brief contents - ee.cityu.edu.hkhcso/toc.pdf · chapter 8 wireless localization using...

28
BRIEF CONTENTS PREFACE xxxiii CONTRIBUTORS xxxv PART I FUNDAMENTALS OF POSITION LOCATION CHAPTER 1 WIRELESS POSITIONING SYSTEMS: OPERATION, APPLICATION, AND COMPARISON 3 Seyed A. (Reza) Zekavat, Michigan Tech University Stuti Kansal, Michigan Tech University Allen H. Levesque, Worcester Polytechnic Institute CHAPTER 2 SOURCE LOCALIZATION: ALGORITHMS AND ANALYSIS 25 H. C. So, City University of Hong Kong CHAPTER 3 SECURITY ISSUES FOR POSITION LOCATION 67 Jeong Heon Lee, Virginia Tech R. Michael Buehrer, Virginia Tech CHAPTER 4 CHANNEL MODELING AND ITS IMPACT ON LOCALIZATION 105 Seyed A. (Reza) Zekavat, Michigan Technological University CHAPTER 5 COMPUTATIONAL METHODS FOR LOCALIZATION 137 Fardad Askarzadeh, Worcester Polytechnic Institute Yunxing Ye, Worcester Polytechnic Institute Umair I. Khan, Worcester Polytechnic Institute Ferit Ozan Akgul, Worcester Polytechnic Institute Kaveh Pahlavan, Worcester Polytechnic Institute Sergey N. Makarov, Worcester Polytechnic Institute v COPYRIGHTED MATERIAL

Upload: others

Post on 21-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • BRIEF CONTENTS

    PREFACE xxxiii

    CONTRIBUTORS xxxv

    PART I FUNDAMENTALS OF POSITION LOCATION

    CHAPTER 1 WIRELESS POSITIONING SYSTEMS: OPERATION, APPLICATION, AND COMPARISON 3

    Seyed A. (Reza) Zekavat, Michigan Tech UniversityStuti Kansal, Michigan Tech UniversityAllen H. Levesque, Worcester Polytechnic Institute

    CHAPTER 2 SOURCE LOCALIZATION: ALGORITHMS AND ANALYSIS 25

    H. C. So, City University of Hong Kong

    CHAPTER 3 SECURITY ISSUES FOR POSITION LOCATION 67

    Jeong Heon Lee, Virginia TechR. Michael Buehrer, Virginia Tech

    CHAPTER 4 CHANNEL MODELING AND ITS IMPACT ON LOCALIZATION 105

    Seyed A. (Reza) Zekavat, Michigan Technological University

    CHAPTER 5 COMPUTATIONAL METHODS FOR LOCALIZATION 137

    Fardad Askarzadeh, Worcester Polytechnic InstituteYunxing Ye, Worcester Polytechnic InstituteUmair I. Khan, Worcester Polytechnic InstituteFerit Ozan Akgul, Worcester Polytechnic InstituteKaveh Pahlavan, Worcester Polytechnic InstituteSergey N. Makarov, Worcester Polytechnic Institute

    v

    ftoc01.indd vftoc01.indd v 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

    COPY

    RIGH

    TED

    MAT

    ERIA

    L

  • vi BRIEF CONTENTS

    PART II TOA- AND DOA-BASED POSITIONING

    CHAPTER 6 FUNDAMENTALS OF TIME-OF-ARRIVAL-BASED POSITION LOCATION 175

    R. Michael Buehrer, Virginia TechSwaroop Venkatesh, Virginia Tech

    CHAPTER 7 A REVIEW ON TOA ESTIMATION TECHNIQUES AND COMPARISON 213

    Mohsen Pourkhaatoun, Michigan TechSeyed A. (Reza) Zekavat, Michigan Tech

    CHAPTER 8 WIRELESS LOCALIZATION USING ULTRA-WIDEBAND SIGNALS 245

    Liuqing Yang, Colorado State UniversityHuilin Xu, QUALCOMM Incorporated

    CHAPTER 9 AN INTRODUCTION TO DIRECTION-OF-ARRIVAL ESTIMATION TECHNIQUES VIA ANTENNA ARRAYS 279

    Seyed A. (Reza) Zekavat, Michigan Tech

    CHAPTER 10 SMART ANTENNAS FOR DIRECTION-OF-ARRIVAL INDOOR POSITIONING APPLICATIONS 319

    Stefano Maddio, University of FlorenceAlessandro Cidronali, University of FlorenceGianfranco Manes, University of Florence

    PART III RECEIVED SIGNAL STRENGTH-BASED POSITIONING

    CHAPTER 11 FUNDAMENTALS OF RECEIVED SIGNAL STRENGTH-BASED POSITION LOCATION 359

    Jeong Heon Lee, Virginia TechR. Michael Buehrer, Virginia Tech

    CHAPTER 12 ON THE PERFORMANCE OF WIRELESS INDOOR LOCALIZATION USING RECEIVED SIGNAL STRENGTH 395

    Jie Yang, Stevens Institute of TechnologyYingying Chen, Stevens Institute of TechnologyRichard P. Martin, Rutgers UniversityWade Trappe, Rutgers UniversityMarco Gruteser, Rutgers University

    ftoc01.indd viftoc01.indd vi 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • BRIEF CONTENTS vii

    CHAPTER 13 IMPACT OF ANCHOR PLACEMENT AND ANCHOR SELECTION ON LOCALIZATION ACCURACY 425

    Yingying Chen, Stevens Institute of TechnologyJie Yang, Stevens Institute of TechnologyWade Trappe, Rutgers UniversityRichard P. Martin, Rutgers University

    CHAPTER 14 KERNEL METHODS FOR RSS-BASED INDOOR LOCALIZATION 457

    Piyush Agrawal, University of UtahNeal Patwari, University of Utah

    CHAPTER 15 RF FINGERPRINTING LOCATION TECHNIQUES 487

    Rafael Saraiva Campos, Universidade do Estado do Rio de JaneiroLisandro Lovisolo, Universidade do Estado do Rio de Janeiro

    PART IV LOS/NLOS LOCALIZATION–IDENTIFICATION–MITIGATION

    CHAPTER 16 AN INTRODUCTION TO NLOS IDENTIFICATION AND LOCALIZATION 523

    Wenjie Xu, Michigan Technological UniversityZhonghai Wang, Michigan Technological UniversitySeyed A. (Reza) Zekavat, Michigan Technological University

    CHAPTER 17 NLOS MITIGATION METHODS FOR GEOLOCATION 557

    Joni Polili Lie, Nanyang Technological UniversityChin-Heng Lim, Nanyang Technological UniversityChong-Meng Samson See, DOS National Laboratories

    CHAPTER 18 MOBILE POSITION ESTIMATION USING RECEIVED SIGNAL STRENGTH AND TIME OF ARRIVAL IN MIXED LOS/NLOS ENVIRONMENTS 583

    Bamrung Tau Sieskul, University of VigoFeng Zheng, Leibniz University HannoverThomas Kaiser, University of Duisburg Essen

    PART V MOBILITY AND TRACKING USING THE KALMAN FILTER

    CHAPTER 19 IMPLEMENTATION OF KALMAN FILTER FOR LOCALIZATION 629

    Ossama Abdelkhalik, Michigan Technological University

    ftoc01.indd viiftoc01.indd vii 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • viii BRIEF CONTENTS

    CHAPTER 20 REMOTE SENSING TECHNOLOGIES FOR INDOOR APPLICATIONS 649

    Seong-hoon Peter Won, University of WaterlooWilliam Wael Melek, University of WaterlooFarid Golnaraghi, Simon Fraser University

    CHAPTER 21 MOBILE TRACKING IN MIXED LINE-OF-SIGHT/NON-LINE-OF-SIGHT CONDITIONS: ALGORITHMS AND THEORETICAL LOWER BOUND 685

    Liang Chen, Tampere University of TechnologySimo Ali-Löytty, Tampere University of TechnologyRobert Piché, Tampere University of TechnologyLenan Wu, Southeast University

    CHAPTER 22 THE KALMAN FILTER AND ITS APPLICATIONS IN GNSS AND INS 709

    Emanuela Falletti, Istituto Superiore Mario BoellaMarco Rao, Università di PalermoSimone Savasta, Politecnico di Torino

    PART VI NETWORK LOCALIZATION

    CHAPTER 23 COLLABORATIVE POSITION LOCATION 755

    R. Michael Buehrer, Virginia TechTao Jia, Virginia Tech

    CHAPTER 24 POLYNOMIAL-BASED METHODS FOR LOCALIZATION IN MULTIAGENT SYSTEMS 813

    Iman Shames, The Australian National University and National ICT AustraliaBariş Fidan, University of WaterlooBrian D. O. Anderson, The Australian National University and National ICT AustraliaHatem Hmam, Electronic Warfare Radar Division, Defence Science & Technology Organisation

    CHAPTER 25 BELIEF PROPAGATION TECHNIQUES FOR COOPERATIVE LOCALIZATION IN WIRELESS SENSOR NETWORKS 837

    Vladimir Savic, Polytechnic University of MadridSantiago Zazo, Polytechnic University of Madrid

    CHAPTER 26 ERROR CHARACTERISTICS OF AD HOC POSITIONING SYSTEMS 871

    Dragoş Niculescu, University Politehnica of BucharestBdri Nath, Rutgers University

    ftoc01.indd viiiftoc01.indd viii 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • BRIEF CONTENTS ix

    CHAPTER 27 SELF-LOCALIZATION OF UAV FORMATIONS USING BEARING MEASUREMENTS 899

    Iman Shames, The Australian National University and National ICT AustraliaBariş Fidan, University of WaterlooBrian D. O. Anderson, The Australian National University and National ICT AustraliaHatem Hmam, Electronic Warfare Radar Division, Defence Science & Technology Organisation

    PART VII APPLICATIONS

    CHAPTER 28 OVERVIEW OF GNSS SYSTEMS 923

    Fabio Dovis, Politecnico di TorinoPaolo Mulassano, Istituto Superiore Mario BoellaFabrizio Dominici, Istituto Superiore Mario Boella

    CHAPTER 29 DIGITAL SIGNAL PROCESSING IN GNSS RECEIVERS 975

    Maurizio Fantino, Istituto Superiore Mario BoellaLetizia Lo Presti, Politecnico di TorinoMarco Pini, Istituto Superiore Mario Boella

    CHAPTER 30 RFID-BASED AUTONOMOUS MOBILE ROBOT NAVIGATION 1023

    Sunhong Park, Korea Automotive Technology InstituteGuillermo Enriquez, Waseda UniversityShuji Hashimoto, Waseda University

    CHAPTER 31 CELLULAR-BASED POSITIONING FOR NEXT-GENERATION TELECOMMUNICATION SYSTEMS 1055

    Po-Hsuan Tseng, National Chiao Tung UniversityKai-Ten Feng, National Chiao Tung University

    CHAPTER 32 POSITIONING IN LTE 1081

    Ari Kangas, Ericsson ABIana Siomina, Ericsson ABTorbjörn Wigren, Ericsson AB

    CHAPTER 33 AUTOMATED WILDLIFE RADIO TRACKING 1129

    Robert B. MacCurdy, Cornell UniversityRichard M. Gabrielson, Cornell UniversityKathryn A. Cortopassi, Cornell University

    ftoc01.indd ixftoc01.indd ix 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • x BRIEF CONTENTS

    CHAPTER 34 AN INTRODUCTION TO THE FUNDAMENTALS AND IMPLEMENTATION OF WIRELESS LOCAL POSITIONING SYSTEMS 1169

    Seyed A. (Reza) Zekavat, Michigan Tech

    INDEX 1195

    MATLAB codes for various chapters in this book can be found online at ftp://ftp.wiley.com/public/sci_tech_med/matlab_codes.

    ftoc01.indd xftoc01.indd x 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • DETAILED CONTENTS

    PREFACE xxxiii

    CONTRIBUTORS xv

    PART I FUNDAMENTALS OF POSITION LOCATION

    CHAPTER 1 WIRELESS POSITIONING SYSTEMS: OPERATION, APPLICATION, AND COMPARISON 3

    1.1 Introduction 31.2 Basic Methods Used in Positioning Systems 5

    1.2.1 TOA Estimation 51.2.2 Time-Difference-of-Arrival (TDOA) Estimation 71.2.3 DOA Estimation 81.2.4 RSSI 81.2.5 LOS versus NLOS 81.2.6 Positioning, Mobility, and Tracking 81.2.7 Network Localization 9

    1.3 Overview of Positioning Systems 91.3.1 GPS 9

    Distance Measurement 10Satellite Positions 12

    1.3.2 Assisted Global Positioning System (AGPS or Assisted GPS) 121.3.3 INS 13

    INS Classifi cation 141.3.4 Integrated INS and GPS 141.3.5 RFID 14

    RFID as a Positioning System 151.3.6 WLPS 151.3.7 TCAS 171.3.8 WLAN 171.3.9 Vision Positioning System 181.3.10 Radar 18

    1.4 Comparison of Basic Methods and Positioning Systems 181.5 Conclusion, Summary, and Future Applications 19 References 21

    xi

    ftoc02.indd xiftoc02.indd xi 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • xii DETAILED CONTENTS

    CHAPTER 2 SOURCE LOCALIZATION: ALGORITHMS AND ANALYSIS 25

    2.1 Introduction 262.2 Measurement Models and Principles for Source Localization 28

    2.2.1 TOA 282.2.2 TDOA 302.2.3 RSS 312.2.4 DOA 33

    2.3 Algorithms for Source Localization 342.3.1 Nonlinear Approaches 34

    NLS 34ML 40

    2.3.2 Linear Approaches 44LLS 44WLLS 50Subspace 53

    2.4 Performance Analysis for Localization Algorithms 552.4.1 CRLB Computation 562.4.2 Mean and Variance Analysis 58

    2.5 Conclusion 63 Acknowledgment 64 References 64 Appendix 66

    CHAPTER 3 SECURITY ISSUES FOR POSITION LOCATION 67

    3.1 Introduction and Motivation 673.1.1 Why Is Location Security Important? 683.1.2 Defi nition of Position Location Security 693.1.3 Relationship to Network Security 69

    3.2 Types of Position Location Attacks 693.2.1 APS 70

    Modifi cation of Attack Position 70Disruption of Attack Position 72Recent Work 73

    3.2.2 ASS 73Modifi cation of Legitimate Position 74Disruption of Legitimate Position 74Recent Work 74

    3.2.3 Location Disclosure 75Recent Work 76

    3.3 Impact and Analysis of Location Attacks 763.3.1 Adversary and Simulation Models 773.3.2 Optimality Criterion (Risk Measure) 803.3.3 Estimator Error Behavior under Attack 80

    Impact of Location Attacks 81Impact of Incorrect PL Estimation 83

    3.3.4 Analysis of the Estimator Error Behavior 843.4 Attack Detection and Localization 86

    3.4.1 Exploiting Geometric Features of Location Error 89Residual Error Map and Node Convex Hull (NCH) 89GF 92

    ftoc02.indd xiiftoc02.indd xii 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • DETAILED CONTENTS xiii

    3.4.2 Attack Detection 92Statistical Detection Technique 93Geometric Pattern Matching for Attack Detection 95Performance Evaluation 96

    3.4.3 Adversary Localization 98Noncooperative Position Location 98Handling Position Outliers 99Performance Evaluation 99

    3.5 Conclusion and Continuing Work 102 References 102

    CHAPTER 4 CHANNEL MODELING AND ITS IMPACT ON LOCALIZATION 105

    4.1 Introduction 1054.2 Channel Model 1074.3 Important Statistics for Received Signal Strength (RSS) 1094.4 Important Statistics for TOA, TDOA, and DOA 113

    4.4.1 PDP Statistics and Impact on Localization and Radio Design 1144.4.2 PSP Statistics and Impact on Localization and Radio Design 1204.4.3 PAP Statistics and Impact on Localization and Radio Design 124

    4.5 Summary of Different Channel Categories 1254.6 Statistics of Amplitude, Phase, and TOA 126

    4.6.1 Fade Amplitude 1264.6.2 Fade-Phase Statistics 1274.6.3 TOA 128

    4.7 Other Channel Models 1294.7.1 Geometric-Based Single-Bounce Statistical Channel Modeling 1294.7.2 Circular and Elliptical Geometric Models 1294.7.3 Rough Surface Channel Modeling 1304.7.4 Near-Ground Channel Modeling 1304.7.5 Foliage Effects 132

    4.8 Conclusions 133 Acknowledgments 133 References 133

    CHAPTER 5 COMPUTATIONAL METHODS FOR LOCALIZATION 137

    5.1 Importance of Channel Modeling 1375.2 Important Channel Model Parameters for Localization 1405.3 TOA-Based Techniques 142

    5.3.1 Challenges for TOA Techniques 1425.3.2 Simulation and Measurement Techniques 1445.3.3 Channel Measurement Technology 1465.3.4 RT Algorithm 1475.3.5 FDTD Method 148

    5.4 Computational Method and the Effect of Micrometals 1515.4.1 FDTD and the Effects of Micrometals 1515.4.2 2-D FDTD Simulation Scenarios 1535.4.3 Comparison of Computation with Empirical Results 1565.4.4 Ray Optics and Effects of Micrometals 157

    Analysis of Diffraction around the Edges 159Comparison of Computation with Empirical Results 160

    ftoc02.indd xiiiftoc02.indd xiii 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • xiv DETAILED CONTENTS

    5.5 FDTD and the Effects of the Human Body 1635.5.1 Measurement of Wideband Characteristics 1645.5.2 Computational Analysis of the Effects of the Human Body 166

    An Overview of Ansoft HFSS 167Analysis of Path Loss Models 167Experimental Procedure Using the Ansoft HFSS Suite 168

    5.6 Conclusion 170 Acknowledgments 170 References 171 Appendix 172

    PART II TOA- AND DOA-BASED POSITIONING

    CHAPTER 6 FUNDAMENTALS OF TIME-OF-ARRIVAL-BASED POSITION LOCATION 175

    6.1 Introduction 1756.2 TDOA Positioning 176

    6.2.1 Geometric Interpretation 1776.2.2 Uplink versus Downlink Measurements 180

    6.3 TOA Positioning 1806.3.1 Geometric Interpretation 181

    6.4 TDOA versus TOA 1836.5 TOA versus TDOA in the Presence of Noise 1846.6 Linearization 187

    6.6.1 Taylor Series Approximation 1876.6.2 Differencing 1896.6.3 Linearization of TDOA 196

    6.7 Pseudorange 1966.8 The Impact of NLOS Propagation 199

    6.8.1 Impact of NLOS Bias Errors 1996.8.2 Discarding NLOS Range Estimates 2006.8.3 NLOS Identifi cation 2026.8.4 NLOS Mitigation 205

    6.9 Handling NLOS Errors: a Linear Programming Approach 2066.9.1 LOS Range Estimates 2066.9.2 NLOS Range Estimates 2076.9.3 Combining the LOS and NLOS Range Information 208

    6.10 Conclusions 211 References 211

    CHAPTER 7 A REVIEW ON TOA ESTIMATION TECHNIQUES AND COMPARISON 213

    7.1 Introduction 2137.2 TOA Estimation Methods 216

    7.2.1 Conventional Correlation-Based Techniques 220Pros and Cons 221

    7.2.2 Deconvolution Methods 222Pros and Cons 224

    ftoc02.indd xivftoc02.indd xiv 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • DETAILED CONTENTS xv

    7.2.3 ML-Based Methods 225Pros and Cons 226

    7.2.4 Subspace-Based Techniques 226Pros and Cons 228

    7.2.5 BSS-Based Algorithms 229Pros and Cons 233

    7.3 Comparison of TOA Estimation Techniques 2337.4 Range Estimation System Design 235

    7.4.1 Single-Band Range Estimation Architecture 2357.4.2 Multiband Range Estimation: General Architecture 2367.4.3 Noncontiguous Multiband Scenario 238

    7.5 Conclusion 240 References 240

    CHAPTER 8 WIRELESS LOCALIZATION USING ULTRA-WIDEBAND SIGNALS 245

    8.1 Introduction to UWB 2458.1.1 Regularization 2458.1.2 Transmission Approaches 2468.1.3 Standards 2478.1.4 UWB Channels 248

    8.2 UWB Localization Techniques 2508.2.1 Fingerprinting Localization 2508.2.2 Geometric Localization 252

    TOA Estimation 253Position Estimation 253

    8.2.3 NLOS Issues 2548.3 TOA Estimation for IR UWB 255

    8.3.1 System Model 2558.3.2 ML TOA Estimation 2578.3.3 Energy Detection-Based TOA Estimation 2588.3.4 TDT 2608.3.5 Discussions on IR-Based TOA Estimation 262

    8.4 TOA Estimation for MB-OFDM UWB 2638.4.1 System Model 2658.4.2 Correlation-Based TOA Estimator 2668.4.3 Energy Detection-Based TOA Estimator 2678.4.4 TOA Estimation by Suppressing Energy Leakage 2698.4.5 Discussions on MB-OFDM-Based TOA Estimation 273

    8.5 Conclusions 274 References 275

    CHAPTER 9 AN INTRODUCTION TO DIRECTION-OF-ARRIVAL ESTIMATION TECHNIQUES VIA ANTENNA ARRAYS 279

    9.1 Introduction 2799.2 Antennas and Their Parameters 280

    9.2.1 Antenna HPBW 2829.2.2 First Side Lobe to the Main Lobe Power Ratio 2839.2.3 Non-Main Lobe Power (All Side Lobe Power) to Main Lobe

    Power Ratio 283

    ftoc02.indd xvftoc02.indd xv 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • xvi DETAILED CONTENTS

    9.2.4 Antenna Impedance 2839.2.5 Antenna Return Loss 2849.2.6 Antenna Bandwidth 2859.2.7 Antenna Gain 285

    Antenna Gain Is Usually Measured in dBi 2869.2.8 Antenna Polarization 287

    9.3 Antenna Arrays 2879.3.1 Smart Antennas 2889.3.2 Important Parameters of Antenna Arrays 289

    Array Vector 289Array Factor 290Mutual Coupling 291

    9.4 DOA Estimation Methods 2939.4.1 DAS 2979.4.2 MUSIC and Root MUSIC 299

    MUSIC 299Root MUSIC 301Complexity Analysis 302Comparison of MUSIC and Root MUSIC 304

    9.4.3 DAS and Root MUSIC Fusion 306Simulations and Performance Analysis 308

    9.4.4 Comparison 3099.5 DOA Estimation for Periodic Sense Transmission 3109.6 Conclusion 315 Acknowledgments 315 References 316

    CHAPTER 10 SMART ANTENNAS FOR DIRECTION-OF-ARRIVAL INDOOR POSITIONING APPLICATIONS 319

    10.1 Introduction 31910.2 Principles of Indoor Positioning Based on SA 321

    10.2.1 Positioning Estimation Techniques 32110.2.2 DOA Principle of Operations 323

    10.3 Antenna Technology and Design Principles 32610.3.1 Radiation Pattern 32610.3.2 Circular Polarization 32810.3.3 Antenna Selector 32810.3.4 Signal Detection Circuit 329

    10.4 DOA Estimation Accuracy for SAs 33010.4.1 Information Theory Elements 33010.4.2 Derivation of the CRB for 1-D Case Using SAs 331

    Effect of Number of Antenna Elements Nr 335Effect of the Directivity Coeffi cient m 335Effect of the RSSI Variance σ 2RSSI 336

    10.4.3 Derivation of the CRB for 2-D DOA Using SAs 33710.5 Algorithm for Indoor DOA Estimations 340

    10.5.1 1-D DOA Estimation Methods 340Strongest RSSI–Sector Partition 341LSE 341The MUSIC Estimator 343

    ftoc02.indd xviftoc02.indd xvi 8/5/2011 3:46:45 PM8/5/2011 3:46:45 PM

  • DETAILED CONTENTS xvii

    10.5.2 2-D DOA Estimation Methods 34410.5.3 2-D DOA Simulated Experiments 345

    10.6 Prototype of SA Suitable for Indoor DOA Positioning Applications 34610.6.1 Six Switching Beams Antenna Prototype: Characteristics

    and Performance 34610.6.2 Prototype DOA Estimation Performance 349

    Strongest RSSI 350Fingerprinting 351MUSIC 352

    10.6.3 Experimental Results and Conclusions 35210.7 Discussion and Conclusions 353 References 354

    PART III RECEIVED SIGNAL STRENGTH-BASED POSITIONING

    CHAPTER 11 FUNDAMENTALS OF RECEIVED SIGNAL STRENGTH-BASED POSITION LOCATION 359

    11.1 Introduction and Motivation 35911.1.1 Why Is RSS Attractive for Localization? 36011.1.2 Problem Statement and Outline 360

    11.2 Sources of Location Error and Mitigation 36211.2.1 Multipath Fading and NLOS Propagation 36211.2.2 Shadow Fading 36311.2.3 Systematic Bias or Error 36311.2.4 Geometric Node Confi guration 363

    11.3 Techniques Using RSS for Position Location 36311.3.1 Range-Based Positioning 364

    Statistical Model for RSS 364Basics of Differential RSS 365Spatial Correlation of Shadow Fading 367

    11.3.2 RF Fingerprinting 36811.3.3 Proximity-Based Positioning 370

    Dimensionality Reduction Using Geographical Proximity 37011.4 Geometric Interpretations of RSS/DRSS Positioning 372

    11.4.1 RSS-Based Lateration 37511.4.2 DRSS-Based Lateration 377

    Geometry of Relative DRSS Positioning 377Geometry of Absolute DRSS Positioning 379Geometric Solution of DRSS Location 380

    11.5 Location Estimators 38011.5.1 Theoretical Limits for Location Estimation 381

    Optimality Criterion 381Cramer–Rao Lower Bound (CRLB) 381

    11.5.2 ML Estimator 38211.5.3 Nonlinear LS Estimator 383

    LS Optimization Framework 38311.5.4 Linear LS Estimator 385

    ftoc02.indd xviiftoc02.indd xvii 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • xviii DETAILED CONTENTS

    11.6 Performance Evaluation 38711.6.1 Simulation Settings 387

    Numerical Optimization Algorithm Considered 38811.6.2 Simulation Results 388

    Impact of Number of Anchor Nodes and Spatial Correlation 388Impact of Correlated Shadow Fading 389Impact of PL and Spatial Correlation 389

    11.7 Conclusion 391 References 392

    CHAPTER 12 ON THE PERFORMANCE OF WIRELESS INDOOR LOCALIZATION USING RECEIVED SIGNAL STRENGTH 395

    12.1 Introduction 39612.2 RSS-based Localization Algorithms 397

    12.2.1 Approach Overview 39812.2.2 Lateration Methods 399

    NLS 399LLS 400

    12.2.3 Classifi cation via Machine Learning 40112.2.4 Probabilistic Approaches 40312.2.5 Statistical Supervised Learning Techniques 40412.2.6 Summary of Localization Algorithms 405

    12.3 Localization Performance Study 40712.3.1 Performance Metrics 40712.3.2 Performance Investigation Using Real Wireless Networks 408

    Experimental Scenarios 408Performance Results 410

    12.4 Enhancing the Robustness of Localization 41312.4.1 Real-Time Infrastructure Calibration 41312.4.2 Effects of Employing Multiple Antennas 41412.4.3 Robust Statistical Methods 41612.4.4 Revisiting Linear Regression 41712.4.5 Exploiting Spatial Correlation 418

    12.5 Conclusion and Applications 420 References 422

    CHAPTER 13 IMPACT OF ANCHOR PLACEMENT AND ANCHOR SELECTION ON LOCALIZATION ACCURACY 425

    13.1 Introduction 42513.2 Anchor Placement 426

    13.2.1 Overview 42613.2.2 Impact of Anchor Placement 42813.2.3 Heuristic Search 43113.2.4 Acute Triangular-Based Deployment 43313.2.5 Adaptive Beacon Placement 43513.2.6 Optimal Placement via maxL–minE 436

    Theoretical Analysis 436Algorithm Overview and Experimental Evaluation 441

    ftoc02.indd xviiiftoc02.indd xviii 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • DETAILED CONTENTS xix

    13.3 Anchor Selection 44513.3.1 Overview 44513.3.2 Joint Clustering Technique 44513.3.3 Entropy-Based Information Gain 44713.3.4 Convex Hull Selection 44713.3.5 Selection from High Density of Anchors 449

    13.4 Discussion and Conclusion 453 References 453

    CHAPTER 14 KERNEL METHODS FOR RSS-BASED INDOOR LOCALIZATION 457

    14.1 Introduction 45714.1.1 Outline of the Chapter 459

    14.2 Kernel Methods 45914.2.1 Problem Statement 46014.2.2 General Mathematical Formulation 460

    Determination of Kernel Parameters 461Example Framework 462

    14.2.3 LANDMARC Algorithm 464Estimation of Parameters 464

    14.2.4 Gaussian Kernel Localization Algorithm 465Estimation of Parameters 466

    14.2.5 Radial Basis Function-Based Localization Algorithm 468Estimation of Parameters 469

    14.2.6 Linear Signal-Distance Map Localization Algorithm 470Estimation of Parameters 472

    14.2.7 Summary 47314.3 Numerical Examples 473

    14.3.1 MLE 473Estimating Coordinate from RSS 474Implementation Details 474

    14.3.2 Description of Comparison Example 47514.4 Evaluation Using Measurement Data Set 481

    14.4.1 Measurement Campaign Description 48114.4.2 Evaluation Procedure 48114.4.3 Results 482

    Bias Results 482RMSE Results 484

    14.5 Discussion and Conclusion 484 References 485

    CHAPTER 15 RF FINGERPRINTING LOCATION TECHNIQUES 487

    15.1 Introduction 48715.2 RF Fingerprints 48915.3 CDB 490

    15.3.1 CDB Structure 490Uniform Grid 491Indexed List 491

    ftoc02.indd xixftoc02.indd xix 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • xx DETAILED CONTENTS

    15.3.2 Building the CDB 491Field Measurements 491Propagation Modeling 492Mixing Predicted and Measured Values 498

    15.4 Techniques to Reduce the Search Space 49915.4.1 CDB Filtering 500

    First Filtering Step 500Second Filtering Step 501Third Filtering Step 501

    15.4.2 Optimized Search Using GAs 50215.5 Pattern Matching of RF Fingerprints 504

    15.5.1 Distance in N-Dimensional RSS Space 505Particular Case 505Generic Case with Penalty Term 506

    15.5.2 Pattern Matching Using ANNs 50815.5.3 Spearman Rank Correlation Coeffi cient 510

    15.6 Experimental Performance 51215.6.1 Outdoor 850-MHz GSM Network 51215.6.2 Indoor Wi-Fi Networks 515

    15.7 Conclusions 516 References 518

    PART IV LOS/NLOS LOCALIZATION–IDENTIFICATION–MITIGATION

    CHAPTER 16 AN INTRODUCTION TO NLOS IDENTIFICATION AND LOCALIZATION 523

    16.1 Introduction 52416.2 NLOS Identifi cation 525

    16.2.1 Cooperative Methods 527DOA Residual Testing 527Time-Difference-of-Arrival (TDOA) Residual 528Residual Distribution Testing 529

    16.2.2 Single-Node Methods Based on the Range Statistics 530Techniques Based on Range Measurements Over Time 530Techniques Based on the Range Measurements over Different Frequency Bands 531

    16.2.3 Single-Node Methods Based on Channel Characteristics 532Narrow and Wideband Systems 533UWB Systems 534Systems Using Antenna Array 536

    16.2.4 Single-Node Hybrid Approach 54116.2.5 Comparison of NLOS Identifi cation Methods 543

    16.3 NLOS Localization 54316.3.1 RSSI 54416.3.2 Bidirectional TOA–DOA Fusion 54616.3.3 Single BN TOA–DOA Fusion with the Assistant

    Environment Map 547

    ftoc02.indd xxftoc02.indd xx 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • DETAILED CONTENTS xxi

    16.3.4 Multinode TOA–DOA Fusion 54816.3.5 Comparison 550

    16.4 Conclusion 552 References 552

    CHAPTER 17 NLOS MITIGATION METHODS FOR GEOLOCATION 557

    17.1 Introduction 55817.2 Geolocation System Model 55917.3 A Review of NLOS Mitigation Techniques 560

    17.3.1 ML-Based Techniques 560Finding Nh ML Estimates of Unknown Parameters 562Finding the Most Possible Hypothesis 562

    17.3.2 LS-Based Techniques 56217.3.3 Constrained Optimization Techniques 56417.3.4 Robust Estimator Techniques 565

    17.4 Application of the Single Moving Sensor Geolocation 56617.4.1 Range Measurements Profi le-Based Trimming 56717.4.2 Reconstruction of Trimmed TOA Profi le 57117.4.3 Robust Trimming with Nonparametric Noise Density Estimator 57217.4.4 Performance Analysis 574

    17.5 Conclusions 579 References 579

    CHAPTER 18 MOBILE POSITION ESTIMATION USING RECEIVED SIGNAL STRENGTH AND TIME OF ARRIVAL IN MIXED LOS/NLOS ENVIRONMENTS 583

    18.1 Introduction 58418.1.1 Background 58418.1.2 Literature Review 584

    LOS/NLOS Detection 585Wireless Geolocation 586

    18.1.3 Merits 58718.1.4 Organization 587

    18.2 System Model 58818.2.1 Existing Techniques for Mobile Position Estimation 588

    LLS Based on First-Order Taylor Series 589LLS with Additional Parameterization 590AML 591

    18.2.2 Path Loss Model 59318.3 Mobile Position Estimation 594

    18.3.1 TOA Estimation 594LOS Suffi ciency 595

    18.3.2 LS 59618.3.3 WLS 59618.3.4 ML 596

    LS Error Variance 59618.4 CRB for Mobile Position Estimation 597

    18.4.1 FIM of TOA Estimation 59718.4.2 CRB for TOA Estimation 59818.4.3 CRB for Mobile Position Estimation 598

    ftoc02.indd xxiftoc02.indd xxi 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • xxii DETAILED CONTENTS

    18.5 Numerical Examples 59818.6 Conclusions 607 References 608 Appendix 611

    PART V MOBILITY AND TRACKING USING THE KALMAN FILTER

    CHAPTER 19 IMPLEMENTATION OF KALMAN FILTER FOR LOCALIZATION 629

    19.1 Introduction 62919.2 The Estimation Problem 63119.3 Formulation of Localization as an Estimation Problem 63219.4 Discrete Linear Kalman Filter 633

    19.4.1 Kalman Filter Derivation 63319.4.2 Discussion and Implementation 635

    19.5 Continuous Kalman Filter 64119.6 Extended Kalman Filter 64319.7 Further Reading 646 References 646

    CHAPTER 20 REMOTE SENSING TECHNOLOGIES FOR INDOOR APPLICATIONS 649

    20.1 Position Sensing Technology 65020.1.1 Vision-Based Position Sensors 65020.1.2 Non-Vision-Based Position Sensor 65320.1.3 Inertial Sensors 657

    Orientation Calculation Using Quaternion 657Position Calculation Using Inertial Sensors 660IMU 662

    20.1.4 Applications 66520.2 Bayesian Estimators 667

    20.2.1 Bayes Filter 66820.2.2 KF 67020.2.3 Extended KF 67120.2.4 PF 67320.2.5 Filter Comparison Example 67520.2.6 Filter Applications 677

    20.3 Summary 679 References 680

    CHAPTER 21 MOBILE TRACKING IN MIXED LINE-OF-SIGHT/NON-LINE-OF-SIGHT CONDITIONS: ALGORITHMS AND THEORETICAL LOWER BOUND 685

    21.1 Introduction 68521.2 System Description 686

    21.2.1 General Problem Formulation 68621.2.2 Example of the State Model 68821.2.3 Example of the Measurement Model 688

    ftoc02.indd xxiiftoc02.indd xxii 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • DETAILED CONTENTS xxiii

    21.3 Tracking Algorithm Based on GMF 68921.3.1 The Development of GMF 689

    Forgetting Components 692Merging Components 692Convergence Result of GMF 693

    21.3.2 The Modifi ed EKF Banks 693Algorithm Description 693

    21.4 Tracking Method Based on ARBPF 69521.4.1 Generic PF 69521.4.2 Approximated RBPF 696

    21.5 Lower Bound of Performance 69921.6 Numerical Results 702

    21.6.1 Performance Comparison with Different Algorithms 70321.6.2 Comparison with Posterior CRLB 70421.6.3 Complexity Comparison 705

    21.7 Conclusions 706 References 706

    CHAPTER 22 THE KALMAN FILTER AND ITS APPLICATIONS IN GNSS AND INS 709

    22.1 Introduction 71022.2 Review of Kalman Filtering and Extended Kalman Filtering

    for Navigation 71122.2.1 State-Space Models 71122.2.2 Continuous Time to Discrete-Time Transformation 71422.2.3 Recursive Estimation and Initial Conditions 71622.2.4 Extended KF 718

    Linearized and Extended Architectures 72022.3 EKF-Based PVT Computation in a Stand-Alone GNSS Receiver 721

    22.3.1 State-Space Model 72222.3.2 Linearization of the Measurement Equation 724

    Pseudorange and Pseudorange Rate Prediction 72622.3.3 Error Covariance Matrices 727

    22.4 Inertial Navigation Fundamentals 72822.4.1 Structure of an IMU 72922.4.2 The Coriolis Theorem 73022.4.3 Mechanization Equations 730

    Computation and Tracking of the Body Attitude: The Direction Cosine Matrix (DCM) 731Computation and Tracking of the Velocity 732Computation and Tracking of the Position 732

    22.5 IMU Alignment 73322.5.1 GNSS-INS Hybridization: State-Space Models 735

    22.6 General Architecture for the Loose Integration 73522.6.1 Loose Integration: State-Space Model 735

    Space Equation 736Velocity Equation 737Attitude Misalignment Equation 738Accelerometers Bias Equation 739Gyroscopes Bias Equation 739

    ftoc02.indd xxiiiftoc02.indd xxiii 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • xxiv DETAILED CONTENTS

    22.6.2 Loose Integration: State Transition Matrix 74022.6.3 Loose Integration: Measurement Equation 741

    22.7 General Architecture for the Tight Integration 74122.7.1 Tight Integration: State-Space Model 742

    Clock Misalignment Equation 743Clock Drift Equation 743

    22.7.2 Tight Integration: State Transition Matrix 74322.7.3 Tight Integration: Measurement Equation 744

    22.8 General Architecture for the Ultra-Tight Integration 74522.8.1 Ultra-Tight Integration: State-Space Model 74622.8.2 Ultra-Tight Integration: State Transition Matrix 74622.8.3 Ultra-Tight Integration: Measurement Equation 746

    22.9 Conclusions 747 References 748 Appendix A 749

    PART VI NETWORK LOCALIZATION

    CHAPTER 23 COLLABORATIVE POSITION LOCATION 755

    23.1 Introduction 75523.2 Problem Defi nition 75823.3 Performance Bounds 760

    23.3.1 CRLB 76023.3.2 MLE/Weighted LS 763

    The Branch-and-Bound (BB)/Reformulation-Linearization Technique (RLT) Algorithm 764Reformulation and Linearization of the MLE 765Partitioning Variables, Relaxation Errors, and Partitioning Strategies 768

    23.3.3 Numerical Results 76823.4 An Overview of Suboptimal Algorithms 771

    23.4.1 A Taxonomy of Existing Algorithms 774Type of Measurement Data: Distance, Angle of Arrival (AOA), and RSS Fingerprinting 774Where the Computation Is Performed: Centralized or Distributed 774How the Computation Is Performed: Sequential or Concurrent 774How the Problem Is Formulated: Probabilistic or Nonprobabilistic 775

    23.5 Specifi c Suboptimal Approaches 77523.5.1 Sequential LS 77623.5.2 Optimization-Based Approaches 77823.5.3 MDS 78023.5.4 Set-Theoretic Approach: Iterative Parallel Projection

    Method (IPPM) 783The Modifi ed Parallel Projection Method (MPPM) 783IPPM for Collaborative Position Location 788

    23.6 Numerical Comparison of Approaches 79323.6.1 Localization Accuracy 79323.6.2 Computational Complexity 799

    ftoc02.indd xxivftoc02.indd xxiv 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • DETAILED CONTENTS xxv

    23.7 NLOS Propagation 80023.7.1 Knowledge about the NLOS Propagation 80123.7.2 NLOS Mitigation Example 80123.7.3 Simulation Results 803

    23.8 Summary 807 References 808

    CHAPTER 24 POLYNOMIAL-BASED METHODS FOR LOCALIZATION IN MULTIAGENT SYSTEMS 813

    24.1 Introduction 81324.2 Polynomial Function Optimization 815

    24.2.1 Polynomial Continuation (Homotopy) Methods 81624.2.2 SOS and SDP Approaches 817

    24.3 Noisy Target Localization 81924.4 Relative Reference Frame Determination 822

    24.4.1 Relative Reference Frame Determination with Distance Measurements 823

    24.4.2 Relative Reference Frame Determination with Relative Angle Measurements 824

    24.4.3 Noisy Relative Reference Frame Determination 82624.4.4 Algorithmic Comparison with Some Existing Methods 829

    Comments on the Complexity of SOS Methods 83024.4.5 Colinear Anchors 831

    24.5 An Extension of the SOS Approach 83224.6 Conclusions 833 Acknowledgment 833 References 833

    CHAPTER 25 BELIEF PROPAGATION TECHNIQUES FOR COOPERATIVE LOCALIZATION IN WIRELESS SENSOR NETWORKS 837

    25.1 Introduction to Cooperative Localization in WSNs 83825.1.1 Classifi cation of Cooperative Localization Methods 838

    Range-Based versus Range-Free Methods 838Centralized versus Distributed Methods 839Anchor-Based versus Anchor-Free Methods 839Probabilistic versus Deterministic Methods 839

    25.1.2 Measurement Techniques 84025.1.3 Motivating Applications 841

    25.2 Probabilistic Localization Based on BP 84225.2.1 Introduction to Probabilistic Localization 842

    Statistical Framework for Probabilistic Localization 84225.2.2 Belief Propagation 843

    Graphical Model 844Description of the Algorithm 847

    25.2.3 NBP 848Computing Messages 848Computing Beliefs 849Convergence of NBP 850

    ftoc02.indd xxvftoc02.indd xxv 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • xxvi DETAILED CONTENTS

    25.2.4 NBBP 850Modifi cations 850Performance Analysis 851

    25.3 Generalized BP Methods 85525.3.1 Correctness of BP 85625.3.2 GBP-K 85725.3.3 NGBP-JT 857

    Defi nition 857Example Network 858Nonparametric Approximation 860

    25.3.4 NBP-ST 861Spanning Tree Formation 861Performance Analysis 864

    25.4 Conclusions 867 Acknowledgments 867 References 867

    CHAPTER 26 ERROR CHARACTERISTICS OF AD HOC POSITIONING SYSTEMS 871

    26.1 Introduction 87126.2 APS Algorithms 873

    26.2.1 DV-Hop Propagation Method 87426.2.2 DV-Euclidean and DV-Radial 87626.2.3 DV-Position 877

    26.3 Positioning Error Analysis 87826.3.1 Trilateration Review 87826.3.2 CRLB for Trilateration 87926.3.3 DV-Hop Range Error 87926.3.4 CRLB for DV-Hop Positioning 88326.3.5 DV-Position Error 885

    26.4 Discussion 88826.5 Related Work 89026.6 Conclusion 891 References 891 Appendices 892

    CHAPTER 27 SELF-LOCALIZATION OF FORMATIONS OF AUTONOMOUS AGENTS USING BEARING MEASUREMENTS 899

    27.1 Introduction 89927.2 Problem Setup 90127.3 A Rigid Graph Theoretical Framework for Formation Localization 90327.4 Four-Bar Linkage Mechanisms 90627.5 A Localization Algorithm Based on Four-Bar Linkage Mechanisms 90827.6 Localization of Larger Formations 91427.7 Localization with Extra Landmarks 91627.8 Availability of More Angle Measurements for Three Agents 91727.9 Conclusions 918 Acknowledgments 919 References 919

    ftoc02.indd xxviftoc02.indd xxvi 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • DETAILED CONTENTS xxvii

    PART VII APPLICATIONS

    CHAPTER 28 OVERVIEW OF GLOBAL NAVIGATION SATELLITE SYSTEMS 923

    28.1 Introduction 92328.1.1 What Is Radio Navigation? 92428.1.2 Spherical Systems 924

    Two-Way Measurements 925One-Way Measurement 926

    28.1.3 Evolution Programs of GNSS Constellations 92628.2 Principles of Satellite Navigation 927

    28.2.1 Geometry and Measurement Errors 92928.2.2 Impact of Measurement Errors on User Position 930

    28.3 The Impact of Geometry 93228.3.1 GDOP as a Function of Position and Time 934

    28.4 Overview on Reference Systems 93928.4.1 Conventional Inertial Reference System 93928.4.2 Conventional Terrestrial Reference System 94028.4.3 Ellipsoidal Coordinates 94128.4.4 The Geoid 94228.4.5 The Global Datum 94228.4.6 East-North-Up (ENU) Reference Frame 943

    28.5 Structure of the Signal In Space (SIS) 94328.5.1 GNSS Frequency Plan 94428.5.2 The Binary Offset Carrier (BOC) Modulation 944

    BOC Power Spectral Density 946Correlation Properties 946BOC versus BOCcos 948

    28.5.3 The GNSS Transmitted Signal 94928.6 Current and Modernized GPS Signals 950

    28.6.1 Multiplexed BOC (MBOC) Signal Baseline 95128.6.2 TMBOC Modulation 952

    28.7 Galileo System and SIS 95328.7.1 E1 CBOC Modulation 95428.7.2 CASM Multiplexing Scheme 95828.7.3 AltBOC Modulation and Multiplexing Scheme 960

    The AltBOC Concept 96128.8 Error Sources for the Position Evaluation 965

    28.8.1 GNSS Positioning 966Impact of Ranging Errors on Position Metrics 966

    28.9 Augmentations 96828.9.1 Local Area Differential Corrections 96828.9.2 Wide Area Differential Corrections 969

    The Integrity Concept 97028.9.3 A-GNSS and Cooperative Navigation 97128.9.4 Trend of GNSS-Related Augmentation Solutions and Technologies 972

    28.10 Conclusions 972 Acknowledgment 973 References 973

    ftoc02.indd xxviiftoc02.indd xxvii 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • xxviii DETAILED CONTENTS

    CHAPTER 29 DIGITAL SIGNAL PROCESSING IN GNSS RECEIVERS 975

    29.1 Received Signal 97629.1.1 The Doppler Effect in the Carrier 97729.1.2 The Doppler Effect at Baseband 978

    29.2 The General Receiver Structure 97829.2.1 Sampling Frequency 97929.2.2 The Digital IF Signal 980

    Carrier-to-Noise Ratio and Signal-to-Noise Ratio (SNR) 98029.3 Acquisition 985

    29.3.1 Detection and Estimation Main Strategy 986Parameter Estimation 986Detection 987

    29.3.2 Cross-Ambiguity Function (CAF) 988The SS 989Consideration on the Value of the Frequency Bin Size 990Consideration on the Value of the Delay Bin Size 992SNR at the CAF Peak 992Coherent and Noncoherent Integration 993

    29.3.3 Refi nement of the Estimation of the SIS Parameters 99429.4 The Role of FFT in a GNSS Receiver 996

    29.4.1 FFT in the Time Domain 99729.4.2 FFT in the Doppler Domain 998

    29.5 Estimation of the Propagation Delay 99929.6 Methods for SIS Detection 1000

    29.6.1 NP Approach 1000NP Detection in GNSS 1002

    29.6.2 Detection Based on the A Posteriori Probabilities 100329.6.3 Bayesian Sequential Detection 1003

    Sequential Detection in GNSS 100529.7 Gradient Method for SIS Parameters Estimation 1006

    29.7.1 Transient between Signal Acquisition and Tracking 100629.7.2 Fundamentals on the Gradient Theory 100729.7.3 Application to GNSS Signals 1009

    29.8 Null Seeker and Tracking Loops 101129.8.1 DLL 1013

    Discrimination Function 101429.8.2 Carrier Tracking 101629.8.3 Models of the Tracking Loops 1017

    29.9 Conclusions 1018 References 1019 Appendix 1021

    CHAPTER 30 AUTONOMOUS MOBILE ROBOT NAVIGATION SYSTEMS USING RFID AND THEIR APPLICATIONS 1023

    30.1 Robust RFID-Based Navigation System 102330.1.1 Basic Navigation Concepts 102330.1.2 Estimating Robot’s Pose 102630.1.3 Experimental Verifi cation: Grid-Like Pattern 1028

    ftoc02.indd xxviiiftoc02.indd xxviii 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • DETAILED CONTENTS xxix

    30.2 Reduction of Localization Error: Read Time 103130.2.1 Problem with RFID-Based Localization 103130.2.2 Read-Time Concept 103230.2.3 Randomly Distributed RFID Tags 103430.2.4 Experimental Verifi cation: Grid-Like and

    Random Pattern 103430.2.5 Path Trajectories with Grid-Like Pattern 103630.2.6 Comparison with Other RFID-Based Methods 1039

    30.3 Extending the Read-Time Paradigm 104030.3.1 Static Obstacle Avoidance 104030.3.2 Multiple Obstacles Avoidance 104030.3.3 Experimental Verifi cation: Static Single/Multiple Obstacles 104330.3.4 Navigation with a Single Static Obstacle 104330.3.5 Navigation with Multiple Static Obstacles 1045

    30.4 Applications and Extensions 104730.4.1 Application Concepts 104730.4.2 Extension Possibilities 1048

    30.5 Conclusions 1053 References 1054

    CHAPTER 31 CELLULAR-BASED POSITIONING FOR NEXT-GENERATION TELECOMMUNICATION SYSTEMS 1055

    31.1 Introduction 105631.2 An Overview of LBS in Next-Generation Telecommunication Systems 1058

    31.2.1 Basic LBS Support: DL Preamble Measurements 1059Basic LBS Support with Interference Cancellation 1063

    31.2.2 Enhanced LBS Support: D-LBS Zones 106331.2.3 Basic LBS Support: UL Ranging Measurements 1065

    31.3 A Case Study: LBS Performance of the IEEE 802.16m 106931.3.1 Link-Level Simulation: TOA Estimation of the IEEE 802.16m

    Standard 106931.3.2 System-Level Simulation: DL LBS Performance of the IEEE 802.16m

    Standard 107231.3.3 System-Level Simulation: UL LBS Performance of the IEEE 802.16m

    Standard 107631.3.4 Comparison of DL and UL LBS 1077

    31.4 Conclusion 1078 Acknowledgments 1079 References 1079

    CHAPTER 32 POSITIONING IN LTE 1081

    32.1 Introduction 108232.1.1 System Architecture 108232.1.2 Radio Access Network 108232.1.3 Core Network 108332.1.4 Air Interface 1083

    DL 1083UL 1085

    ftoc02.indd xxixftoc02.indd xxix 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • xxx DETAILED CONTENTS

    32.2 Requirements on Positioning in LTE 108632.2.1 3GPP Requirements 108632.2.2 Emergency Positioning 108632.2.3 Location-Based Services (LBSs) 1087

    32.3 Positioning Architecture and Signaling in LTE 108732.3.1 Control Plane 108932.3.2 User Plane 1090

    32.4 Positioning Procedures in LTE 109032.4.1 Signaling of Client Type and QoS 109032.4.2 Positioning Method Selection 1091

    The Positioning Sequence and Prior Performance Information 1091QoS Evaluation 1091

    32.5 Coordinates 109332.5.1 Time 109332.5.2 Coordinate Systems 109332.5.3 Coordinate Transformations 1094

    32.6 Positioning Methods in LTE 109632.6.1 Cell Identity (CID) 109732.6.2 E-CID 1097

    CID and TA 1097Signal Strength 1098AOA 1100

    32.6.3 Fingerprinting 1101RF Fingerprinting 1102AECID 1103

    32.6.4 OTDOA 110632.6.5 U-TDOA 111232.6.6 A-GNSS 1113

    32.7 Shape Conversion 111632.8 Positioning Performance in LTE 1118

    32.8.1 Limiting Factors 111832.8.2 Accuracy Metrics 111932.8.3 Expected Performance 1119

    CID 1119E-CID 1120Fingerprinting 1121OTDOA 1122U-TDOA 1122A-GNSS 1122Comparison of the Expected Performance for Different Methods 1123

    32.9 Summary 1125 References 1125

    CHAPTER 33 AUTOMATED WILDLIFE RADIO TRACKING 1129

    33.1 Introduction 113033.2 A Review of Wildlife Tracking Techniques 1130

    33.2.1 Wildlife Tag Design Constraints 113133.2.2 Terrestrial Wildlife Transmitters 1133

    ftoc02.indd xxxftoc02.indd xxx 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • DETAILED CONTENTS xxxi

    33.2.3 Terrestrial Wildlife Receivers 1134Handheld Receivers 1134Automatic Receivers 1135

    33.2.4 Satellite Tracking Systems 113633.2.5 Solar Geolocation Tracking 113733.2.6 Cellular Tracking 113833.2.7 Radar Tracking 113833.2.8 Summary and Motivation for Improvements 1139

    33.3 A New Approach to Wildlife Tracking 113933.3.1 PRNs 1140

    Chip Rate and Bandwidth 1143Detection via Matched Filters 1144

    33.3.2 Signal Processing 1146Code Phase Search, Doppler Shift, and Frequency Error 1146Computational Requirements and Frequency Domain Operation 1148Time Shifting and Windowing 1149

    33.3.3 System Description 1151Transmitters 1151Receiver Architecture 1152Time Base 1156

    33.3.4 Arrival-Time Location-Finding Algorithms 1156Hyperbolic Positioning 1157Spherical Positioning 1158Iterative Root Finding (NR Method) 1158Stochastic Search (SS) Method 1161

    33.4 Performance of a Demonstration Wildlife Tracking System 116233.5 Caveats and Limitations 116433.6 Conclusion 1165 References 1166

    CHAPTER 34 AN INTRODUCTION TO THE FUNDAMENTALS AND IMPLEMENTATION OF WIRELESS LOCAL POSITIONING SYSTEMS 1169

    34.1 Introduction 116934.2 WLPS Structure 117334.3 WLPS Performance Investigation 1178

    34.3.1 The DS-CDMA Receiver 117934.3.2 Simulation Results 1180

    34.4 Adaptive BF Techniques 118334.5 Novel DOA and TOA Estimation Algorithms 118634.6 WLPS Design and Structure 118734.7 Conclusions 1192 Acknowledgments 1193 References 1193

    INDEX 1195

    ftoc02.indd xxxiftoc02.indd xxxi 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

  • ftoc02.indd xxxiiftoc02.indd xxxii 8/5/2011 3:46:46 PM8/5/2011 3:46:46 PM

    ftoc01.pdfftoc02.pdf