

    9

    Dilemma types of radiation that yield

    specific info about molecules and bonds

    cannot penetrate objects

    Trace

    Detectors

    Explosives

    Detectors

    Bulk

    Detectors

    Mass

    SensorsBiosensorsChemosensors

    Singh, S.J. Hazard. Mater. 2007, 144, (1-2), 15-28. Yinon, J.Anal. Chem. 2003, 75, (5), 98A-105A.

  • 8/3/2019 Breitbach Sem

    10/38

    Difficulties for Detection

    10

    Low vapor pressure

    Vapor pressure depression

    Mixtures

    Binders

    Packaging

    Thermal vaporization causes degradation

    Lack characteristic absorption bands

    Increased usage of non-conventional explosives

    Explosive

    Vapor Pressure

    [ppt (v/v)]

    Chloroform 500,000,000

    EGDN 100,000,000

    NG 580,000

    DNT 56,000

    TNT 9,500

    PETN 18

    RDX 6

    Increasing Difficulty for Detection

    Kolla, P.Angew. Chem. Int. Ed. 1997, 36, (8), 800-811.

  • 8/3/2019 Breitbach Sem

    11/38

  • 8/3/2019 Breitbach Sem

    12/38

    Indirect Colorimetric Detection

    12

    Indirect detection using color reactions

    Commercial kits available

    PROS: simple, fast (30s), portable, disposable, versatile (>30 explosives), LOD 25-500ng

    CONS: selectivity (false positives), poor sensitivity (requires large sample size)

    Field Forensics, Inc.: ELITE Explosive Detector. http://www.fieldforensics.com/ (accessed Feb 2009)

  • 8/3/2019 Breitbach Sem

    13/38

    Nitroaromatics detected by reacting with nucleophiles to form colored JM complex.

    Jackson-Meisenheimer (JM) Complex

    13

    -OH -OH

    2,4,6-trinitrotoluene (TNT) 2,6-dinitrotoluene (DNT)

    C3 JM Complex C1 JM ComplexTNT

    Chen, H.; et. al.J. Am. Soc. Mass. Spectrom. 2004, 15, (7) 998-1004.

  • 8/3/2019 Breitbach Sem

    14/38

    Nitrite Assayed with Griess Test

    14

    Nitrite reduced to nitrosonium ion by treatment with reductant

    Nitrate esters and nitramines undergo alkaline hydrolysis to release nitrite

    RDX

    Jenkins, T. F.; et. al. Talanta 1992, 39, (4), 419-428.

  • 8/3/2019 Breitbach Sem

    15/38

    Nitosonium Reacts to Colored Azo

    15

    RDX

    CON: Interference with

    other nitrites is an issue

    Sulfanilic Acid Diazonium ion

    1-naphthylamine

    Colored Azo

    Jenkins, T. F.; et. al. Talanta 1992, 39, (4), 419-428.

  • 8/3/2019 Breitbach Sem

    16/38

    Multiple Explosives Detection

    16

    Color reactions can be built into arrays and coupled with pattern detection

    to build a nano-nose which mimics the olfactory sensing of dogs.

    Color Reagents

    Optical Fiber

    Pattern Response

    to Explosives

    Yinon, J.Anal. Chem. 2003, 75, (5), 98A-105A.

  • 8/3/2019 Breitbach Sem

    17/38

    Fluorescent Quenching for Detection

    17

    Exploits electron accepting capability of nitro-containing explosives

    HOMO

    LUMO

    HOMO

    LUMO

    LUMO

    ERed: NB (-1.15V) < DNT (-0.9V) < TNT (-0.7V)Increased Reduction Potential =

    Increased Quenching

    Toal, S. J.; et. al.J. Mater. Chem 2006, 16, (28), 2871-2883.

  • 8/3/2019 Breitbach Sem

    18/38

    Amplified Fluorescent Quenching

    18

    Analyte

    Analyte

    Excited Fluorophores Quenched Fluorophore

    Excited Fluorescent Polymer Amplified Quenched Polymer

    Yinon, J.Anal. Chem. 2003, 75, (5), 98A-105A.

  • 8/3/2019 Breitbach Sem

    19/38

    Conjugated Fluorescent Polymers

    19

    Polyacetylenes Poly(p-phenylene-

    vinylenes)Poly(p-phenylene-

    ethynylenes)

    Polymeric

    Porphyrins

    Polysilanes Polymetalloles

    Toal, S. J.; et. al.J. Mater. Chem 2006, 16, (28), 2871-2883.

  • 8/3/2019 Breitbach Sem

    20/38

    Polymetalloles Have Unique Electronics

    20

    Metallacyclopenta-2,4-diene moiety

    Highly fluorescent

    Highly quenchable

    Tunable electronics

    2,5-diphenylsilol from ab initio calculations at the HF/6-31G* level

    HOMO LUMO

    *

    *

    Toal, S. J.; et. al.J. Mater. Chem 2006, 16, (28), 2871-2883. Sohn, H.; et. al.JACS 2003, 125, (13), 3821-3830.

  • 8/3/2019 Breitbach Sem

    21/38

    +TNT

    29Si NMR Polymetallole

    Downfield

    Shift

    Polymetalloles Form Selective Helix

    21

    Crystal structures and

    models show polymetallolesform selective helices

    29Si NMR studies indicate

    weak Lewis Acid-Lewis Base

    interaction

    Sohn, H.; et. al.JACS 2003, 125, (13), 3821-3830. Sanchez, J. C.; et. al. Chem. Mater. 2007, 19, (26), 6459-6470.ppm

  • 8/3/2019 Breitbach Sem

    22/38

    Dehydrocoupling of Dihydrometallole

    22

    Poly(tetraphenylsilol)

    [PSi]

    Toal, S. J.; et. al.J. Mater. Chem 2006, 16, (28), 2871-2883. Sohn, H.; et. al.JACS 2003, 125, (13), 3821-3830.

  • 8/3/2019 Breitbach Sem

    23/38

    Quenching Efficiency Depends on Explosive

    23

    Quenching

    Efficiency [M-1]

    TNT DNT NB

    4340 2420 1200

    Quenching efficiency directly related to reduction potential:

    TNT (-0.7V) > DNT (-0.9V) > NB (-1.15V)

    Relative

    Fluorescence

    Quenching

    Concentration of Explosive [M]

    Poly(tetraphenylsilol)

    [PSi]

    TNT

    DNT NB

    Sohn, H.; et. al.JACS 2003, 125, (13), 3821-3830.

  • 8/3/2019 Breitbach Sem

    24/38

    PROS: excellent sensitivity and selectivity, cheap, easily synthesized,

    readily fielded for on-site use, and nontoxic

    CONS: limited to nitroaromatics, interference from UV absorbers

    PSi Detects Nitroaromatics

    24

    LOD [ng]DNT 50

    TNT 30

    Poly(tetraphenylsilol)

    [PSi]

    Toal, S. J.; et. al.J. Forensic Sci. 2007, 52, (1), 79-83.

  • 8/3/2019 Breitbach Sem

    25/38

    PSiV More Delocalized and Stable

    25

    Metallole-vinylene polymers increased delocalization across the backbone and

    is Si-C more thermally stable vs Si-Si bridge (> by 150 kJ/mol)

    Si-vinylene easily incorporated with hydrosilylation.

    Poly(tetraphenylsilol-vinylene)

    [PSiV]

    Sanchez, J. C.; et. al. Chem. Mater. 2007, 19, (26), 6459-6470.

    60-70% Yield

  • 8/3/2019 Breitbach Sem

    26/38

    HOMO and LUMO Energies Calculated for Explosives and

    Trimers PSiV and PSFV at the B3LYP/631G* Level of Theory

    LUMO

    HOMO

    SOMO

    4.6eV3.5eV

    PSFV, Better Orbital Energy Matching

    26

    UV

    Larger Band Gap = Higher Energy = Better Reduction Driving Force=

    = Greater Sensitivity?

    Poly(silafluorene-

    vinylene) [PSFV]

    Sohn, H.; et. al.JACS 2003, 125, (13), 3821-3830. Sanchez, J. C.; et. al. Chem. Mater. 2007, 19, (26), 6459-6470.

  • 8/3/2019 Breitbach Sem

    27/38

    PSiV and PSFV Have Increased Quenching

    27

    Quenching Efficiency [M-1]in Toluene

    Polymer % Yield MW (GPC) n TNT DNT RDX

    PSi 88 1500 4 4300 2400 x

    PSiV 73 4000 10 10500 4300 x

    PSFV 66 4300 21 10200 5500 x

    Poly(tetraphenylsilol)

    [PSi]

    Poly(tetraphenylsilol-vinylene)

    [PSiV]

    Poly(silafluorene-vinylene)

    [PSFV]

    Greater degree of polymerization

    Greater quenching efficiency

    Nitramine, RDX, not detected

    Sanchez, J. C.; et. al. Chem. Mater. 2007, 19, (26), 6459-6470.

  • 8/3/2019 Breitbach Sem

    28/38

    PSiV and PSFV More Accessible

    28

    Vinylene and silafluorene functionalities create more open helices than PSi

    allowing greater access to Si centers.PSi PSiV PSFV

    Sanchez, J. C.; et. al. Chem. Mater. 2007, 19, (26), 6459-6470.

  • 8/3/2019 Breitbach Sem

    29/38

    PSFV More Ordered in Solid-State

    29

    PSFV red shifts in solid-state

    Framework more ordered

    Interchain - stacking

    RelativeFluorescence

    Intensity

    Re

    lativeFluorescence

    Intensity

    Solution

    Solid

    Solution

    Solid

    [PSiV] [PSFV]

    Sanchez, J. C.; et. al. Chem. Mater. 2007, 19, (26), 6459-6470.

    No Change

    RED Shift

  • 8/3/2019 Breitbach Sem

    30/38

    PSFV Detects RDX in Solid-State

    30

    Expl. PSiV PSFVPA 2 2

    TNT 2 0.3

    DNT 3 2

    RDX X 2

    HMX X 3PETN X 2

    TNG X 3

    PSFV detected nitramines and nitrate esters in solid-state

    PSFV detected TNT from real-life contaminated samples

    PSFV more susceptible to interferents (benzophenone 3 ng/cm2)

    Solid-State LOD [ng cm-2]

    Nitroaromatics

    Nitramines

    Nitrate Esters

    Sanchez, J. C.; et. al. Chem. Mater. 2007, 19, (26), 6459-6470.

  • 8/3/2019 Breitbach Sem

    31/38

    Fido, Worlds Most Sensitive

    31

    LOD in femto-gram

    range (ppq)

    Detection of vapor and

    particulates

    Used in Iraq

    ICX Technologies: Amplifying Fluorescent Polymers Fido Detector. http://www.icxt.com (accessed Feb 2009)

  • 8/3/2019 Breitbach Sem

    32/38

    Peroxides a Challenge for Detection

    32

    Easily Synthesized

    As powerful as TNTMore sensitive

    Difficult to detect

    Increased usage by terrorists

    Schulte-Ladbeck, R.; et. al.Anal. Bioanal. Chem. 2006, 386, (3), 559-565.Dubnikova, F.; et. al.JACS 2005, 127, (4), 1146-1159.

  • 8/3/2019 Breitbach Sem

    33/38

    TATP Detected Indirectly with POD

    33

    TATP

    2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS) Colored Radical Cation

    H+

    Schulte-Ladbeck, R.; et. al.Anal. Bioanal. Chem. 2006, 386, (3), 559-565.

  • 8/3/2019 Breitbach Sem

    34/38

    ABTS Oxidizes to Colored Cation

    34Kadnikova, E. N.; et al.J. Mol. Catal. B: Enzym. 2002, 18, (1-3), 39-48.

  • 8/3/2019 Breitbach Sem

    35/38

    ACRO P.E.T.

    35

    Acid catalyzed decomposition

    Horse-radish peroxidase

    ABTS color detection

    PRO: high selectivity, fast, cheap, disposable

    CON: moderate sensitivity (mg), interference

    TATP

    Itzhaky, H.; Keinan, E. Method and Kit For the Detection of Explosives. U.S. Patent 6,767,717, 2004.ACRP Security Technologies: ACRO-P.E.T. www.acrosec.com/index.asp (accessed Feb 2009)

  • 8/3/2019 Breitbach Sem

    36/38

    Summary

    36

    Chemical approaches offer a more

    reliable solution to explosive detection

    Future Directions

    More selective and sensitive color

    reagents and fluorescent polymers

    Incorporation of bio-selective elements

    Arrays for Pattern Detection

    Steinfeld, J. I.; et. al.Annu. Rev. Phys. Chem. 1998, 49, (1), 203-232. 48.

    Yeah, but it doesnt

    smell like a bomb

  • 8/3/2019 Breitbach Sem

    37/38

    Acknowledgements

    37

    Special Thanks:

    Prof. Helen Blackwell

    Blackwell group

    Practice talk attendeesDrew Palmer

    Joey Stringer

    Margie Mattmann

    Reto Frei

    Christie McInnis

    Aaron Crapster

    Teresa Beary

    JP Gerdt

    Melissa Mennig

  • 8/3/2019 Breitbach Sem

    38/38