brochure

173
INDUCTORS/ CHOKES High Energy Storage Chokes Linear Chokes Common Mode Chokes Power Factor Correction Chokes High Power Chokes for EMC and DC/DC Converters High Power SMD Chokes

Upload: dci-ag

Post on 19-Mar-2016

254 views

Category:

Documents


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Brochure

INDUCTORS/ CHOKES

High Energy Storage ChokesLinear Chokes

Common Mode ChokesPower Factor Correction Chokes

High Power Chokes for EMC and DC/DC ConvertersHigh Power SMD Chokes

Page 2: Brochure

85

Hig

h E

ner

gy

Sto

rage

Cho

kes

M65&M71: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Features-Based on copper foil windings around ferrite E shape cores.-High storage currents (up to 120 Amps ).-High ef!ciency (>99%) due to very low losses designs.-Very good inductance stability vs temperature.-High storage energy.-Wide inductance range.-Operating frequency from 5 kHz to 70 kHz.-Chokes designed for a 10% ripple current.-Potted chokes available for high isolation requirements, racks packaging available for special applications. -Combination of up to 6 stacked sets of cores.-Operating temperature from -20ºC to 85ºC.-High temperature materials (180ºC) available upon request.-UL 1446 insulation system, UL approved materials.-Wide range of output terminals(racket, fast-on, direct leads,…).

Applications-Inverters (UPS, Solar, Eolic).-PFC chokes.-Welding chokes.

Electrical speci!cationsOPEN CHOKES POTTED CHOKES

CodeL

(µH)Irms (A)

Ipk(A)

Ripple(App)

RDC(mΩ)

Losses(W)

∆T(ºC)

Power230 V

n(%)

Weight(kg)

RDC(mΩ)

Losses(W)

∆T(ºC)

Power230 V

n(%)

M65-400-16 400 16 24,2 3,2 12,5 3,3 20 3680 99,91 1,3 10,7 2,8 16 3680 99,92

M65-840-16 840 16 24,2 3,2 35,5 10,5 70 3680 99,72 1,7 34,5 9,0 43 3680 99,76

M65-425-25 425 25 37,9 5 13,7 8,8 35 5750 99,85 2,4 11,7 7,6 30 5750 99,87

M65-155-30 155 30 45,4 6 6,8 5,3 30 6900 99,92 1,3 5,0 4,6 25 6900 99,93

M65-400-30 400 30 45,4 6 16,8 15,3 60 6900 99,78 2,4 14,0 12,9 50 6900 99,81

M65-110-40 110 40 60,6 8 3,1 5,1 25 9200 99,94 1,9 2,6 4,4 20 9200 99,95

M65-200-40 200 40 60,6 8 7,0 11,4 45 9200 99,88 2,4 5,8 9,6 40 9200 99,90

M65-100-53 100 53 80,3 10,6 1,9 5,7 20 12190 99,95 3,5 1,7 5,0 15 12190 99,96

M65-90-60 90 60 90,9 12 1,9 7,2 25 13800 99,95 3,5 1,6 6,2 20 13800 99,96

M65-70-65 70 65 98,4 13 2,0 8,8 35 14950 99,94 2,4 1,7 7,6 30 14950 99,95

M65-100-70 100 70 106,0 14 3,9 19,2 70 16100 99,88 3,0 3,2 16,1 55 16100 99,90

M65-35-120 35 120 181,7 24 2,5 19,0 65 27600 99,93 2,9 1,1 16,0 55 27600 99,94

OPEN CHOKES POTTED CHOKES

CodeL

(mH)Idc(A)

Ipk(A)

Ripple(App)

RDC(mΩ)

Losses(W)

∆T(ºC)

Power230 V

n(%)

Weight(kg)

RDC(mΩ)

Losses(W)

∆T(ºC)

Power230 V

n(%)

M71-2,5-11 2,5 11 12,0 2 63,1 6,9 34 2530 99,73 1,8 56,5 6,9 34 2530 99,73

M71-2,6-12 2,6 12 14,0 4 50,5 7,9 39 2760 99,71 1,8 50,5 7,9 39 2760 99,71

M71-1,5-14,7 1,5 14,7 17,2 5 37,6 8,5 42 3381 99,75 1,8 36,7 8,3 41 3381 99,76

M71-1,3-15,6 1,3 15,6 24,0 4,7 36,4 9,0 36 3588 99,75 2,6 35,6 8,8 35 3588 99,75

M71-1,5-20 1,5 20 22,5 5 36,4 14,8 59 4600 99,68 2,6 35,6 14,5 57 4600 99,69

Inductance measured at 10kHz, 10mVac.Inductance tolerance ±10%.Replace : M by O for Open Construction, P for Potted Construction.

Page 3: Brochure

86

Hig

h E

ner

gy

Sto

rage

Cho

kes

M65&M71: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Dimensions (in millimeters)

OPEN CHOKES

CodeA

(mm)B

(mm)C

(mm)

O65-400-16 66,5 <80 <70

O65-840-16 66,5 <105 <70

O65-425-25 66,5 <135 <70

O65-155-30 66,5 <80 <70

O65-400-30 66,5 <135 <70

O65-110-40 66,5 <105 <70

O65-200-40 66,5 <135 <70

O65-100-53 66,5 <190 <70

O65-90-60 66,5 <190 <70

O65-70-65 66,5 <135 <70

O65-100-70 66,5 <165 <70

O65-35-120 66,5 <165 <70

OPEN CHOKES

CodeA

(mm)B1

(mm)B2

(mm)C

(mm)

P65-400-16 82 116 140 80

P65-840-16 82 180 204 80

P65-425-25 82 180 204 80

P65-155-30 82 116 140 80

P65-400-30 82 180 204 80

P65-110-40 82 180 204 80

P65-200-40 82 180 204 80

P65-100-53 82 244 268 80

P65-90-60 82 244 268 80

P65-70-65 82 280 204 80

P65-100-70 82 244 268 80

P65-35-120 82 244 268 80

Page 4: Brochure

87

Hig

h E

ner

gy

Sto

rage

Cho

kes

M65&M71: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Dimensions (in millimeters)

OPEN CHOKES

CodeA

(mm)B

(mm)C

(mm)

O71-2,5-11 70,5 <105 <72

O71-2,6-12 70,5 <105 <72

O71-1,5-14,7 70,5 <135 <72

O71-1,3-15,6 70,5 <80 <72

O71-1,5-20 70,5 <135 <72

OPEN CHOKES

CodeA

(mm)B1

(mm)B2

(mm)C

(mm)

P71-2,5-11 82 120 140 80

P71-2,6-12 82 120 140 80

P71-1,5-14,7 82 120 140 80

P71-1,3-15,6 82 180 204 80

P71-1,5-20 82 180 204 80

Page 5: Brochure

88

Hig

h E

ner

gy

Sto

rage

Cho

kes

M65&M71: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Page 6: Brochure

89

Hig

h E

ner

gy

Sto

rage

Cho

kes

M65&M71: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Page 7: Brochure

90

Hig

h E

ner

gy

Sto

rage

Cho

kes

M80: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

IntroductionPREMO GROUP introduces a new high energy storage chokes standard series for inverter applications. It is developed both for DC and AC inverter chokes. Its high inductance values (up to 5mH) make them perfect for high e!ciency solar inverter aplication. It handles powers up to 10kW.

M80 series is based on a combination of high performance multi-E sendust alloy (Kool Mµ) cores and rectangular copper wire.This kind of combination allows us to offer the highest ef!ciency inductor (>99.5%) in the market on a reduced dimension.

M80 series exhibits excellent stability and reliability at high temperatures. Because of the distributed air gap, the inductance shift with temperature change is relatively small. Due to its high Curie temperatures of powder core alloys, changes in saturation characteristics are minor over normal operating temperature ranges. Also, it is resistant to thermal shock and is rated for continuous operation up to 200°C.

AdvantgesM80 series has some remarkable advantages:1.- It has none of the the thermal aging concerns associated with powdered iron cores. Due to the magnetics parts are pressed with a non-organic insulating material; no binder is used, so there is no problem, even when the cores are operated continuously at high temperatures (up to 200ºC). 2.-Main characteristic over powdered iron is its lower core losses and over silicon steel is its much lower core losses, which becomes more dramatic as the frequency increases. For switching regulator inductors, the effect of AC current produces a high frequency magnetic !eld which creates core losses and causes the core to heat up, this effect is lessened with M80 series making inductors more ef!cent and run cooler.

3.- It offers similar DC bias characteristic when compared to iron powder.

4- It has near zero magnetostriction, eliminating the noise associated with powder iron cores, ferrite, or silicorn iron lamination, when they are operated in the audible range from 20 Hz to 20kHz (!lter inductors).

5.- Sendust alloy has a high saturation level (Bsat= 1 T) that provides a higher energy storage capability , that can be obtained with gapped ferrite, resulting in smaller core size (with more than twice the &ux capacity of ferrite, at a typical 50% roll-off design point, this can result in a 35% reduction in core size). Avoiding as well as the gap loss problem associated with ferrites (fringing &ux).

6.- It has a soft saturation (sharp saturation for gapped ferrite or silicon steel blocks with discrete gap), in some cases, this swinging inductance is desirable since it improves ef!ciency and accomodates a wide operating range. With a !xed current requirement, the soft inductance versus DC bias curve provide added protection against overload conditions (fault-tolerance).

M80 HIGH ENERGY STORAGE CHOKE

Page 8: Brochure

91

Hig

h E

ner

gy

Sto

rage

Cho

kes

M80: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Inductance vs TemperatureThe non-magnetic material separating small particles, results in a distributed gap in powder cores. The inductance shift with changing temperature in the M80 series is relatively small. This is largely due to the distributed gap, as well as to the stability of the alloys used. Even though the magnetic alloys used in the powder cores show greater changes in permeability with temperature, the effective permeability of the material is dramatically stabilized by the presence of the distributed gap. The absolute permeability in the gap is the magnetic constant (µ=µ0 µr), no matter what the temperature is, because gap is made with a non-magnetic material (µr=1). Consequently, the lowest permeability cores, having the largest effective gaps, exhibit the most temperature stability. The M80 series presents a decrease of inductance lower than 6% at 200ºC.

Permeability vs DC BiasThe M80 series exhibits soft saturation. Due to the gap distributed microscopically through the material, powder cores do not reach saturation &ux density (Bsat) rapidly. Permeability rolls off, gradually and predictably losing its value at higher and higher magnetizing levels. As per above, the saturation characteristic varies by only a couple of percent, even across quite wide temperature ranges.

PERFORMANCE CHARACTERISTICS

Page 9: Brochure

92

Hig

h E

ner

gy

Sto

rage

Cho

kes

M80: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Thermal ShockCompared with other technologies M80 series is resistant to thermal shock. The sendust alloy routinely passes the most stringent military and aerospace thermal shock testing of electronic components.

Temperature RatingsM80 series is normally rated for continuous operation up to 200°C, a maximum temperature that is quite adequate for nearly all power electronics applications. The factor that limits the M80 series to 200°C is the square wire, (which thermal class is 200°C). In fact, after pressing, kool mu material is given a stress-relief anneal for several hours at temperatures above 500°C. It is after this anneal that an epoxy paint to applied for dielectric protection and extra physical strength in toroidal cores, not in E cores.

Therefore, there is no doubt that 200°C has no damaging effects on the cores, even if applied continuously. This is possible because the magnetic material itself is not damaged or aged, even when operated at temperatures that are too high for the coating.

Unlike powdered iron energy storage chokes, M80 series, which cores are made of a magnetic material that is manufactered without the use of an organic binder, therefore M80 series has no aging effects.

Core lossesOnly AC current (ripple current) in an inductor generates core losses. At typical power frequencies sendust alloy is a better solution compared to iron powder cores, due its much lower core losses.

M80 series does not have increasing losses over temperature, additionally, does not have signi!cant decrease in saturation at high temperature.

PERFORMANCE CHARACTERISTICS

Page 10: Brochure

93

Hig

h E

ner

gy

Sto

rage

Cho

kes

M80: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Features-Based on squared copper wire windings around Kool-Mu E shape cores.-High storage currents (up to 45A).-High storage low losses designs, improved ef!ciency for renewable energy inverters (>99%).-Very good inductance stability vs temperature.-High inductance values (up to 6 mH) to meet solar inverters requirements.-Operating frequency up 50 kHz.-Chokes designed for a 10% ripple current.-Soft saturation curve (L vs Current).-Low magnetostriction.-Combination of up to 6 stacked sets of cores.-Operating temperature from -40ºC to 85ºC.-Wide range of output terminals (racket, fast-on, direct leads,…).

Applications-High ef!ciency renewable energy inverters (Solar, Eolic, Fuel cells).-Welding Inverters.-High ef!ciency UPS.

Electrical speci!cations

CodeL

(µH)L (Ipk)(mH)

Irms (A)

Ipk(A)

Ripple(App)

RDC(mΩ)

Losses(W)

∆T(ºC)

Power230 V

Power230 V

Weight(kg)

M80-1,9-10 2,2 1,9 10 14,6 1,0 61 6,10 <17 2300 99,73 1900 99,68 2,0

M80-2,9-10 4,3 2,9 10 14,6 1,0 80 8,66 <16 2300 99,62 1900 99,54 3,1

M80-3,9-10 6,4 3,9 10 14,6 1,0 96 10,53 <16 2300 99,54 1900 99,45 3,9

M80-1,8-12 2,5 1,8 12 17,6 1,2 68 9,58 <19 2760 99,65 2280 99,58 2,5

M80-2,6-12 4,3 2,6 12 17,6 1,2 77 11,97 <20 2760 99,57 2280 99,48 3,1

M80-3,5-12 5,8 3,5 12 17,6 1,2 92 14,42 <21 2760 99,48 2280 99,37 3,8

M80-1,3-18 1,8 1,3 18 26,4 1,8 69 18,35 <39 4180 99,56 3420 99,46 1,9

M80-1,9-18 3,8 1,9 18 26,4 1,8 71 24,88 <43 4180 99,40 3420 99,27 2,6

M80-2,6-18 5,1 2,6 18 26,4 1,8 84 29,49 <43 4180 99,29 3420 99,14 3,3

M80-2,1-22 3,4 2,1 22 32,2 2,2 78 40,65 <57 5060 99,20 4180 99,03 3,2

M80-1,6-26 3,4 1,6 26 38,1 2,6 60 40,60 <57 5980 99,32 4940 99,18 1,6

M80-1,3-33 1,9 1,3 33 48,3 3,3 55 60,20 <63 7590 99,21 6270 99,04 2,4

M80-0,7-45 1,1 0,7 45 65,9 4,5 25 55,26 <59 10350 99,47 8550 99,35 3,7

Inductance measured at 10kHz, 10mVac, T=25°C.Inductance tolerance ±10%.Based on natural cooling convection.

Page 11: Brochure

94

Hig

h E

ner

gy

Sto

rage

Cho

kes

Dimensions (in millimeters)

CodeA±2

BMAX

C±2

M80-1,9-10 80,0 100 76,2

M80-2,9-10 80,0 120 76,2

M80-3,9-10 80,0 140 76,2

M80-1,8-12 80,0 100 76,2

M80-2,6-12 80,0 120 76,2

M80-3,5-12 80,0 140 76,2

M80-1,3-18 80,0 100 76,2

M80-1,9-18 80,0 120 76,2

M80-2,6-18 80,0 140 76,2

M80-2,1-22 80,0 140 76,2

M80-1,6-26 80,0 160 76,2

M80-1,3-33 80,0 160 76,2

M80-0,7-45 80,0 180 76,2

M80: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Page 12: Brochure

95

Hig

h E

ner

gy

Sto

rage

Cho

kes

M80: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Page 13: Brochure

96

Hig

h E

ner

gy

Sto

rage

Cho

kes

M80: Multi-E ChokeHigh Energy Storage Chokes for Inverter Applications

Page 14: Brochure

97

Hig

h E

ner

gy

Sto

rage

Cho

kes

AIC SERIESHigh Energy Storage Chokes for Inverter Applications

Features

Series main characteristics are:

- High ef!ciency (>99%) due to very low losses design.- Very good inductance stability vs. temperature.- Wide inductance range (values of inductance up to 6mH).- High storage currents (up to 150 A).- High current density.- Only one component for 3 phase: Triphasic topology.- Lower size in comparison with other chokes.- Operating frequency up to 25kHz.- Wide operating temperature range.

Applications

- Input and output chokes for renewable inverter applications - Solar - Wind - Fuel-cells- Chokes for welding equipments.- Input and output chokes for UPS.

PREMO introduces a new high storage mono-phase and three-phase AC chokesstandard series for renewable energies, offering a wide range of inductances and Power(from 2,5 up to 100kVA).

AIC series is manufactured with new magnetic material. This new alloy has a balancedperformance, combining a high &ux density with low coercitivity and power losses overa broad range of frequencies making them an ideal solution. This combination of lowlosses and high saturation &ux density provides size reduction and increasingly energyef!ciency.

Page 15: Brochure

98

Hig

h E

ner

gy

Sto

rage

Cho

kes

AIC SERIESHigh Energy Storage Chokes for Inverter Applications

Product list

Dimensions of mono-phase chokes

Part Number L(2) Current(A)

Power(kVA)

FundamentalFrequency

(Hz)

RippleFrequency

(kHz)

Iripple 15%

(Apeak)

Total Losses

(W) MAX.

RDC (1)

(mΩ)∆T

(ºC)Weight

(kg)

AIC-2P-300-12 3 mH 2,5 2,5 50 / 60 20 2 25 32 45 99,07 2,1

AIC-2P-600-12 6 mH 12,5 2,5 50 / 60 20 2 30 27 45 98,80 3,6

AIC-2P-150-23 1,5mH 23 5 50 / 60 20 3 25 12 45 99,50 2,9

AIC-2P-250-23 2,5mH 23 5 50 / 60 20 3 30 12 45 99,41 4,1

AIC-2P-300-23 3 mH 23 5 50 / 60 20 3 27,5 12 45 99,47 3,7

AIC-3P-150-15 1,5 mH 15 10 50 / 60 15 2 30 27 40 99,71 3,4

AIC-3P-200-15 2 mH 15 10 50 / 60 15 2 35 22 40 99,67 5

AIC-3P-100-23 1 mH 23 15 50 / 60 15 3 37,5 12 40 99,76 5,2

AIC-3P-200-23 2 mH 23 15 50 / 60 15 3 60 19 40 99,60 8,4

AIC-3P-075-30 750 µH 30 20 50 / 60 15 4 40 6,5 45 99,80 6,3

AIC-3P-150-30 1,5 mH 30 20 50 / 60 15 4 70 10 45 99,66 9,7

AIC-3P-075-36 750 µH 36 25 50 / 60 15 5 67,5 9 45 99,74 7,5

AIC-3P-150-36 1,5 mH 36 25 50 / 60 15 5 110 12 45 99,56 16,2

AIC-3P-032-75 325 µH 75 50 50 / 60 10 11 115 4,5 50 99,77 14,2

AIC-3P-075-75 750 µH 75 50 50 / 60 10 11 160 6 50 99,68 23,7

AIC-3P-025-150 250 µH 150 100 50 / 60 5 23 220 2,5 50 99,79 34,9

AIC-3P-050-150 500 µH 150 100 50 / 60 5 23 210 2,5 50 99,79 45

Note 1: DC Resistance per each phase (mΩ)Note 2: Total inductance for AIC-2P-XXX-XX.Inductance per phase for AIC-3P-XXX-XX.

Part Number A B C D E F G H

AIC-2P-300-12 120 70 150 85 75 65 75 5

AIC-2P-600-12 120 85 150 100 75 65 90 5

AIC-2P-150-23 120 70 150 85 75 65 75 5

AIC-2P-250-23 120 85 150 100 75 65 90 5

AIC-2P-300-23 120 85 150 100 75 65 90 5

Dimensions in mm

Note 2: Total inductance for AIC-2P-XXX-XX.Inductance per phase for AIC-3P-XXX-XX.

Page 16: Brochure

99

Hig

h E

ner

gy

Sto

rage

Cho

kes

AIC SERIESHigh Energy Storage Chokes for Inverter Applications

Mono-phase graphics

Dimensions in mm

Losses (W) Vs. Temperature (°C)

Dimensions of three-phase chokes

Part Number A B C D E F G H

AIC-3P-150-15 180 80 150 85 125 115 75 5

AIC-3P-200-15 180 95 150 100 125 115 90 5

AIC-3P-100-23 180 95 150 100 125 115 90 5

AIC-3P-200-23 200 100 180 110 150 140 100 5

AIC-3P-075-30 180 95 150 100 125 115 90 5

AIC-3P-150-30 200 100 180 110 150 140 100 5

AIC-3P-075-36 200 100 180 110 150 140 100 5

AIC-3P-150-36 250 125 210 120 190 180 110 5

AIC-3P-032-75 250 125 210 120 190 180 110 5

AIC-3P-075-75 290 145 245 130 220 120 210 5

AIC-3P-025-150 320 180 270 160 250 240 150 5

AIC-3P-050-150 320 180 270 160 250 240 150 5

Page 17: Brochure

100

Hig

h E

ner

gy

Sto

rage

Cho

kes

AIC SERIESHigh Energy Storage Chokes for Inverter Applications

Three-phase graphics

Core Losses (W) Vs. Frequency (kHz)

Losses (W) Vs. Temperature (°C)

Core Losses (W) Vs. Frequency (kHz

Page 18: Brochure

101

Hig

h E

ner

gy

Sto

rage

Cho

kes

AMC SeriesHigh performances AC choke series for Renewable Energy Inverters

Features- High integration density for high inductance and current values - High inductance value: 1 to 3mH- Current rating : Up to 60Arms @50Hz- Choke designed for 20% of current ripple @20kHz- Operating temperature from -20ºC to 70ºC- UL 1446 insulation system, UL 94V0 approved materials- Possibility of customized of output terminals: racket, fast on, direct leads…

Applications- Inverters for Renewable Energy applications- UPS inverters

Electrical speci!cations

Code

L0 (1)

INDUCTANCE±10% (mH) at 1V/20kHz/0A

IRMS

@50HzMAX(A)

∆I@20kHzMAX(A)

IPEAK

(1, 2)

MAX(A)

DCR(1) MAX (mΩ)

Total losses at 100°C

(W)

Heating atTotal losses

(°C)

AMC10-1-30 1 30 9 47 17 40 50

AMC20-1-40 1 40 12 62 19 57 50

AMC32-1-50 1 50 14 78 12 65 45

AMC40-1-60 1 60 17 94 12 85 50

AMC10-2-20 2 20 6 32 55 38 45

AMC20-2-30 2 30 9 47 38 61 55

AMC40-2-40 2 40 12 62 18 76 45

AMC20-3-20 3 20 6 32 40 42 40

AMC32-3-30 3 30 9 47 40 74 50

Notes(1) All test data are referenced to 25°C ambient temperature(2) Maximum current before drop of inductance value(3) Continuous operating temperature range must be within -25°C/+130°C (ambient + self heating) under worst case conditions

Page 19: Brochure

102

Hig

h E

ner

gy

Sto

rage

Cho

kes

AMC SeriesHigh performances AC choke series for Renewable Energy Inverters

Typical performances versus ripple of current and frequency

Page 20: Brochure

103

Hig

h E

ner

gy

Sto

rage

Cho

kes

AMC SeriesHigh performances AC choke series for Renewable Energy Inverters

Dimensions (mm)

Packaging

Antistatic trays with carton grids in carton box

Code AMAX

BMAX

C ±0.2

D±0.2

HMAX

AMC10-X-XX 113 91 81 32 78

AMC20-X-XX 133 107 97 44 88

AMC32-X-XX 142 133 127 44 98

AMC40-X-XX 142 133 127 44 113

Page 21: Brochure

104

Hig

h E

ner

gy

Sto

rage

Cho

kes

HSC SeriesAC High Storage Choke Series for Renewable Energy Inverters

Features- Dedicated to low cost applications - High inductance value: 1 to 3mH- Current rating : Up to 20Arms @50Hz- Choke designed for 25% of current ripple @20kHz- Operating temperature from -20ºC to 70ºC- UL 1446 insulation system, UL 94V0 approved materials- 3 different mechanical integration proposed (1): single (-O), aluminum plate (-P), plastic box (-B)- Possibility of customized of output terminals: racket, fast on, direct leads…

Applications- Inverters for Renewable Energy applications- UPS inverters

Electrical speci!cations

Code

L0 (2)

INDUCTANCE±10% (mH) at 1V/20kHz/0A

IRMS

@50HzMAX(A)

∆I@20kHzMAX(A)

IPEAK

(2, 3)

MAX(A)

DCR(2) MAX (mΩ)

Total losses at 100°C

(W)

Heating atTotal losses

(°C)(5)

HSC-1-15-X 1 15 6 24 65 20 55

HSC-1-20-X 1 20 8 32 60 33 (Note 6)

HSC-2-10-X 2 10 4 15 140 19 55

HSC-2-15-X 2 15 6 24 180 54 (Note 6)

HSC-3-5-X 3 5 2 8 65 5 15

HSC-3-10-X 3 10 4 15 180 25 65

Notes(1) Mechanical integrations proposed : -O for single, -P for aluminum plate, -B for plastic box (Example: HSC-1-15-O for single)(2) All test data are referenced to 25°C ambient temperature(3) Maximum current before drop of inductance value(4) Continuous operating temperature range must be within -25°C/+130°C (ambient + self heating) under worst case conditions(5) Heating for potted product(6) Additional cooling system have to be added (Example: blowing air, cold plate)

Page 22: Brochure

105

Hig

h E

ner

gy

Sto

rage

Cho

kes

HSC SeriesAC High Storage Choke Series for Renewable Energy Inverters

Typical performances temperature and frequency

Page 23: Brochure

106

Hig

h E

ner

gy

Sto

rage

Cho

kes

HSC SeriesAC High Storage Choke Series for Renewable Energy Inverters

Dimensions (mm)

Code TYPE

HSC-1-15-O A

HSC-1-20-O B

HSC-2-10-O A

HSC-2-15-O B

HSC-3-5-O A

HSC-3-10-O B

TYPE B

TYPE A

Page 24: Brochure

107

Hig

h E

ner

gy

Sto

rage

Cho

kes

HSC SeriesAC High Storage Choke Series for Renewable Energy Inverters

Dimensions (mm)

Code TYPE

HSC-1-15-P C

HSC-1-20-P D

HSC-2-10-P C

HSC-2-15-P D

HSC-3-5-P C

HSC-3-10-P D

TYPE D

TYPE C

Page 25: Brochure

108

Hig

h E

ner

gy

Sto

rage

Cho

kes

HSC SeriesAC High Storage Choke Series for Renewable Energy Inverters

Dimensions (mm)

Packaging

Antistatic trays with carton grids in carton box

Code A B1 B2 C

HSC-1-15-B 82 116 140 80

HSC-1-20-B 82 148 172 80

HSC-2-10-B 82 116 140 80

HSC-2-15-B 82 148 172 80

HSC-3-5-B 82 116 140 80

HSC-3-10-B 82 148 172 80

Page 26: Brochure

109

Lin

ear

Cho

kes

PL SERIESLinear chokes

Features - Nominal maximum load current: from 0,6A to 7A. - Nominal inductance (L): from 0,05mH to 5,5mH. - Nominal inductance >80% at maximum load current.- Working voltage: 600Vdc maximum. - Working frequency: up to 20kHz. - High isolation voltage winding to ambient: 2kVac.- Ambient temperature: -40ºC to +50ºC. - Storage temperature: from -40ºC to +120ºC. - All materials UL94V-0 listed.- Vertical and horizontal formats available.

Electrical speci!cations

CodeIDC LOAD

(A)

maximum

L (mH)at 10kHz

±10%

Rdc (W) typical

Case

PL0R6-06HA 0,6 0,65 0,69 HA

PL0R1-15HA 1,5 0,11 0,15 HA

PLR01-40HA 4 0,015 0,017 HA

PL3R0-06HB 0,6 3 1,7 HA

PL1R0-10HB 1 1 0,55 HB

PL0R5-15HB 1,5 0,5 0,27 HB

PL0R1-30HB 3 0,1 0,07 HB

PLR02-70HB 7 0,02 0,013 HB

PL0R1-06VA 0,6 0,1 0,6 VA

PLR05-10VA 1 0,05 0,28 VA

PL0R5-06VC 0,6 0,5 0,75 VC

PL0R2-10VC 1 0,2 0,22 VC

PLR05-20VC 2 0,05 0,05 VC

PL005-04VD 0,45 5 2,6 VD

PL003-06VD 0,6 3 1,55 VD

PL0R5-15VD 1,5 0,5 0,28 VD

PL0R3-18VD 1,8 0,3 0,18 VD

PL0R1-30VD 3 0,1 0,07 VD

PLR05-45VD 4,5 0,05 0,03 VD

PLR02-70VD 7 0,02 0,012 VD

PL5R5-06VE 0,6 5,5 3,6 VE

PL0R8-16VE 1,6 0,8 0,47 VE

PL0R3-25VE 2,5 0,3 0,16 VE

PL0R1-40VE 4 0,13 0,053 VE

PLR05-63VE 6,3 0,05 0,023 VE

Page 27: Brochure

110

Lin

ear

Cho

kes

PL SERIESLinear chokes

Dimensions (in millimeters)

CodeA

±0,2B

MAXC

±0,2D

MAXE

±0,2

PL-HA 10 17,8 15 18,2 12,4

PL-HB 15 28 25 28 17,5

PL-H SERIES

PL-V SERIES

CodeA

MAXB1

±0,2B2

±0,2C

MAXD

±0,2E

MAXØ PIN±0,1

L PIN+0/-0,5

PL-VA 10,5 5 6,25 8,2 8,75 10,7 0,6 3,5

PL-VC 13,5 7,5 7,5 10,5 12,5 15 0,6 3,5

PL-VD 24 10 10 13 20 23 0,8 3,5

PL-VE 32 15 15 18 12,5 32 0,8 5

Typical curves: Inductance vs Load Current

Page 28: Brochure

111

Co

mm

on M

od

e C

ho

kes

COMMON MODE CHOKES SERIES

INTRODUCTION

ELECTROMAGNETIC COMPATIBILITY (EMC)

The electromagnetic compatibility is the ability of an electronic device to function satisfactorily in its electromagnetic environment (Inmunity or Susceptibility) without disturbing other equipments (Emission).An interference source generates two kind of electromagnetic interferences: conducted emission, electrical noise through the lines, or radiated emission, generation of electromagnetic !elds.At high frequencies, characterized by the fact that the equipment dimensions are in the order of the magnitud of the wavelength associated to this frequency, the interference energy is mainly radiated.

EMC COMPONENTS

At lower frequency ranges, the EMC components are used to reduce conducted electromagnetic interferences, to assure the good devices working and to comply the legal regulations. These components can be installed in the interference source or in the disturbed device.In order to choose the suitable interference suppression component, the way in which the interference is propagated needs to be known:- The electrical noise which comes in one line wire and returns to the noise source through the other line wire is differential noise (symmetrical interference). This mode of interference occurs mainly at low frequencies (up to several hundred of kHz).Some types of capacitors (X capacitors) and single chokes are suitable for suppressing the differencial mode interferences.- Due to the mechanical con!guration and parasitic capacitances, a current with the ground circuit can be created.These parasitic currents can &ow through the power line cables and return through the ground cable. This kind of interference is the common mode noise (asymmetrical interference). As the effects of parasitic capacitance and inductance between the conductors increase with frequency, this interference occurs at high frequencies (startingapproximately from 1MHz).When the common mode interferences have to be reduced, the common mode chokes and Y capacitors are used.

Page 29: Brochure

112

Co

mm

on M

od

e C

ho

kes

COMMON MODE CHOKES SERIES

COMMON MODE CHOKES

The closed core topology and the windings distribution make these components especially suitable for the common mode noise suppression.The continuos path of the toroids maximizes the magnetic coupling between windings thereby minimizing the leakage inductance.Also, two windings are connected in such a way that the magnetic &ux induced by the operating current &owing in one winding is opposite to the &ux induced by the current &owing through the another one, that is to say, both &uxes cancel each other. Therefore, the problem of core saturation is solved.This allows to use high permeability cores so that high inductance values are obtained.

Premo has a wide range of CMCs for their use in different applications. The chokes are based in a toroidal core and they are mounted in boxes or bases facilitating their direct assembly in the printed circuit board. The magnetic core material is either high permeability ferrite (PC, PM, SC) or nanocrystalline (HC). We can offer different formats and sizes in order to cover all the necessities in the electromagnetic compatibility !eld.

SERIES

SERIES Current range Inductance rangeAttenuation

frequency rangeMain applications Features

PC / PMFrom 0,3A to

10AFrom 0,5mH to

68mHFrom 50kHz to

1MHz- Switched Mode Power Supplies (SMPS)

- Very high inductance values- Wide range

SCFrom 0,4A to

2,5AFrom 5µH to

4,7mHFrom 100kHz to

1GHz- DC/DC applications

- Very small size- SMD format

HCFrom 2A to

30AFrom 6mH to

28mHFrom 10kHz to

100MHz

- Switched Mode Power Supplies (SMPS)-Uninterruptable Power Supplies (UPS) - Inverters

- Very high current values- Wide impedance vs frequency response. High!ltering at all frequencies.- High stability vs temperature.

Page 30: Brochure

113

Co

mm

on M

od

e C

ho

kes

HC SERIESCommon mode chokes with Nanocrystalline cores

Features- Nominal current in each winding (I): from 2A to 30A.- Nominal inductance (L): from 6mH to 28mH.- Rated voltage: 250Vac.- Test voltage: 1.5kVac, winding to winding.- Creepage distance: 3mm, winding to winding.- Ambient temperature: from –40ºC to +50ºC.- Storage temperature: from –40ºC to +120ºC.- Plastic case: UL 94V-0 listed.- According to UL 1283.

Electrical speci!cations

Code IAC

(AL (mH)

at 10kHz+50% / -30%

L (mH)at 100kHzminimum

IZI (Ω)at 100kHz

typical

Rdc (mΩ)typical

ØPIN (mm) ±0,1

HC140-02V1 2 2 x 14 2 x 1,5 2000 110 0,5

HC6R5-04V1 4 2 x 6,5 2 x 0,65 1600 31,5 0,75

HC280-04V1 4.5 2 x 28 2 x 4,5 4500 42 0,7

HC190-06V2 6 2 x 19 2 x 2,7 3500 37 0,8

HC130-08V2 8 2 x 13 2 x 1,8 2000 20 0,95

HC9R0-10V2 10 2 x 9 2 x 1,4 1500 18 0,9

HC110-13V2 13 2 x 11 2 x 1,3 1600 11 1,25

HC6R0-15V3 15 2 x 6 2 x 2,0 1000 10 1,2

HC6R0-30V3 30 2 x 6 2 x 0,5 1000 3 2,2

HC9R0-10H1 10 2 x 9 2 x 1,4 1500 18 0,9

HC110-13H1 13 2 x 11 2 x 1,3 1600 10 1,25

HC1R6-20H1 20 2 x 1,6 2 x 0,2 250 3 1,6

HC130-16H2 16 2 x 13 2 x 1,2 1800 6,6 1,6

HC1R2-25H2 25 2 x 1,2 2 x 0,4 370 3 1,8

HC4R9-20H3 20 2 x 4.9 2 x 1,4 1600 7 1,7

HC3R6-25H3 25 2 x 3,6 2 x 1,1 1000 5,5 1,8

HC2R6-32H3 32 2 x 2,6 2 x 0,3 400 2,5 2,2

Page 31: Brochure

114

Co

mm

on M

od

e C

ho

kes

HC SERIESCommon mode chokes with Nanocrystalline cores

Dimensions (in mm)

CodeA

MAXB

MAXC

MAXD

±0,2E

±0,2L

±1,0

HC-V1 28,5 18 30 7,62 15,24 4

HC-V2 37,0 22 37 15,24 25,4 4

HC-V3 55,0 30 56 20,32 35,56 5

CodeA

MAXB

MAXC

±0,2D

±0,2E

±0,2F

±0,2G

±0,2H

±0,2I

±0,2J

±0,2L

±1,0

HC-H1 37,5 23 13,5 23 - - - - - - 4

HC-H2 42,5 26 - - 5 5 5 5 7 15 5

HC-H3 55,5 31 - - 12,5 10 7,5 7,5 4,5 20 5

Page 32: Brochure

115

Co

mm

on M

od

e C

ho

kes

HC SERIESCommon mode chokes with Nanocrystalline cores

Curves: Impedance vs. Frequency

Note:

Impedance measurements have been obtained with both windings in parallel and at ambient temperature.

Page 33: Brochure

116

Co

mm

on M

od

e C

ho

kes

HC SERIESCommon mode chokes with Nanocrystalline cores

Note:

Impedance measurements have been obtained with both windings in parallel and at ambient temperature.

Page 34: Brochure

117

Co

mm

on M

od

e C

ho

kes

HC SERIESCommon mode chokes with Nanocrystalline cores

Note:

Impedance measurements have been obtained with both windings in parallel and at ambient temperature.

Page 35: Brochure

118

Co

mm

on M

od

e C

ho

kes

SC SERIESCommon mode chokes with Ferrite cores - SMD format

Features- Nominal current in each winding (I): from 0,4A to 2,5A. - Nominal inductance (L): from 5µH to 4,7mH. - Rated voltage: 42Vac. - Storage temperature: from -40ºC to 120ºC. - Plastic case: UL 94V-0. - Packaging: tape & reel - 600 u. x reel - Suitable for CAN Bus.

Electrical speci!cations

Code IAC

(A)L (mH)

at 10kHz+50% / -30%

Lleak (nH)at 100kHz

typical

Rdc (mΩ)typical

Visol (Vac)

SC-050-X 1,2 2x5 50 70 180

SC-060-X 2,5 2x6 50 20 180

SC-060-H 2,5 2x6 400 20 180

SC-110-X 0,8 2x11 50 120 180

SC-250-H 0,8 2x25 1500 130 180

SC-510-H 0,8 2x51 2000 160 180

SC-471-H 0,7 2x470 2500 200 550

SC-102-X 0,7 2x1000 250 200 550

SC-222-X 0,5 2x2200 250 400 550

SC-472-X 0,4 2x4700 300 550 550

Notes X: Bi!lar windings H: Symmetrical windings Dot on the top of the box indicates pin 1

Dimensions (in mm)

SC SERIES

Page 36: Brochure

119

Co

mm

on M

od

e C

ho

kes

SC SERIESCommon mode chokes with Ferrite cores - SMD format

Typical cuves: Impedance vs Frequency

Note:

Impedance measurements have been obtained with both windings in parallel and at ambient temperature.

Page 37: Brochure

120

Co

mm

on M

od

e C

ho

kes

PC SERIESCommon mode chokes with Ferrite cores

Features- Nominal current in each winding (I): from 0,3A to 10A.- Nominal inductance (L): from 1,8mH to 68mH.- Rated voltage: 250Vac.- Test voltage: 1,5kVac, winding to winding.- Creepage distance: 3mm, winding to winding.- Ambient temperature: from –40ºC to +50ºC.- Storage temperature: from –40ºC to +120ºC.- Plastic case: UL 94V-0 listed.- Potting resin: UL94V-0 listed.- According to UL 1283.

Electrical speci!cations

Code L(mH) +50% -30%RDC (mΩ)

MAX. @20ºCI (A) 50 Hz

Impedance(Ω) I Z I@ 100kHz

Code

2 x 47 2 x 1.800 0.3 20 PC 470-3V1

2 x 39 2 x 1.300 0.4 150 PC 390-4V1

2 x 27 2 x 700 0.6 70 PC 270-6V1

2 x 15 2 x 300 1.0 190000 PC 150-10V1

2 x 5.6 2 x 160 1.2 150000 PC 5R6-12V1

PC 470-5H2 2 x 47 2 x 1.050 0.5 350 PC 470-5V2

PC 390-5H2 2 x 39 2 x 760 0.5 75 PC 390-5V2

PC 270-8H2 2 x 27 2 x 550 0.8 160 PC 270-8V2

PC 150-9H2 2 x 15 2 x 350 0.9 10500 PC 150-9V2

PC 5R6-12H2 2 x 5.6 2 x 150 1.2 4000 PC 5R6-12V2

PC 3R3-25H2 2 x 3.3 2 x 50 2.5 2800 PC 3R3-25V2

PC 470-6H3 2 x 47 2 x 1.250 0.6 900 PC 470-6V3

PC 390-7H3 2 x 39 2 x 975 0.7 280 PC 390-7V3

PC 270-10H3 2 x 27 2 x 450 1.0 600 PC 270-10V3

PC 150-12H3 2 x 15 2 x 300 1.2 110 PC 150-12V3

PC 5R6-18H3 2 x 5.6 2 x 125 1.8 5000 PC 5R6-18V3

PC 3R3-28H3 2 x 3.3 2 x 60 2.8 2800 PC 3R3-28V3

PC 470-6H4 2 x 47 2 x 1.350 0.6 5000 PC 470-6V4

PC 390-8H4 2 x 39 2 x 950 0.8 2900 PC 390-8V4

PC 270-10H4 2 x 27 2 x 575 1.0 1300 PC 270-10V4

PC 220-14H4 2 x 22 2 x 450 1.4 1100 PC 220-14V4

PC 150-14H4 2 x 15 2 x 300 1.4 180000 PC 150-14V4

PC 5R6-28H4 2 x 5.6 2 x 90 2.8 120000 PC 5R6-28V4

PC 3R3-40H4 2 x 3.3 2 x 50 4.0 80000 PC 3R3-40V4

PC 470-10H5 2 x 47 2 x 880 1.0

PC 100-20H5 2 x 10 2 x 230 2.0

PC 3R9-40H5 2 x 3.9 2 x 58 4.0

PC 1R8-60H5 2 x 1.8 2 x 23 6.0

PC 680-10H6 2 x 68 2 x 1.300 1.0 PC 680-10V6

PC 180-20H6 2 x 18 2 x 350 2.0 PC 180-20V6

PC 6R8-40H6 2 x 6.8 2 x 87 4.0 PC 6R8-40V6

PC 3R9-60H6 2 x 3.9 2 x 41 6.0 PC 3R9-60V6

PC 2R7-80H6 2 x 2.7 2 x 22 8.0 PC 2R7-80V6

PC 1R8-100H6 2 x 1.8 2 x 14 10.0 PC 1R8-100V6

Page 38: Brochure

121

Co

mm

on M

od

e C

ho

kes

PC SERIESCommon mode chokes with Ferrite cores

Dimensions (in mm)

CodeA

MAXB

±0,2C

MAXD

±0,2E

MAX

PC-V1 20,3 10 13,2 5 18,2

PC-V2 26 12,5 16,1 10 23,3

PC-V3 30,5 15 18,6 12,5 28

PC-V4 33,2 15 18,5 12,5 32

PC-V6 40 17,5 21,5 12,5 40,4

CodeA

±0,2B

MAXC

±0,2D

MAXE

MAX

PC-H2 20 23 12,5 22,7 15

PC-H3 25 28 15 28 17,5

PC-H4 30 33 20 32 19,5

PC-H5 30 33,5 20 32,6 25

PC-H6 40 44 15 42,4 25

PC-V SERIES

PC-H SERIES

Page 39: Brochure

122

Co

mm

on M

od

e C

ho

kes

PC SERIESCommon mode chokes with Ferrite cores

Curves: Impedance vs. Frequency

Note:

Impedance measurements have been obtained with both windings in parallel and at ambient temperature.

Page 40: Brochure

123

Co

mm

on M

od

e C

ho

kes

PC SERIESCommon mode chokes with Ferrite cores

Curves: Impedance vs. Frequency

Note:

Impedance measurements have been obtained with both windings in parallel and at ambient temperature.

Page 41: Brochure

124

Co

mm

on M

od

e C

ho

kes

PM SERIESCommon mode chokes with Ferrite cores

Features- Nominal current in each winding (I): from 0,4A to 6,3A.- Nominal inductance (L): from 0,5mH to 40mH. - Rated voltage: 440Vac. - Test voltage: 1,8kVac winding to winding. - Ambient temperature: -40ºC to +50ºC. - Storage temperature: from -40ºC to +120ºC. - Plastic case: UL 94V-0. - Potting resin: UL94V-0. - According to UL1283.

Electrical speci!cations

Code IAC

(A)L (mH)

at 10kHz+50% / -30%

IZI (Ω)at 100kHz

typical

Rdc

(mΩ)maximum

Case

PM400-04HA 0,4 2x40 70000 2x1200 HA

PM6R8-12HA 1,2 2x6.8 5000 2x200 HA

PM3R3-15HA 1,5 2x3.3 2000 2x110 HA

PM0R7-40HA 4 2x0.7 500 2x16 HA

PM400-06HB 0,6 2x40 400000 2x1000 HB

PM200-10HB 1 2x20 30000 2x360 HB

PM6R0-20HB 2 2x6.0 5000 2x100 HB

PM1R5-40HB 4 2x1.5 1000 2x28 HB

PM0R6-63HB 6,3 2x0.6 300 2x13 HB

PM4R0-05VA 0,5 2x4.0 3000 2x500 VA

PM2R0-09VA 0,9 2x2.0 1600 2x240 VA

PM0R5-20VA 2 2x0.5 400 2x50 VA

PM4R0-05VB 0,5 2x4.0 3000 2x500 VB

PM2R0-09VB 0,9 2x2.0 1600 2x240 VB

PM0R5-20VB 2 2x0.5 400 2x50 VB

PM110-06VC 0,6 2x11 10000 2x600 VC

PM4R0-10VC 1 2x4.0 4000 2x250 VC

PM1R0-20VC 2 2x1.0 900 2x65 VC

PM200-10VD 1 2x20 20000 2x500 VD

PM6R0-20VD 2 2x6.0 5000 2x150 VD

PM1R5-40VD 4 2x1.5 1200 2x36 VD

PM0R6-63VD 6,3 2x0.6 500 2x15 VD

PM500-06VE 0,6 2x50 200000 2x1200 VF

PM330-10VE 1 2x33 70000 2x700 VF

PM270-14VE 1,4 2x27 30000 2x470 VF

PM6R8-20VE 2 2x6.8 5000 2x150 VF

PM3R3-40VE 4 2x3.3 3000 2x58 VF

PM2R0-60VE 6 2x2.0 1600 2x24 VF

Page 42: Brochure

125

Co

mm

on M

od

e C

ho

kes

PM SERIESCommon mode chokes with Ferrite cores

Dimensions (in mm)

CodeA

±0,2B

MAXC

±0,2D

MAXE

±0,2

PM-HA 10 17,8 15 18,2 12,4

PM-HB 15 28 25 28 28

PM-H SERIES

PM-V SERIES

PM-VB SERIES

CodeA

MAXB1

±0,2B2

±0,2C

MAXD

±0,2E

MAXØ PIN±0,1

L PIN+0/-0,5

PM-VA 10,5 5 6,25 8,2 8,75 10,7 0,6 3,5

PM-VC 13,5 7,5 7,5 10,5 12,5 15 0,6 3,5

PM-VD 24 10 10 13 20 23 0,8 3,5

PM-VE 32 15 15 18 12,5 32 0,8 5

Page 43: Brochure

126

Co

mm

on M

od

e C

ho

kes

PM SERIESCommon mode chokes with Ferrite cores

Curves: Impedance vs. Frequency

Note:

Impedance measurements have been obtained with both windings in parallel and at ambient temperature.

Page 44: Brochure

127

Co

mm

on M

od

e C

ho

kes

PM SERIESCommon mode chokes with Ferrite cores

Curves: Impedance vs. Frequency

Note:

Impedance measurements have been obtained with both windings in parallel and at ambient temperature.

Page 45: Brochure

128

Co

mm

on M

od

e C

ho

kes

PM SERIESCommon mode chokes with Ferrite cores

Curves: Impedance vs. Frequency

Note:

Impedance measurements have been obtained with both windings in parallel and at ambient temperature.

Page 46: Brochure

129

Co

mm

on M

od

e C

ho

kes

HFEF SERIESHigh Frequency EMI Filters with UU & R cores

Features- High frequency design- Against radiated noise- An open-body anti-noise choke coil a large inductance for a great noise control effect.- Excellent mechanical strengh- High realibility and variant PCB-mount housing- Suitable for wave soldering - Low resistance and temperature rise.- Suitable for high-density insertion

Part NumberInductance(mH) min.

TurnRatio

± 0,2%

D.C.R.(Ω)Max

Hi-PotIsolationVoltage

HFEF-333UV 33 1 : 1 13,50 2500V

HFEF-702UV 7 1 : 1 2,50 2500V

HFEF-332UV 3,3 1 : 1 1,20 2500V

HFEF-102UV 1 1 : 1 0,90 2500V

HFEF-433UH 43 1 : 1 14,50 2500V

HFEF-143UH 14 1 : 1 5,50 2500V

HFEF-502UH 5 1 : 1 1,80 2500V

HFEF-222UH 2,2 1 : 1 1,00 2500V

Part NumberNominal

Inductance(µH) ±35%

TurnRatio

± 0,2%

D.C.R.(Ω)Max

RatedCurrent (A) Max

Hi-PotIsolationVoltage

HFEF-10RH 10 1 : 1 50 2,00 500V

HFEF-20RH 20 1 : 1 50 1,50 500V

HFEF-50RH 50 1 : 1 50 1,50 500V

HFEF-60RH 60 1 : 1 80 1,50 500V

HFEF-80RH 80 1 : 1 80 1,50 500V

HFEF-100RH 100 1 : 1 100 1,00 500V

HFEF-200RH 200 1 : 1 150 0,60 500V

Dimensions (in mm)

Page 47: Brochure

130

Co

mm

on M

od

e C

ho

kes

HFEF SERIESHigh Frequency EMI Filters with UU & R cores

Electrical Schematic

Dimensions (in mm)

Page 48: Brochure

131

Co

mm

on M

od

e C

ho

kes

LF SERIESCommon mode chokes with UI cores

Features- 0,3 to 5A ratings, low temperature.- 0,6 to 50 mH, dual chokes.- An open-body anti-noise choke coil a large inductance for a great noise control effect.- Excellent mechanical strengh- 100KHz to 3MHz common node resonance.- High realibility and variant PCB-mount housing- Suitable for wave soldering - Low resistance and temperature rise.- Suitable for high-density insertion

Part NumberInductance(mH) min.

InductanceTolerance(µH) Max

D.C.R.(Ω)Max

IdcMax

A

LF1922-752 7,5 100 2,00 0,4

LF1922-502 5 200 2,00 0,3

LF1922-302 3 150 0,40 0,5

LF1922-202 2 100 0,40 1

LF1922-102 1 50 0,14 1,6

LF1922-801 0,8 50 0,20 1,5

LF1922-601 0,6 50 0,12 2

LF2327-453 45 200 2,50 0,5

LF2327-323 32 200 2,00 0,5

LF2327-253 25 160 1,20 0,5

LF2327-203 20 160 1,20 0,5

LF2327-143 14 140 1,00 0,5

LF2327-103 10 140 0,80 0,8

LF2327-790 7,9 100 0,80 0,8

LF2327-602 6 100 0,80 0,8

LF2327-402 4 100 0,70 0,8

LF2327-250 2,5 80 0,60 0,8

LF2327-182 1,8 80 0,60 0,8

LF2327-102 1 80 0,40 1

Part NumberInductance(mH) min.

InductanceTolerance(µH) Max

D.C.R.(Ω)Max

IdcMax

A

LF3221-503 50 300 3 0,30

LF3221-353 35 250 2 0,50

LF3221-253 25 230 1,2 0,80

LF3221-203 20 200 0,7 0,90

LF3221-183 18 180 0,6 1,00

LF3221-123 12 150 0,4 1,00

LF3221-103 10 120 0,25 2,00

LF3221-752 7,5 100 0,2 2,00

LF3221-502 5 80 0,15 3,00

LF3221-302 3 60 0,1 3,00

LF3221-152 1,5 50 0,06 4,00

LF3221-102 1 50 0,04 5,00

Page 49: Brochure

132

Co

mm

on M

od

e C

ho

kes

LF SERIESCommon mode chokes with UI cores

Electrical Schematic

Dimensions (in mm)

Page 50: Brochure

133

Co

mm

on M

od

e C

ho

kes

ET / UT SERIESCommon mode chokes with ET & UT cores

Features- 0,3 to 10A ratings, low temperature.- 0,7 to 100 mH, dual chokes.- An open-body anti-noise choke coil a large inductance for a great noise control effect.- Excellent mechanical strengh- 100KHz to 3MHz common node resonance.- High realibility and variant PCB-mount housing- Suitable for wave soldering - Low resistance and temperature rise.- Suitable for high-density insertion

Part NumberNominal

Inductance(mH) min.

LeakageInductance(µH) Max

D.C.R.(Ω)Max

RatedCurrent (A) Max

ET2422H-683 68 700 2,3 0,40

ET2422H-453 45 600 1,65 0,50

ET2422H-333 33 500 1,2 0,60

ET2422H-253 25 400 0,88 0,80

ET2422H-203 20 350 0,64 1,00

ET2422H-103 10 250 0,38 1,20

ET2422H-452 4,5 150 0,19 1,50

ET2422H-392 3,9 150 0,15 1,80

ET2422H-332 3,3 100 0,11 2,00

ET2422H-242 2,4 95 0,09 2,50

ET2430V-683 68 700 2,30 0,40

ET2430V-453 45 600 1,65 0,50

ET2430V-333 33 500 1,20 0,60

ET2430V-253 25 400 0,88 0,80

ET2430V-203 20 350 0,64 1,00

ET2430V-103 10 250 0,38 1,20

ET2430V-452 4,5 150 0,19 1,50

ET2430V-392 3,9 150 0,15 1,80

ET2430V-332 3,3 100 0,11 2,00

ET2430V-242 2,4 95 0,09 2,50

ET2836V-353 35 650 0,78 1,00

ET2836V-253 25 500 0,56 1,20

ET2836V-203 20 400 0,41 1,50

ET2836V-123 12 300 0,27 1,80

ET2836V-802 8 200 0,18 2,00

ET2836V-562 5,6 150 0,13 2,50

ET2836V-472 4,7 150 0,10 2,80

ET2836V-332 3,3 100 0,09 3,00

ET2836V-182 1,8 40 0,05 4,00

Part NumberNominal

Inductance(mH) min.

LeakageInductance(µH) Max

D.C.R.(Ω)Max

RatedCurrent (A) Max

UT2024-123 12 200 0,92 0,80

UT2024-622 6,2 150 0,5 1,00

UT2024-242 2,4 80 0,18 1,70

UT2024-601 0,6 40 0,06 3,00

Part NumberNominal

Inductance(mH) min.

LeakageInductance(µH) Max

D.C.R.(Ω)Max

RatedCurrent (A) Max

ET2836H-353 35 650 0,78 1,00

ET2836H-253 25 500 0,56 1,20

ET2836H-203 20 400 0,41 1,50

ET2836H-123 12 300 0,27 1,80

ET2836H-802 8 200 0,18 2,00

ET2836H-562 5,6 200 0,13 2,50

ET2836H-472 4,7 150 0,10 2,80

ET2836H-332 3,3 100 0,07 3,00

ET2836H-182 1,8 40 0,05 4,00

Part NumberNominal

Inductance(mH) min.

LeakageInductance(µH) Max

D.C.R.(Ω)Max

RatedCurrent (A) Max

ET3435V-333 33 900 0,42 1,60

ET3435V-223 22 700 0,29 1,80

ET3435V-183 18 500 0,23 2,00

ET3435V-153 15 450 0,21 2,20

ET3435V-123 12 350 0,17 2,50

ET3435V-103 10 300 0,13 2,70

ET3435V-822 8,2 300 0,11 3,00

ET3435V-562 5,6 250 0,08 3,50

ET3435V-472 4,7 200 0,06 4,00

Page 51: Brochure

134

Co

mm

on M

od

e C

ho

kes

ET / UT SERIESCommon mode chokes with ET & UT cores

Features- Max operating voltage: 250V at 40ºC- IDC Max: rating AC/DC current @ 40ºC- Hi-Pot: 2500Vac winding to winding, time 3 seconds.- Insulation resistance: 100MW min / DC 500V- Temperature rise: Max 40ºC- Inductance Testing: 10KHZ @ 100 mVac- Operating temperature: -40ºC to 105ºC- Storage temperature: -40ºC to105ºC- Resistance to soldering heat: 260ºC for 10 seconds- Mark: Part number + date code

Electrical Schematic

Dimensions (in mm)

Page 52: Brochure

135

Po

wer

Fact

or

Co

rrec

tio

n C

ho

kes

PFC SERIESPower Factor Correction Series

Applications- Automotive embedded battery chargers- Industrial high power SMPS

Electrical speci!cations

CodeInput

VoltageVac (V)

OutputVoltageVdc (V)

Power(kW)

Freq.(kHz)

L0 (3)

±10%(µH)

L MIN (4) atPeak

Current(µH)

DCRMAX(mΩ)

CurrentIrms(A)

Ripple∆Ipp(A)

Losses@100°C

(W)

Weight(kg)

PFC-001 230 385 4 67 310 > 80@27A 25 17 6 13 0,4

PFC-002 400 800 10 50 530 > 210@40A 60 25 10 52 1,1

PFC-003 (*) 400 800 20 50 2x 530 > 210@40A 2x 60 2x 25 10 2x 52 2,3

Notes All test data are referenced to 25°C ambient temperature Continuous operating temperature range must be within -40°C/+150°C (ambient + self heating) under worst case conditions ; exposure to 180°C peak is allowed according to IEC85 H thermal index for all raw materials used Performances are subjected to change according to cooling capability of the heatsink on which the component is !xed It is suggested that the component be tested at system level to verify its temperature after 60 minutes in the end application Inductance values are measured at 10kHz/0.25V Less than +/-5% variation on -40°C/+150°C temperature range See L vs. Idc curve beside Dielectric strength between windings and aluminum box is greater than 2.5kV/50Hz/2sec

Features- Chokes for CCM PFC operation- Can be used in a wide range of sinusoidal absorption recti!er circuits- Mounting onto water-plate heatsinks- Power rating : 4-10-20kW- Inductance range : 80µH to 500µH- Frequency range : 50-100kHz- H class component for operation up to 180°C- Very stable performances versus temperature- No thermal aging effect- Possibility of customized outputs- UL94V-0 material- RoHS compliant

(*) Dedicated to interleaved PFC topology (double-choke with center-tap)

(1)(2)

(3)

(4)

(5)

Page 53: Brochure

136

Po

wer

Fact

or

Co

rrec

tio

n C

ho

kes

PFC SERIESPower Factor Correction Series

Typical performances versus temperature and frequency

Page 54: Brochure

137

Po

wer

Fact

or

Co

rrec

tio

n C

ho

kes

PFC SERIESPower Factor Correction Series

Dimensions

PFC-001

PFC-002

Page 55: Brochure

138

Po

wer

Fact

or

Co

rrec

tio

n C

ho

kes

PFC SERIESPower Factor Correction Series

Dimensions

Packaging

Antistatic trays with carton grids in carton box

PFC-003

Page 56: Brochure

139

Hig

h P

ow

er C

ho

kes

fo

r E

MC

and

DC

/DC

Co

nve

rter

s

STP SERIESHigh Power Chokes for EMC DC/DC Converters

General Application- Automotive embedded DC-DC Converters- Power Ratings According “Start-Stop” Converters- Industrial Small power SMPS

Speci!c Application- STP-14-22 can be used as storage inductor for main converter topologies, like buck, boost, buck-boost or inductor output stage in Forward, Push-Pull, Half-Bridge or Full Bridge converters, . In order to maintain the core losses in acceptable levels continuous conduction mode without not 30% bigger values ripples of nominal current.- STP-02-65 and STP-08-30 can be used as differential inductor elements in output !lter stages, where the ripple are low, and the DC inductance are high.- All codes can be used in whatever application. In order to help the designers, we show the thermal response, DC bias and AC losses of each one depending on the operation conditions.

Electrical speci!cations

CodeFreq.(kHz)

Lo (2)

±10%(µH)

L MIN atPeak Current

(µH)

DCRMAX(mΩ)

CurrentIdc(A)

Ripple∆Ipp(A)

Copper Losses

@100°C(W)

Core Losses

@100°C(mW)

Weight(g)

STP-02-65 100kHz 2,40 > 1,95@65A 0,60 65 3 2,5 150 55

STP-08-30 100kHz 9,70 > 8,00@30A 2,25 30 1,5 2,0 150 55

STP-14-22 100kHz 14,5 > 13@25A 3,5 22 6 2,2 200 55

Features- DC Chokes for Outputs Stages DC-DC Converters- Designed to be useful in Automotives electronics- Up to 65A DC currents with Extra low DC resistance- Current Ripple up to 4-30% of DC Values- Operating Temperature -40 to 125 ºC.- Power rating : up to 350W- Inductance range : 12 to 2.4 µH- Frequency range : 50-400kHz- Very stable performances versus temperature- No thermal aging effect- UL94V-0 material- RoHS compliant

Notes All test data are referenced to 25°C ambient temperature Inductance values are measured at 100kHz/0.25V See L vs. Idc curve beside Dielectric strength between winding and core is greater than 300Vac/50Hz/2sec Core Losses referred to the peak to peak ripple current speci!ed on the table.

(1)(2)(3)(4)(5)

STP-02-65

STP-08-30

STP-14-22

Page 57: Brochure

140

Hig

h P

ow

er C

ho

kes

fo

r E

MC

and

DC

/DC

Co

nve

rter

s

STP SERIESHigh Power Chokes for EMC DC/DC Converters

Typical Inductance Values vs DC BIAS

Typical performances versus temperature

Core Losses vs Frequency and Ripple Currents

Notes : Inductance measured at @100kHz/100mVac.

Notes : Inductance measured at @100kHz/100mVac.

Notes : Total core losses estimated at given conditions. Losses includes core , copper losses and all the second order losses as eddy currents on copper and skin effect. DC currents according nominal values.

Page 58: Brochure

141

Hig

h P

ow

er C

ho

kes

fo

r E

MC

and

DC

/DC

Co

nve

rter

s

STP SERIESHigh Power Chokes for EMC DC/DC Converters

Typical Inductance Values vs DC BIAS

Impedance vs Frequency

Notes : Estimated core losses for the core material. The losses are presented for different current ripple on the choke, referred to nominal values, and for operation temperature of 25 and 100 ºC.

Notes : Estimated core losses for the core material. The losses are presented for different current ripple on the choke, referred to nominal values, and for operation temperature of 25 and 100 ºC.

Notes : Series Impedance.

Page 59: Brochure

142

Hig

h P

ow

er C

ho

kes

fo

r E

MC

and

DC

/DC

Co

nve

rter

s

STP SERIESHigh Power Chokes for EMC DC/DC Converters

Thermal BehaviorThe !nal temperature of the magnetic will depend on the total power losses being dissipated on the chokes. As a !rst approximation, the rise temperature expected can be estimated using the formula as per below:

Where:

P is total power losses expected according above core data and given conditions, in mW.S is a constant depending on magnetic morphology, use 22 for STP-02 and 08. Use 27,5 for STP-14.The result will give the estimated temperature rise.

Dimensions

STP-02-65

STP-08-30

Page 60: Brochure

143

Hig

h P

ow

er C

ho

kes

fo

r E

MC

and

DC

/DC

Co

nve

rter

s

STP SERIESHigh Power Chokes for EMC DC/DC Converters

Recommended PCB Layout.

Notes : View in mounting direction.

Packaging

Antistatic trays with carton grids in carton box

Page 61: Brochure

144

Hig

h P

ow

er S

MD

Cho

kes

PB1212 SERIESPower Cube

Electrical speci!cations

Dimensions Electrical Diagram

Part NumberL (1)

(µH)±10%I rms (2)

(Amps)I Sat (3)

(Amps)DCR

(mΩ) TYP.S.R.F.

(MHz) MIN.

PB1212-0R5 0,5 20 35 1,2 2

PB1212-0R8 0,8 20 30 1,2 2

PB1212-1R1 1,1 20 24,5 1,2 2

PB1212-1R5 1,5 20 17,5 1,2 2

PB1212-2R4 2,4 16 22 3,2 2

PB1212-3R4 3,4 16 14 3,2 2

PB1212-4R7 4,7 16 10 3,2 2

PB1212-6R3 6,3 7,5 12,5 12,4 2

PB1212-9R5 9,5 7,5 10 12,4 2

PB1212-14R 13,7 7,5 7 12,4 2

PB1212-19R 18,8 7,5 5 12,4 2

Features- Low cost energy storage choke with high current for telecom,PLC and consumer market- Nominal currents: up to 20 Amps- Nominal inductance: from 0,5µH to 18.8µH- Low pro!le with SMD format- Low losses due rectangular wire is used- Three soldering points to improve vibration test- Rohs Compliance

Note 1: Measured at 100kHz,1Vac @ 25 ºC ambient.Note 2: Current with a 55 ºC temperature rise from 25 ºC ambient(natural cooling).Note 3: DC current with the inductance drops 10% (typ) from the value without DC current

Notes:- Coplanarity < 150µm

Top ViewRecommended PCB Layout

Page 62: Brochure

145

Hig

h P

ow

er S

MD

Cho

kes

PB2016 SERIESPower Cube

Electrical speci!cations

Dimensions Electrical Diagram

Part NumberL (µH)±10%

I dc (1)

(Amps)I Sat (2)

(Amps)DCR

(mΩ) TYP.S.R.F.

(MHz) MIN.

PB2016-1R7 1,7 25 75 2,0 2

PB2016-2R2 2,2 25 60 2,0 2

PB2016-3R3 3,3 25 40 2,0 2

PB2016-4R7 4,7 16 35 4,5 2

PB2016-6R8 6,8 16 24 4,5 2

PB2016-9R2 9,2 16 16 4,5 2

PB2016-15R 15 16 10 4,5 2

PB2016-22R 22 16 7 4,5 2

PB2016-33R 33 16 4 4,5 2

Features- High current inductor for automotive applications- Nominal currents: up to 25 Amps- Nominal inductance: from 1,5µH to 33µH- Low pro!le with SMD format- Low losses due rectangular wire is used- Four soldering points to improve vibration test- AECQ-200 quali!ed- Rohs Compliance

Note 1: Current with a 45 ºC temperature rise from 25 ºC ambient (natural cooling).Note 2: Max DC current without the inductance drops from the value without DC current

Notes:- Coplanarity < 150µm- Grid tolerance: ±0.2- Terminals 1 and 2 not connected to coil. Placed to improve vibration requirements.

Page 63: Brochure

146

Hig

h P

ow

er S

MD

Cho

kes

UC SERIESPower Micro Cubes Chokes

Electrical speci!cations

CodeL0 (3) INDUCTANCE

±20% (µH) at 0.25V/100kHz/0A

DCR TYPat 25°C

(mΩ)

DCR MAXat 25°C

(mΩ)

HEATING CURRENT Idc (4)

(A)

SAT. CURRENT Isat (5)

(A)

UC1380-6R5 6,50 7,3 8,4 12,0 13,0

UC1380-5R2 5,20 6,6 7,6 12,6 14,5

UC1380-4R0 4,05 4,4 5,1 15,4 16,4

UC1380-3R0 3,04 3,1 3,6 17,3 19,0

UC1380-2R2 2,18 2,3 2,6 20,1 22,4

UC1380-1R5 1,46 1,7 2,0 23,4 27,4

UC1380-0R9 0,97 1,2 1,4 25,2 35,2

UC1380-0R5 0,54 0,9 1,0 27,9 49,3

Features- Shielded construction- Height : 8.0mm Max, Pick&Place compatible- Footprint : SMD 15.0 x 13.2mm Max- RMS current rating : up to 30A- Inductance range : 0.45µH to 6.50µH- Frequency range up to 5MHz- Low core losses- H class component for operation up to 180°C- Very stable performances versus temperature- AEC-Q200 quali!ed for the automotive sector- No thermal aging effect- Weight : approx. 7.5g

Application- Low-pro!le high-current DC/DC converters- DC/DC converters for FPGA- High current POL converters- DC/DC converters in distributed power systems

(1) All test data are referenced to 25°C ambient temperature(2) Continuous operating temperature range must be within -40°C/+150°C (ambient + self heating) under worst case conditions ; exposure to 180°C peak is allowed according to IEC85 H thermal index for all raw materials used Circuit design, component placement, PCB tracks size and thickness, air&ow and other cooling provisions all affect the part temperature rise It is suggested that the component be tested at the system level to verify its temperature after 30 minutes in the end application(3) +/-5% MAX on -40°C/+150°C temperature range(4) DC current that will cause an approximate ∆T of +50°C(5) DC current that will cause L0 to drop approximately 30%

Page 64: Brochure

147

Hig

h P

ow

er S

MD

Cho

kes

UC SERIESPower Micro Cubes Chokes

Dimensions (mm)

SolderingRe&ow or vapor-phase soldering processes are compatible to mount components from the UC seriesA maximum soldering temperature of 260°C during 10s shall not be exceededThe re&ow condition recommended beside is according to the equipment used at PREMODifferences could appear as a result of the type of machine, re&ow conditions, method…

Recommended pad layout

Page 65: Brochure

148

Hig

h P

ow

er S

MD

Cho

kes

UC SERIESPower Micro Cubes Chokes

Typical performances versus DC current

Page 66: Brochure

149

Hig

h P

ow

er S

MD

Cho

kes

UC SERIESPower Micro Cubes Chokes

Packaging

Standard Tape&Reel

SeriesReel dimensions (mm) Tape dimensions (mm) Parts/

ReelA B C D E W P P0 P1 D T

UC 330 100 13 37.5 32.5 32 20 4 2 7.4 0.4 350

Page 67: Brochure

150

Hig

h P

ow

er S

MD

Cho

kes

PBP19 SERIESPlanar chokes 19.81x19.56x7.4

Electrical speci!cations

CodeL0 (3) INDUCTANCE

±15% (µH) at 0.25V/100kHz/0A

DCR TYPat 25°C

(mΩ)

DCR MAXat 25°C

(mΩ)

HEATING CURRENT Idc (4)

(ADC)

L0AD INDUCTANCE±15% (µH) at

0.25V/100kHz/Irated

2 TURNS IN SERIES

PBP19-0R45-2 0.45 78 98 52 0.45

PBP19-0R63-2 0.65 78 98 52 0.63

PBP19-0R85-2 0.91 78 98 39 0.85

PBP19-1R05-2 1.10 78 98 30 1.05

PBP19-1R25-2 1.30 78 98 25 1.25

PBP19-1R45-2 1.50 78 98 21 1.45

3 TURNS IN SERIES

PBP19-0R95-3 1.0 1.15 1.43 42 0.95

PBP19-1R40-3 1.5 1.15 1.43 36 1.40

PBP19-1R90-3 2.0 1.15 1.43 25 1.90

PBP19-2R40-3 2.5 1.15 1.43 20 2.40

PBP19-2R80-3 3.0 1.15 1.43 15 2.80

PBP19-3R40-3 3.5 1.15 1.43 12 3.40

4 TURNS IN SERIES

PBP19-1R60-4 1.60 1.44 1.80 37 1.60

PBP19-2R40-4 2.42 1.44 1.80 30 2.40

PBP19-3R30-4 3.60 1.44 1.80 17 3.30

PBP19-4R00-4 4.40 1.44 1.80 14 4.00

PBP19-4R90-4 5.34 1.44 1.80 11 4.90

PBP19-5R80-4 6.20 1.44 1.80 9 5.80

Features- High density storage choke for telcomm and industrial application- Height : 7.4mm Max, Pick&Place compatible- Planar ferrite core format design- RMS current rating : up to 52A- Inductance range : 0.45µH to 5.80µH- Frequency range up to 1MHz- Very Low core losses- Operating temperature up to 125ºC- Very stable performances versus temperature

Application- Low-pro!le high-current DC/DC converters- DC/DC converters for FPGA- High current POL converters- DC/DC converters in distributed power systems

Page 68: Brochure

151

Hig

h P

ow

er S

MD

Cho

kes

PBP19 SERIESPlanar chokes 19.81x19.56x7.4

(1) All test data are referenced to 25°C ambient temperature(2) Continuous operating temperature range must be within -40°C/+125°C (ambient + self heating) under worst case conditions; exposure to 150°C peak is allowed according to IEC85 F thermal index for all raw materials used Circuit design, component placement, PCB tracks size and thickness, air&ow and other cooling provisions all affect the part temperature rise It is suggested that the component be tested at the system level to verify its temperature after 30 minutes in the end application(3) +/-10% MAX on -40°C/+125°C temperature range(4) DC current that will cause an approximate ∆T of +50°C

Dimensions (mm)

Note : PCB layout refered to 4 turns version. Refer to table to PCB layout for 2 and 3 turns version

SolderingRe&ow soldering process is compatible to mount components from the PBP seriesA maximum soldering temperature of 260°C during 10s shall not be exceededThe re&ow condition recommended beside is according to the equipment used at PREMODifferences could appear as a result of the type of machine, re&ow conditions, method…

TurnsInput Pin

Output Pin

Pin Distance

2 1 3 6.35mm

3 1 4 9.53mm

4 1 5 12.7mm

Page 69: Brochure

POWER TRANSFORMERS

Planar transformersPulse Transformers

Standard SMPS Transformers50/60Hz Transformers

Page 70: Brochure

153

Pla

nar

Tra

nsf

orm

ers

Introducing PLANAR TRANSFORMERS

INTRODUCTIONThe continuous need of higher currents and the availability of better switching transistors that offer very low RDSON and higher upper operating frequencies has boosted the development of transformers and chokes that match today’s power designers’ needs.Higher power, lower output voltages, lack of available space and high ef!ciency are common requirements in switched power systems.PREMO planar transformers have been designed to ful!l those tough requirements.

LARGEST RANGEThis catalogue presents the largest range of standard solutions in planar transformers available in the market today. There are 16 types of cores that combine with 8 types of plastic isolating housings. They are combined with three assembly options SMD, PTH or direct leads.Finally these constructive solutions are combined with the most used topologies per power such us Forward (single or double) Flyback, Half-bridge,etc… Requirements of designers for power-distributed systems have been carefully studied so that there is a comprehensive offer of transformers covering wide range of powers 5W to 2600 W in the standard range and up to 10KW on request.

APPLICATIONS- Automotive 42V systems.- Telecom 48V distributed power systems.- Industrial 24 V Power Systems.- AC/DC Power supplies (Vin range 80 to 280VAC with safety isolation)- Electric Motor Drives- Recti!ers.- Photovoltaic and welding Inverters.- High current DC/DC converters. (1.2V to 12V).

ADVANTAGESThrough the evolution of the technology during 10 years Premo has improved several aspects of the already well known advantages of plannar technology when compared to conventional ones that we summarize as follows:- Low pro!le.- Low weight.- Reduced dimensions.- Very low leakage inductance.- Low interwinding capacitances.- Low losses.- Excellent repeatability.- Improved thermal characteristics.- High reliability.- Cost effectiveness.- Higher power handling.- Easier to cool.- Better resistance to impact and vibration.- Automatic assembly.- Reduced noise.

Page 71: Brochure

154

Pla

nar

Tra

nsf

orm

ers

Introducing PLANAR TRANSFORMERS

DESIGNPremo Planar Transformers have been developed using our own R&D designing software and !nite element electromagnetic analysis programs so that the parameters entered for every design are the requirements of the converter or power supply unit in which it will be assembled.An exact evaluation of losses in the core and copper, stray parameters such as leakage inductance and parasitic capacitance or AC resistance and thermal performance are obtained. Once the design is validated by the data obtained with the analysis software, our R&D proceeds to build prototypes with a quick prototyping system.

PROTOTYPINGPremo R&D labs are equipped with rapid PCB printing machinery so that samples can be build in record time. Copper foil cutting tools, plastic enclosures, pins, PCB’s and cores for our 16 available formats are ready for quick prototyping.

RELIABILITY AND TESTPrototypes and production batches are tested and quali!ed by a unique test system that reproduces the worst possible working conditions for the transformer. This is achieved by exciting the primary with a symmetric square wave (from 10KHz up to 1MHz adjustable) with the actual working input voltage (from 10V up to 400V adjustable) connected to electronics loads that makes the transformer operate at the maximum needed power (from 0.5 to 300Amps adjustable) with its actual cooling condition (natural, dissipator, forced air-stream, etc…).Infrared thermo graphic pictures are obtained so that hot spots are detected and assured to be below the safety limits. This way Premo planar transformers offer enhanced reliability and the certainty that interconnection vias are working properly without weak contacts or cold solderings.Reliability test reports with actual waveforms, and losses information, conversion ratio and ef!ciency are issued with this unique automatic data acquisition and test system.

CONSTRUCTION TECHNOLOGYPremo Planar Transformers are manufactured with a combination of state of the art and unique production techniques. Our planar transformers combine just copper forms with double sided 0.4mm copper plated FR4 ultra-thin substrates, Kapton pre-cut isolation forms and multilayer PCB’s up to 12 layers.

The AC/DC models need extra clearance and creepage distances that are accomplished by the use of a vacuum air-bubbles-free polyurethane resin potting that assures correct horizontal insulation between windings.

All designs are &ame- retardant and self-extinguishable as they are produced with UL94-V0 approved materials.Thermal class can be modi!ed (increased) on demand, as there are three available insulation systems.

All Premo Planar Transformers are RoHS compliant. Material Declaration Forms available.

Page 72: Brochure

155

Pla

nar

Tra

nsf

orm

ers

Introducing PLANAR TRANSFORMERS

KEY TO THIS CATALOGThe present catalogue is splitted in two major applications DC/DC conversion and AC/DC conversion. The main difference is the construction technology to achieve the necessary insulation. AC/DC products are potted and encapsulated.

There are common features in the data sheets such as schematics for the proposed topologies that, in order to avoid repetitions are presented here.

The main topologies presented both for DC/DC and AC/DC are Flyback, Dual Forward, Forward, Push-Pull, Full Bridge, Half Bridge and Full-Bridge with Zero Voltage Transition.

According to industry use, Power Supplies over 100W have Power Factor Correction Module therefore Vin at the transformer for sizes smaller that PT32-ACDC is just the recti!ed line voltage but for larger sizes Vin is 350-400V as the typical Vout at the PFC.

CUSTOM DESIGNSMain copper frames, ferrite cores, pins, PCB’s and plastic housings are already available for our customers’ tailor made designs. Should you need a planar transformer, which is not in our standard catalogue, please submit following data to Premo:

- Vin min.- Vin max Vout & Iout (per secondary).- Switching Frequency.- Duty Cycle.- Topology.- Isolation voltage.- Ef!ciency (If not speci!ed ef!ciency is maximized).- Max available room. (If not speci!ed size is minimized).- Ambient Temperature.- Clearance & Creepage.- Cooling Method.- Assembly method.

Page 73: Brochure

156

Pla

nar

Tra

nsf

orm

ers

CodeInput

Voltage (V)

Output Voltage

(V)

Output Current

(A)

Power (W)

Frequency (kHz)

Duty Cycle

TopologyL (µH) ±25%

L Leak (µH)Turns Ratio

(Pri:Sec)

Losses (W)

P015FW1CS1 36-72 1,5 13 20 400 0,46 Forward 263,6 0,7 10:1 0,4

P015FW1CP1 36-72 1,5 13 20 400 0,46 Forward 263,6 0,7 10:1 0,4

P015FW1CS3 36-72 5 4 20 400 0,43 Forward 213,5 0,7 3:1 0,4

P015FW1CP3 36-72 5 4 20 400 0,43 Forward 213,5 0,7 3:1 0,4

P018FW1CS1 36-72 3.3 15 50 400 0.44 Forward 202.5 0.37 9:02 1

P018FW1CP1 36-72 3.3 15 50 400 0.44 Forward 202.5 0.37 9:02 1

P018FW1CS2 36-72 5 10 50 400 0.43 Forward 202.5 0.37 3:01 1

P018FW1CP2 36-72 5 10 50 400 0.43 Forward 202.5 0.37 3:01 1

P018FW1CS3 36-72 12 4 50 400 0.42 Forward 122.5 0.37 7:06 1

P018FW1CP3 36-72 12 4 50 400 0.42 Forward 122.5 0.37 7:06 1

P032FB1CP1 36-72 12 50 600 200 0.45 Full-Bridge 150 0.3 5:02 6

P215FK3DS3 100-350 12 1.25 15 400 0.46 Flyback 144 0.3 10:03 0.46

P215FK3DP3 100-350 12 1.25 15 400 0.46 Flyback 144 0.3 10:03 0.46

P218WD3DS2 100-350 5 8 40 400 0.42 Forward dual 1.55 0.5 8:01 0.8

P218WD3DP2 100-350 5 8 40 400 0.42 Forward dual 1.55 0.5 8:01 0.8

P222WD3DS1 100-350 5 14 70 150 0.48 Forward dual 3.13 0.5 9:01 1.4

P222WD3DP1 100-350 5 14 70 150 0.48 Forward dual 3.13 0.5 9:01 1.4

P232PP4DP1 350-420 24 12.5 300 150 0.47 Push - Pull 9.43 0.9 13:01 5

HPT-001 70-130 14 120 1700 40 0.42 Full bridge 960µH 1.5 4:01 14

HPT-002 260-420 14 160 2200 100-150 0.45 ZVT Full bridge 2,94mH 1.5 14:01 18

HPT-003 350-420 420 7.5 3150 100-150 0.46 ZVT Full bridge 3,84mH 5 16:20 18

P020FW1CS1 36-72 3.3 30 100 300 0.45 Forward 65 0.25 10:04 3.6

Introducing PLANAR TRANSFORMERS

Page 74: Brochure

157

Pla

nar

Tra

nsf

orm

ers

SCHEMATICS TOPOLOGIES FOR DC-DC & AC-DC PLANAR TRANSFORMERS

Topology: Forward Topology: Forward

Topology: Forward Dua Topology: Forward Dua

Topology: Flyback Topology: Flyback

Topology: Pushpull Topology: Pushpull

Topology: Fullbridge Topology: Fullbridge

Topology: Halfbridge Topology: Halfbridge

Page 75: Brochure

158

Pla

nar

Tra

nsf

orm

ers

PLANAR TRANSFORMERSRapid Guide

P215

Dimensions 26x18x8 mm

Power 15 W

Output Voltage 1.5 / 3.3 / 12 Vdc

Switching freq 400 kHz

P222

Dimensions 37.5x22x12.5 mm

Power 70 W

Output Voltage 5 / 12 / 24 Vdc

Switching freq 150 kHz

P218

Dimensions 30x18x9.2 mm

Power 40 W

Output Voltage 3.3 / 5 / 12 Vdc

Switching freq 400 kHz

P232

Dimensions 48x32x12.7 mm

Power 300 W

Output Voltage 12 / 24 /48

Switching freq 150 kHz

P015

Dimensions 24x18x8 mm

Power 20 W

Output Voltage 1.5 / 3.3 / 5 Vdc

Switching freq 400 kHz

P022

Dimensions 37.5x22x12.5 mm

Power 100 W

Output Voltage 3.3 / 5 / 12 Vdc

Switching freq 200 kHz

P018

Dimensions 30x18x9.2 mm

Power 50 W

Output Voltage 3.3 / 5 / 12 Vdc

Switching freq 400 kHz

P032

Dimensions 48.5x32x12.7 mm

Power 600 W

Output Voltage 5 / 12 /24

Switching freq 200 kHz

Page 76: Brochure

159

Pla

nar

Tra

nsf

orm

ers

NS SERIESThird generation of planar transformers

Features - Designed for high-current telecom power supply applications. (LM5041 – UCC3580).- Designed with the highest ef!ciencies in the market.- Designed with the lowest pro!les in the market. - Three new shapes added to our standard family. - Designed to offer high power densities along with great reliability and repeatability. - Designed to provide different output ratings to suit a variety of applications. (LM5030). - Ideal for use in open loop intermediate bus converter (IBC) and closed loop voltage mode converters (LM5033). - Designed to meet UL60950/EN60950. - Winding design under our own unique raw material design system.

Electrical speci!cations

Part Number

Input Voltage Vdc (V)

OutputVoltage

(V)

OutputCurrent

(A)

Power (W)

Frequency (kHz)

Duty cycle

Topology Inductance

Typ Leakage

Inductance (µH)

Turns Ratio

(Pri:Sec)

Max Total

losses (W)

Recommended PWM

Controller

P018PP1CS1 36-72 3,3 30 100 400 0,45 Push Pull 218µH 0,3 9:1 2 LM5030 - NS

P018PP1CS2 36-72 5 7 35 400 0,43 Push Pull 97,2µH 0,3 6:1 0,75 LM5030 - NS

P018PP1CS3 36-72 12 5 60 400 0,45 Push Pull 218µH 0,3 3:1 1,2 LM5030 - NS

P020FW1CS1 36-72 3,3 30 100 300 0,45 Forward 65µH 0,25 6:1 2 UCC3580 - TI

P020PP1CS1 36-72 12 15 180 300 0,45 Push Pull 187,0µH 0,25 10:4 3,6 MAX5069-Max

P020HB1CS1 40-60 10 20 200 300 0,45 Half Bridge 46,8µH 0,1 5:4 4 LM5033 - NS

P020PP1CS2 36-72 2,5 60 150 300 0,45 Push Pull 1,25mH 0,3 8:1 3 LM5041 - NS

P026PP1CS1 36-72 28,5 11 310 150-220 0,48 Push Pull 155,0uH 0,3 1:1 2 LM5035 - NS

Page 77: Brochure

160

Pla

nar

Tra

nsf

orm

ers

NS SERIESThird generation of planar transformers

Dimensions

Schematics

PØ26 NS Series

PØ20 NS Series

PØ218 NS Series

Recommended PCB layout

Page 78: Brochure

161

Pla

nar

Tra

nsf

orm

ers

HYBRID VEHICLE PLANAR INDUCTIVES

DescriptionNew PREMO planar transformer and choke series for automotive is an innovativesolution for the automotive market that accomplish speci!c sector standard, AEC Q200. It has been formerly conceived for ISG systems. However, it is a versatile productthat can be used in DC/DC converters and traction inverters in hybrid vehicles. It hasbeen developed under a unique vacuum potting technique that allows a highisolation level (10kV).

Among their main features stands out its high power management (1.7kW to 3.2kW)in a 3.3cm/2.5cm height pro!le and less than 80cm2/46cm2 room area. Product ispresented within a base aluminum heat sink. Its shape allows an isotropic heat transferthat increases component’s performance. Laminated inner design allows a highef!ciency: Rated losses are below 1% of total output power and effects such as skinand proximity have been considerably reduced. PREMO has developed a mechanicalfastening system on it in order to improve !nal assembly structure in front of mechanicalstress tests according the most stringent standards. Selected raw materials constitutea high temperature resistant system up to 180ºC.

Page 79: Brochure

162

Pla

nar

Tra

nsf

orm

ers

HPT SERIES

Features - High power planar transformers for HV systems- According AEC-Q200.- High ef!ciency (99%). - Skin and proximity effects reduced.- Storage temperature from -50ºC to 175ºC- Operating temperature from -40ºC to 90ºC with heat sink dissipation (effective temperature up to 125ºC)- Power module-like assembly.- Threaded output terminals. - Very low pro!le.- Improved room area less than 100 sq cm.

Electrical speci!cations

Dimensions

Electrical Schematics

Part Number

Input Voltage Vdc (V)

OutputVoltage

(V)

OutputCurrent

(A)

Power (W)

Frequency (kHz)

Duty cycle

TopologyInductance

(±25%)

Leakage Inductance

(µH)

Turns Ratio

(Pri:Sec)

Max Total

losses (W)

HPT-001 70-130 14 120 1700 40 0,42 Full Bridge 960µH 1,5 4:1 14

HPT-002 260-420 14 160 2200 100-150 0,45 ZVT Full Bridge 2,94mH 1,5 14:1 18

HPT-003 350-420 420 7,5 3150 100-150 0,46 ZVT Full Bridge 3,84mH 5 16:20 18

Page 80: Brochure

163

Pla

nar

Tra

nsf

orm

ers

HPTR SERIESLow Size Planar Transformer for HV SystemsFeatures - High power planar XFMR for HEV/EV applications- According AEC-Q200- Easy-assembly system for cold plates- Improved size with round center leg core- Vacuum potted solution- Power rating : 2-3.3 kW- Frequency range : 90-110kHz- H class component for operation up to 180°C- Operating temperature from -40ºC to 125ºC- Single blade and blade-for-screw output terminals- UL94V-0 material- RoHS compliant

Electrical speci!cations

Application - Automotive DC/DC converters and battery chargers for HEV/EV systems- Industrial high power SMPS

Part Number

Input Voltage Vdc (V)

OutputVoltage

(V)

OutputCurrent

(A)

Power (W)

Frequency (kHz)

Duty cycle

TopologyInductance

(mH)

Leakage Inductance

(µH)

Turns Ratio

(Pri:Sec)

Max Total

losses (W)

HPTR-001 85-160 14 180 2.5 90-110 0.48 PS Full Bridge (*) 0.8 1 5:2 20

HPTR-002 260-420 14 160 2.2 90-110 0.43ZVS

Full Bridge2.94 1 14:1 15

HPTR-003 350-420 420 7.6 3.2 90-110 0.44 Full Bridge 3,47 1 12 :16 15

(^) ZVS Full Bridge topology with 4-diodes recti!cation

(*) Phase shift Full Bridge topology with current doubler for 14V application.

Notes

(1) All test data are referenced to 25°C ambient temperature

(2) Continuous operating temperature range must be within -40°C/+125°C (ambient + self heating) under worst case conditions;

exposure to 180°C peak is allowed. Thermal index H for all raw materials used

(3) Performances are subjected to change according to cooling capability of the cold plate where the component is !xed. It is

suggested to test the component at system level to verify its temperature rise after 30 minutes in the end application.

(4) Inductance values are measured at 10kHz/1V

(5) Hi-pot test between winding and between primary winding to core is above 5kV/50Hz/2sec

Dimensions Electrical Diagram

Page 81: Brochure

164

Pla

nar

Tra

nsf

orm

ers

GHPT SERIESPower Planar Transformer for HV Systems

Features - High Power & Low pro!le transformers- Easy-assembly system for cold plates- Power rating up to 16kW- Frequency range : 70-120kHz- H class component for operation up to 180°C- Operating temperature from -40ºC to 125ºC- Vacuum potted solution for high isolation- Solution with heatsink available- Threaded output terminals- UL94V-0 material- RoHS compliant

Electrical speci!cations

Application - Industrial high power SMPS- Rapid Chargers for EV

Part Number

Input Voltage Vdc (V)

OutputVoltage

(V)

OutputCurrent

(A)

Power (W)

Frequency (kHz)

Duty cycle

Topology(*)

Inductance(mH)

Leakage Inductance

(µH)

Turns Ratio

(Pri:Sec)

Max Total

losses (W)

GHPT-001 360-440 34 200 6.8 100 0.47ZVS

Full Bridge0.8 1 8:2 18

GHPT-002 800-900 520 23 12 120 0.42ZVS

Full Bridge0.6 1 15:10 22

GHPT-003 230-340 500 32 16 70 0.4 Full Bridge 0.4 1 4:11 35

(*) ZVS Full Bridge topology with 4-diodes recti!cation

Notes

(1) All test data are referenced to 25°C ambient temperature

(2) Continuous operating temperature range must be within -40°C/+125°C (ambient + self heating) under worst case conditions;

exposure to 180°C peak is allowed. Thermal index H for all raw materials used

(3) Performances are subjected to change according to cooling capability of the cold plate where the component is !xed. It is

suggested to test the component at system level to verify its temperature rise after 30 minutes in the end application.

(4) Inductance values are measured at 10kHz/1V

(5) Hi-pot test between winding and between primary winding to core is above 5kV/50Hz/2sec

Page 82: Brochure

165

Pla

nar

Tra

nsf

orm

ers

Dimensions

Electrical Diagram

GHPT SERIESPower Planar Transformer for HV Systems

Page 83: Brochure

166

Pla

nar

Tra

nsf

orm

ers

BCT SERIESAutomotive EV/HEV Isolated 3.3kW Battery Charger TransformerFeatures - Design for high performance 3.3kW on-board battery chargers- Cubic format for higher power density- Working frequency from 65 to 200kHz- Reinforced 3kV isolation between primary and secondary- Primary to secondary creepage distance > 8mm- High operating temperature range -40 to +125°C- UL94V-0 and RoHS material- Design compliant with AEC-Q200 requirements- No thermal aging effect- Weight : approx. 0.4kg

Application- Power stage after 400V PFC recti!cation- Automotive EV/HEV AC/DC on-board battery chargers- Half- or full-brigde ZVS or LLC resonant topologies- Industrial high-power SMPS

Code

MAXOutputPower(kW)

DC-LinkInput

Voltage(Vdc)

OutputVoltage(Vdc)

MAXOutputCurrent(Adc)

Switch.Freq.(kHz)

Topology

TurnRatio

(Pri:Sec)

Magneti-zing

Induct.

MAXLeakageInduct.

BCT-001 3.3 390-410 250-430 12 100Full-Bridge

ZVS*13:18

1mHMIN

2μH

BCT-002 3.3 360-400 260-410 13 65Full-Bridge

ZVS*17:21+21

1.7mHMIN

3μH

BCT-003 3.3 375-430 275-450 12 90-200Half-Bridge

LLC**13:22

50μH+/-5%

2μH

(*) A 4 to 6μH resonant inductor in series with the transformer primary winding is recommended for soft switching operation(**) Resonant tank made of Lr = 12.5μH and Cr = 120nF in series

Notes(1) All test data are referenced to 25°C ambient temperature(2) The inductance values are measured at 100kHz/1Vac(3) The isolation is 100% tested at 3kVac/50Hz/2sec/3mA

(4) The Pri/Sec creepage distance is guaranteed > 8mm(5) The component must be properly cooled down by mounting onto a water-plate heatsink at +85°C MAX(6) Other winding arrangements available on demand

Electrical speci!cations

Dimensions (mm)Electrical Diagram

Notes

- Mounting onto cold-plate heatsink by 4x M4 screws

- Output by <exible cables protected under sleeve

- Connecting M4 or M5 terminals on demand

- Center-tap secondary side on demand

- Customized case on demand

Page 84: Brochure

167

Pla

nar

Tra

nsf

orm

ers

HPC SERIESHigh Power Planar Chokes for HV Applications

Features - High power planar chokes for HEV/EV applications- According AEC-Q200.- High power management- Very good inductance stability versus temperature- Operating frequency up to 250 kHz.- Operating temperature from -40ºC to 125ºC- H class component for operation up to 180°C- Allows assembly in a cold plate through heat sink under request- Improved room area- Possibility of customized outputs- UL94V-0 material- RoHS compliant

Application- Automotive DC/DC converters for HEV/EV systems.- Industrial high power SMPS

Electrical speci!cations

Part Number

Inductance ±10%

Freq.(kHz)

DCRMAX(mΩ)

CurrentIrms(A)

Ripple∆Ipp(A)

Losses@100°C

(W)

Weight(kg)

HPC-001 4µH 100 0.6 120 24 13 0,2

HPC-002 2,5µH 150 0.4 165 30 12 0,2

(*) Dedicated to Full Bridge topology

Notes

(1) All test data are referenced to 25°C ambient temperature

(2) Continuous operating temperature range must be within -40°C/+125°C (ambient + self heating) under worst case conditions;

exposure to 180°C peak is allowed. Thermal index H for all raw materials used.

(3) Performances are subjected to change according to cooling capability of the cold plate where the component is !xed. It is

suggested to test the component at system level to verify its temperature after 30 minutes in the !nal application.

(4) Inductance values are measured at 10kHz/0.25V

Less than +/-10% variation on -40°C/+150°C temperature range

(5) Dielectric strength between windings and core is above 1kV/50Hz/2sec

Page 85: Brochure

168

Pla

nar

Tra

nsf

orm

ers

HPC SERIESHigh Power Planar Chokes for HV Applications

Dimensions

Page 86: Brochure

169

Puls

e Tra

nsf

orm

ers

PULSE TRANSFORMERS SERIES

IntroductionPulse transformers in power electronics aregenerally used for transmitting a signal ora controlling pulse between elec-tricallyisolated ciruits. The pulse comes from acircuit with a low voltage level while thesecondary part is connected to a highervoltage. This problem appears in thyristorsand triacs !ring, and in power transistorscontrol.The high isolation voltage through the pulsetransformer protects the controlling circuitagainst transients from the power circuit.

Technical dataWhen a rectangular pulse is applied to theprimary winding, a voltage is induced inthe secondary during the rise time of thepulse. In this case, the voltage-time integralis the product of the pulse height andwidth. The voltage-time area is measuredon the secondary side in a no-loadcondition for an unipolar pulse.

The pulse shape must be transferred withthe minimum distorsion therefore the pulsemust possess a sharp edge, that is, a smallrise time (Tr). To achieve this, the parasiticelements such as leakage inductance (Lleak)must be minimized and the transformerneeds a high open circuit inductance (LP).Also, low values of the inductance makethe transformer more suitable to saturation. The coupling capacitance (CC) must bealso as small as possible to guarantee theprotection against the electromagne-ticinterferences.The turns ratio (NP:NS) of the pulsetransformer can be used to adjust signalamplitud and provide impedance matchingbetween the source and load.

The isolation voltage is measuredbetween windings in order to check thegalvanic separation of the circuit parts. In particular, the dielectric strength andfreedom from partial discharge.

The working voltage is the voltage in thesecondary winding. The security distances(creepage, clerances and distances throughthe isolation) and the isolation tests arede!ned according to this value.

Operating principlesRegarding the equivalent circuit of a pulsetransformer, the in<uences of the electricalparameters can be understood. Assumingthat the output pulse is the result ofinjecting an ideal rectangular pulse, onecan see that some magnitudes aredistorsioned on the output pulse: declineof the pulse voltage over the duration ofthe pulse (voltage drop), rise time, etc.

Page 87: Brochure

170

Puls

e Tra

nsf

orm

ers

PULSE TRANSFORMERS SERIES

Considering an ideal transformer, there is no source impedance, winding capacitances or leakage inductance. With pri-mary and secondary switches open, there are not any currents <owing. If the primary is switched, the pulse transformer’s primary winding acts like an inductor, therefore primary current begins to <ow. This is the magnitizing current (no se-condary current). If the power supply has constant voltage, the magnitizing current increases as a linear rate over time and creates a magnetic <ux density in the transformer core. Eventually, this current would exceed the magnetix <ux capacity of the core and will saturate it. If the saturation occurs, the primary current rapidly increases, in theory, towards in!nity.In a real transformer, the primary winding resistance (RP) would limit the current. Consecuently, a voltage drop occurs across

RP. The value of this drop increases with time and the secondary voltage declines over time. If the secondary switch is closed, the primary leakage inductance restricts the <ow of primary current by opposing the source voltage. Current <owing from the source !nds the uncharged winding capacitance (CP) to be an easier path, hence a relatively large amount of current <ows. This causes a large voltage drop across RP, thereby initially lowering the voltage available to Lleak and LP. Over time, the voltage drop diminishes, and the voltage across Lleak and LP reaches peak value. The current effectively delays the peak voltage across LP. This in turn delays peak secondary voltage.The delay contributes to rise time, hence CP contributes to rise time. Similar consequence happens with the secondary winding capacitance CS.

SeriesPremo has two series of pulse transformers intended to use in all the electronic applications. The PT series has as main feature its high isolation voltage between primary and secondary windings and also between secondary windings. This fact makes this series especially suitable for applications where the galvanic separation bet-ween both circuit parts is one of the most important design parameters. Also, it offers very high voltage-time integrals values, up to 2000µVs.The PI series has some formats with a special winding method that allows to obtain very small rise times. Additionally, they are available in Surface Mounting format, suitable for re<ow soldering.

Equivalent simpli!ed circuit for a Pulse Transformer

SERIES Voltage-time integral Frequency range Features

PT From 250 to 2000µVs Up to 10kHz- High isolation voltage between windings

- Low cost

PI From 150 to 400µVs Up to 50kHz- Very small rise times

- SMD formats available

Page 88: Brochure

171

Puls

e Tra

nsf

orm

ers

Features- Voltage-time area (∫Vdt) : from 150µVs to 400µVs.- Pulse rise time (tr): from 0,05µs to 1,5µs. - Working voltage: 600Vac maximum.- Isolation voltage according to IEC60664-1. - Ambient temperature: -40°C to +50°C. - Storage temperature: from -40°C to +120°C.- Plastic case: UL 94V-0. - Potting resin: UL94V-0. - Surface mounting and pin through hole formats available.- Packaging for surface mounting format: tape & reel available.

Electrical speci!cations

Code NP : NS∫Vdt (µVs)

RP (Ω)

TYPR

S (Ω)

TYP

Lp (mH)at 10kHz

±30%

CC (pF)TYP

tr

(µs)R

L (Ω)

Visol

P/S(kVac)

Case

PI-15HNA20 1:1 200 1 1 2,8 20 0,9 100 3,5 15HPI-15HLA20 1:1 200 1,5 1 2,8 80 0,05 100 3,2 15H

PI-15HNC15 1:1:1 150 0,5 0,5 1,1 10 0,9 100 3,5 15HPI-15HLC15 1:1:1 150 1 0,5 1,1 40 0,05 100 3,2 15H

PI-15SNA20 1:1 200 1 1 2,8 20 0,9 100 3,5 15SPI-15SLA20 1:1 200 1,5 1 2,8 80 0,05 100 3,2 15S

PI-15SNC15 1:1:1 150 0,5 0,5 1,1 10 0,9 100 3,5 15SPI-15SLC15 1:1:1 150 1 0,5 1,1 40 0,05 100 3,2 15S

PI-18HNA30 1:1 300 0,7 0,7 3,5 20 1 100 3,5 18HPI-18HLA30 1:1 300 0,7 0,7 3,5 90 0,05 100 3,2 18H

PI-18HNB25 2:1 250 1 0,5 6,4 20 1 100 3,5 18HPI-18HLB25 2:1 250 1 0,5 5,6 70 0,05 100 3,2 18H

PI-18HNC25 1:1:1 250 0,5 0,5 1,4 20 1 100 3,5 18HPI-18HLC25 1:1:1 250 0,4 0,5 1,2 70 0,05 100 3,2 18H

PI-18SNA30 1:1 300 0,7 0,7 3,5 20 1 100 3,5 18SPI-18SLA30 1:1 300 0,7 0,7 3,5 90 0,05 100 3,2 18S

PI-18SNB25 2:1 250 1 0,5 6,4 20 1 100 3,5 18SPI-18SLB25 2:1 250 1 0,5 5,6 70 0,05 100 3,2 18S

PI-18SNC25 1:1:1 250 0,5 0,5 1,4 20 1 100 3,5 18SPI-18SLC25 1:1:1 250 0,4 0,5 1,2 70 0,05 100 3,2 18S

PI-23HNA40 1:1 400 0,4 0,4 2,2 20 1 60 3,5 23HPI-23HLA40 1:1 400 0,4 0,4 2,2 100 0,1 20 3,2 23H

PI-23HNB35 2:1 350 0,8 0,4 7,2 20 1,5 60 3,5 23HPI-23HLB35 2:1 350 0,8 0,4 7,2 90 0,5 20 3,2 23H

PI-23HNC35 1:1:1 350 0,4 0,4 1,6 20 1,5 60 3,5 23HPI-23HLC35 1:1:1 350 0,4 0,4 1,6 90 0,5 20 3,2 23H

PI-23SNA40 1:1 400 0,4 0,4 2,2 20 1 60 3,5 23SPI-23SLA40 1:1 400 0,4 0,4 2,2 100 0,1 20 3,2 23S

PI-23SNB35 2:1 350 0,8 0,4 7,2 20 1,5 60 3,5 23SPI-23SLB35 2:1 350 0,8 0,4 7,2 90 0,5 20 3,2 23S

PI-23SNC35 1:1:1 350 0,4 0,4 1,6 20 1,5 60 3,5 23SPI-23SLC35 1:1:1 350 0,4 0,4 1,6 90 0,5 20 3,2 23S

PI SERIESPulse transformers

Page 89: Brochure

172

Puls

e Tra

nsf

orm

ers

PI SERIESPulse transformers

CodeA1

±0,2A2

±0,2A3

BMAX

C±0,2

DMAX

EMAX

Ø PIN±0,1

L PIN+0/-0,5

PI-15H 10,2 5,1 2,55 13 12,7 15,2 10,6 0,6 3,5

PI-18H 10 5 2,5 17,8 15 18,2 13 0,8 3,5

PI-23H 15 5 5 22,3 20 22,7 13,6 0,8 3,5

CodeA1

±0,2A2

±0,2A3

A4MAX

BMAX

C±0,2

DMAX

EMAX

PIN TH±0,1

PIN W+0/-0,5

PI-15S 10,2 5,1 2,55 19 13 12,7 15,2 11 0,45 0,66

PI-18S 10 5 2,5 23,5 17,8 15 18,2 13,5 0,6 0,88

PI-23S 15 5 5 20 22,3 20 22,7 14 0,6 0,88

Dimensions (in mm)

PI-H SERIES

PI-S SERIES

Page 90: Brochure

173

Puls

e Tra

nsf

orm

ers

Features- Voltage-time area (∫Vdt) : from 250µVs to 2000µVs. - Pulse rise time (tr): from 0,8µs to 4µs. - Working voltage (Vw): From 500Vac to 3200Vac. - Isolation voltage according to IEC60664-1. - Ambient temperature: -40°C to +85°C. - Storage temperature: from -40°C to +120°C. - Plastic case: UL 94V-0. - Potting resin: UL94V-0.

Electrical speci!cations

Code NP : NS∫Vdt (µVs)

RP

TYP (Ω)

RS

TYP(Ω)

Lp (mH)

LssMAX (µH)

CC (pF)TYP

IM (mA)

tr

(µs)R

L

(Ω)Vw(V)

Visol P/S

(kVac)

Visol S/S

(kVac)Con!g

PT 14b2,5 1:1:1 250 0,9 0,9 1,7 5 45 200 1 50 500 4 3 B

PT 14k2,5 1:1:1 250 0,9 0,9 1,7 5 45 200 1 50 500 4 3 C

PT 14c2,5 2:1 250 1,8 0,9 6,7 15 45 200 1 50 500 4 - D

PT 14a3 1:1 350 1,2 1,2 2,9 20 40 300 1 50 500 4 - A

PT 14i3 1:1 350 1,2 1,2 2,9 20 40 300 1 50 500 4 - D

PT 14g3 2:1:1 300 4,0 2,5 11,4 20 50 300 1 50 500 4 3 B

PT 14c3,5 2:1 350 3,5 2,4 14 30 50 300 1 50 500 4 - D

PT 14i5 1:1 500 2,5 2,5 5,6 15 45 350 1 50 500 4 - D

PT 14k6 1:1:1 600 3,6 3,6 9,7 10 45 400 1,2 50 500 4 3 C

PT 22a3 1:1 300 0,6 0,6 3 4,5 40 800 0,8 15 690 4 - A

PT 22b3 1:1:1 300 0,6 0,6 3 4,5 40 800 0,8 15 690 4 4 B

PT 22c3 2:1 300 1 0,6 6 6,5 55 800 0,8 15 690 4 - A

PT 22d3 3:1 300 1,5 0,6 26 20 65 800 0,8 15 690 4 - A

PT 22e3 3:1:1 300 1,2 0,5 26 20 45 800 0,8 50 690 4 4 B

PT 22b4 1:1:1 400 0,8 0,8 5,5 10 55 800 1 15 690 4 4 B

PT 22a5 1:1 500 1 1 7,5 10 30 800 1 15 690 4 - A

PT 22b5 1:1:1 500 1 1 7,7 10 45 800 1 15 690 4 4 B

PT SERIESPulse transformers designed for Semikron

Page 91: Brochure

174

Puls

e Tra

nsf

orm

ers

Electrical speci!cations

Code NP : NS∫Vdt (µVs)

RP

TYP (Ω)

RS

TYP(Ω)

Lp (mH)

LssMAX (µH)

CC (pF)TYP

IM (mA)

tr

(µs)R

L

(Ω)Vw(V)

Visol P/S

(kVac)

Visol S/S

(kVac)Con!g

PT 25j2 2:2 200 0,8 1,5 1,27 20 7,5 450 4 50 500 5 3,5 1-GPT 25a3 1:1 300 0,5 0,5 2 3 50 250 1 50 500 4 - 1-A

PT 25b3 1:1:1 300 0,5 0,5 2 3 60 250 1 50 500 4 4 1-BPT 25e3 3:1:1 300 1,7 0,55 15,8 20 55 250 1 50 500 4 4 1-B

PT 25h3 1:1:1:1 300 0,55 0,55 2 5 65 250 1 50 500 4 4 1-CPT 25k3 1:1:1 300 0,5 0,5 2 3 60 250 1 50 650 4 4 1-E

PT 25m3 1:1 300 0,5 0,5 1,8 50 10 200 2 50 1000 6 - 1-FPT 25n3 3:1 300 1,7 0,55 15,8 400 10 200 2 50 1000 6 - 1-F

PT 25p3 3:1:1 300 1,7 0,55 15,8 20 45 250 1 50 650 4 4 1-EPT 25a4 1:1 400 0,6 0,6 4,2 5 70 300 1 50 500 4 - 1-A

PT 25b4 1:1:1 400 0,6 0,6 4,2 5 60 300 1 50 500 4 4 1-BPT 25b4/hs 1:1:1 400 0,9 0,9 2,2 5 70 300 1 50 700 4 4 1-D

PT 25g4 2:1:1 400 1,7 1 12,3 250 8,5 200 4 50 500 5 3,5 1-GPT 25a5 1:1 500 1 1 5,5 15 40 400 1 50 500 4 - 1-A

PT 25b5 1:1:1 500 1 1 5,5 10 50 400 1 50 500 4 4 1-BPT 25m5 1:1 500 1 1 5,5 125 8 250 5 50 1000 6 - 1-F

PT 25o5 2:1 500 2 1 31,7 500 8,5 250 5 50 1000 6 - 1-FPT 25b6/N 1:1:1 650 1 1 5,7 15 70 500 1 50 600 4 4 1-B

PT 25b8 1:1:1 800 1,7 1,7 13,5 15 70 600 1,5 50 500 4 4 1-BPT 25b10 1:1:1 1000 1,8 1,8 18,3 25 55 700 1,5 50 500 4 4 1-B

PT 25b20 1:1:1 2000 6,8 6,8 56 65 70 800 2 50 500 4 4 1-BPT 909 1:1 400 0,9 0,9 4,2 5 50 300 1 50 900 3 - 2-A

PT 26a3 1:1 300 0,55 0,55 2 5 50 250 1 50 500 4 - APT 26b3 1:1:1 300 0,55 0,55 2 5 60 250 1 50 500 4 4 B

PT 26e3 3:1:1 300 1,8 0,5 14,7 25 50 250 1 50 500 4 4 BPT 26b10 1:1:1 1000 2,3 2,3 18,3 25 50 700 2,5 50 500 4 4 B

PT26n3 3:1 300 1,7 0,70 15,8 400 30 200 2 50 1000 6 - CPT 27a3 1:1 300 0,3 0,3 2 2 70 1200 1 10 690 4 - A

PT 27b3 1:1:1 300 0,3 0,3 2 2 70 1200 1 10 690 4 4 BPT 27d3,5 3:1 350 0,6 0,3 19,7 10 120 2000 1 5 690 4 - A

PT 27e3,5 3:1:1 350 0,6 0,3 19,7 7 100 2000 1 5 690 4 4 BPT 27b4/1300 1:1:1 450 0,15 0,15 0,55 4 40 2000 1 10 1300 6 5 B

PT 27a5 1:1 500 0,4 0,4 5 8 105 2000 1 10 690 4 4 APT 27b5 1:1:1 500 0,4 0,4 5 8 120 2000 1 10 690 4 4 B

PT 27a10 1:1 1000 0,4 0,4 2,2 8 160 2000 1,5 10 690 4 4 APT 27b10 1:1:1 1000 0,5 0,5 2,2 8 100 2000 1,5 10 690 4 4 B

PT 27b10ES 1:1:1 1000 0,5 0,5 2,2 20 60 2000 1,5 10 690 4 4 CPT 27c10 2:1 1000 0,7 0,35 10 23 180 2000 1 10 690 4 4 A

PT HVb3 1:1:1 300 0,3 0,3 2,8 75 15 1000 1 50 3200 12 12 A

PT SERIESPulse transformers designed for Semikron

Page 92: Brochure

175

Puls

e Tra

nsf

orm

ers

Con!guration A Con!guration C

Con!guration D

Con!guration A

Con!guration B

Con!guration B

Winding con!gurations and dimensionsPT-14 SERIES

PT-22 SERIES

PT SERIESPulse transformers designed for Semikron

View by the side of the pins

View by the side of the pins

All dimensions in mm; Pin diameter = 0,6mm typ; Pins with no connection are removed; Grid = 2,5mm unless otherwise indicated; Pin grid tolerance = ±0,2mm; Dot on the top indicating pin number 1.

Page 93: Brochure

176

Puls

e Tra

nsf

orm

ers

2 - Con!gurationSpecial raster 2,54 mm

1 - Con!guration

Con!guration 1 - A

Con!guration 1 - B

Con!guration 1 - C

Con!guration 1 - G

Con!guration 2 - A

Con!guration 1 - D

Con!guration 1 - E

Con!guration 1 - F

Winding con!gurations and dimensionsPT-25 SERIES

PT SERIESPulse transformers designed for Semikron

View by the side of the pins

All dimensions in mm; Pin diameter = 0,6mm typ; Pins with no connection are removed; Grid = 2,5mm unless otherwise indicated; Pin grid tolerance = ±0,2mm; Dot on the top indicating pin number 1.

Page 94: Brochure

177

Puls

e Tra

nsf

orm

ers

Con!guration A Con!guration B

Winding con!gurations and dimensionsPT-26 SERIES

PT SERIESPulse transformers designed for Semikron

View by the side of the pins

Page 95: Brochure

178

Puls

e Tra

nsf

orm

ers

Con!guration BCon!guration A Con!guration C

PT-27 SERIES

Shield pin number 7 ø0,8mmView by the side of the pins

All dimensions in mm; Pin diameter = 0,6mm typ; Pins with no connection are removed; Grid = 2,5mm unless otherwise indicated; Pin grid tolerance = ±0,2mm; Dot on the top indicating pin number 1.

Winding con!gurations and dimensions

PT SERIESPulse transformers designed for Semikron

Page 96: Brochure

179

Puls

e Tra

nsf

orm

ers

Con!guration A

Winding con!gurations and dimensionsPT-HV

PT SERIESPulse transformers designed for Semikron

View by the side of the pins

All dimensions in mm; Pin diameter = 0,6mm typ; Pins with no connection are removed; Grid = 2,5mm unless otherwise indicated; Pin grid tolerance = ±0,2mm; Dot on the top indicating pin number 1.

Page 97: Brochure

180

Puls

e Tra

nsf

orm

ers

Features- Transformation ratio: NP: NS1: NS2.- Transfer area: ∫vdt, (voltage-time area), in Vx µs.- Rising time: Tr, in µs.- Load resistance: RI, in µs.- Firing current: If, in A.- Primary inductance: Lp, in mH.- Primary resistance: Rp, in mΩ- Secondary resistance: Rs, in mΩ- Dielectric strength: Vis, in KVac.- Coupling capacitance: Ck, in pF.- Rated voltage: Vps, in V.

Electrical speci!cations

CodeNP : NS1 :

NS2 :

∫Vdt (V.µs)

Tr

(µs)R

L

(Ω)IF

(mA)Lp

(mH)R

P

(Ω)R

S

(Ω)V

PS

(VAC)V

IS

(Kvac)CK PFMIN.

Case

TI-102 1:1 500 1 100 100 5.6 2.0 2.0 400 2.5 27 C2TI-103 1:1 500 1 100 100 7.7 1.6 1.6 500 3.5 5 A2

TI-104 1:1:1 600 2 2x100 100 9 1.9 1.9 500 3.5 7 A1TI-105 3:1:1 600 1.2 2x100 100 80 7.2 2.8 500 3.5 6 A1

TI-106 1:1 250 1 40 250 1.6 0.6 0.6 400 2.5 25 C2TI-107 1:1 300 1 40 250 3.2 0.6 0.6 500 3.5 25 A2

TI-109 3:1:1 300 1 2x40 250 28 1.9 0.6 500 3.5 8 A1TI-111 1:1 700 2 40 250 56 2.8 2.8 400 2.5 30 A3

TI-112 1:1 700 2 40 250 56 2.8 2.8 400 2.5 30 A2TI-113 1:1 350 3 40 250 4.4 0.6 0.6 500 3.5 33 A3

TI-114 1:1 350 3 40 250 4.4 0.6 0.6 500 3.5 5 A4TI-115 1:1:1 300 1.5 2x40 250 3.2 0.6 0.6 500 3.5 5 A1

TI-116 1:1 252 2 10 1000 2.7 0.7 0.7 400 2.5 30 C2

TI SERIESPulse transformers

Page 98: Brochure

181

Puls

e Tra

nsf

orm

ers

TI SERIESPulse transformers

Pulse transformersThe TI series small-size pulse transformersare constructed using high permeability E / EF shaped ferrite cores and woundusing a special technique to achieve theoptimization of its inter-related electricparameters, which determine the over-allperformance of the transformers. We shallemphasize the following parameters:- High galvanic insulation between primary winding (control circuit) and secondary winding (power circuit).- Low coupling capacitance between windings.- Low stray inductance.- High transfer capability of unipolar pulses.- Low losses in the magnetic circuit.

Applications:Generally, they are used for triggering low,medium and high power thyristors andtriacs, as well as for controlling powertransistors, used in power electroniccircuits.

The TI standard series consists of 16encapsulated models in three case sizesand with one or two secondary windings.

By request, we can manufacture specialmodels, according to customerspeci!cations, using other coil formersand core shapes, sizes and types, withsome elec-trical features other than thanconstruction or encapsulated, using highpermeability E / EF shaped ferrite coresor toroidal ones.

Features: - Transfer area: from 200 to 700 V x µs- Transformation ratio: 1:1, 1:1:1 and 3:1:1- Trigger current: from 0.1 A to 1 A- Dielectric strength: between 2.5 KVac and 3.5 KVac (depending on the model)- Size: (width x depth x height) in mm. (23 x 27 x 15), (23 x 16.5 x 25) and (17 x 17.5 x 12).

Terminal Diameter Box A:0.65Terminal Diameter Box C:0.8Levels in mm

Page 99: Brochure

182

Stan

dar

d S

MP

S Tra

nsf

orm

ers

Features- Application: Powered devices in IEEE802.3 af-compliant Power over Ethernet (PoE) applications- Topology: Flyback transformer with continuous mode- Frequency: 250 kHz- Input voltage: 36-72Volts- Power: 3W, 7W, 13W- Operating temperature range: -40~+85 ºC- Isolation: 1500Vrms between primary and bias winding to the secondary winding- Rohs compliant

Electrical speci!cations

Electrical diagram

Input OutputL(1)(±10%)

µH

DCR nomLleak(2)

REF µH

Turns ratio(3)

FormatPart Number

PowerW

V (dc)V

I (max)A

V (dc)V

I (max)A

PriΩ

BiasΩ

Sec1&2Ω

Pri:Sec Pri:Bias

POE03-033 3 36-72 0,40 3,3 0,91 310 1,48 3,70 0,090 4,0 1:0,19 1:0,70 EP7

POE03-050 3 36-72 0,40 5,0 0,6 310 1,48 3,70 0,180 3,0 1:0,28 1:0,70 EP7

POE03-120 3 36-72 0,40 12 0,25 310 1,48 3,70 0,970 2,8 1:0,70 1:0,70 EP7

POE07-033 7 36-72 0,85 3,3 2,12 155 0,54 2 0,045 3,5 1:0,19 1:0,667 EP10

POE07-050 7 36-72 0,85 5,0 1,4 155 0,54 2 0,073 3,0 1:0,262 1:0,667 EP10

POE07-120 7 36-72 0,85 12 0,6 155 0,54 2 0,500 2,0 1:0,667 1:0,667 EP10

POE13-033 13 36-72 1,3 3,3 4 127 0,29 0,37 0,021 1,30 1:0,166 1:0,50 EP13

POE13-050 13 36-72 1,3 5,0 2,6 127 0,25 0,37 0,039 1,60 1:0,25 1:0,50 EP13

POE13-120 13 36-72 1,2 12 1,08 127 0,26 0,37 0,150 1,20 1:0,50 1:0,50 EP13

POE13-195 13 36-72 1,0 19,5 0,67 127 0,25 0,37 0,210 1,15 1:0,567 1:0,50 EP13

POE13-240 13 36-72 1,0 24 0,54 127 0,25 0,37 0,300 1,10 1:0,667 1:0,50 EP13

POETransformers for 3W, 7W and 13W applications

POE13

POE03, POE07

Note 1: Inductance measured at 250kHz 0.1Vrms, 0A dcNote 2: Leakage inductance measured between primary with all others pins shorted. Measure at 250kHz, 0.1Vrms.Note 3: Turns ratio with the secondary windings connected in parallel.Test condition: 25 ºC

Page 100: Brochure

183

Stan

dar

d S

MP

S Tra

nsf

orm

ers

Dimensions

Dimensions (mm)

Part Number A B C (ref) D E F G X Y

POE03- 9,1 13,3 10,6 11,0 0,7 2,03 1,27 9,40 2,5

POE07- 11,0 15,3 12,5 12,7 0,6 2,03 1,27 11,68 2,5POE13- 12,5 17,8 15,4 13,5 0,7 1,80 1,27 14,99 2,50

POETransformers for 3W, 7W and 13W applications

Page 101: Brochure

184

Stan

dar

d S

MP

S Tra

nsf

orm

ers

Features- Low power and low cost <yback transformers for Stand-by SMPS- Universal input voltage- Output power level up to 2W (6Vdc / 0.3 Amp)- Includes auxiliary winding to supply PWM IC - VDE safety approval according to EN60065 and EN60950- Primary to Secondary isolation of 3750 Vac- Operating temperature range from -40ºC to 120ºC

General Application- Industrial Low power Switch Mode Power Supplies

Electrical speci!cations

SAFETY APPROVALS

ST SERIESFlyback Transformers for Stand-by Switch Power Supplies

ReferenceInput

VoltageSec

OutputAux

OutputMax Output

PowerSwitching Frequency

Prim Inductance

Turns ratio(P : A : S)

ST-FB3W-1110 to 320

Vdc6 Vdc / 0.3

Amp12 Vdc / 0.05

Amp2 W 100-150 kHz

1.06mH ± 10%

108 : 14 : 7

ST-FB3W-2 320 Vdc 0.3Amp 0.05 Amp 2 W 100-150 kHz1.06mH ±

10%108 : 26 : 7

Notes

(1) All test data are referenced to 25°C ambient temperature

(2) Inductance values are measured at 10kHz/0.1V

(3) Continues operating temperature range must be within -40/+120ºC (ambient + self heating)

- EN 60065- EN 60950

Page 102: Brochure

185

Stan

dar

d S

MP

S Tra

nsf

orm

ers

Dimensions

Recommended PCB layout (view in mounting direction)

Electrical diagram

ST SERIESFlyback Transformers for Stand-by Switch Power Supplies

Page 103: Brochure

CURRENT SENSING

Flux-Gate TransducersHall-Effect Sensors

Current Transformers

Page 104: Brochure

187

Flu

x -

Gat

e Tra

nsd

uce

rs

DC Current Transducers

IntroducctionThe necessity to measure currents in the industry has been, together with sensing voltage, the most important tools for proceedings controls. However, current sensing is more complicated than voltage sensing, specially with DC currents. There are many solutions for current measurement, such as conventional current transformers, shunt resistors, hall effect sensors or rogowsky coils, which have been used for many years, but all of them have the same problem: a bad response operaing at high currents and high frequencies. On the other hand, not all of them share measuraments of AC and DC currents simultaneously. Another problem is the high temperature variation of some sensors, for example the hall effect sensors. The new Premo DCT-700A current transducer is based on the Flux-Gate technology. Under that principle, the new Premo current transducer DCT-700A is capable to measure AC currents, DC currents, and AC currents with DC offset currents, in a high bandwidth and with currents up to 700 ADC.Table below shows the main characteristics of the nowadays technologies for current sensing.

Main Characteristics - Any type of industrial Current Measurements: AC, DC, Pulse...,- Capacity to measure currents up to 700 A DC.- Good response to High Frequencies such as hundreds of kHz.- Galvanic insulation between primary current and test current.- Leds indicators of normal or incorrect measurement condition.- Standard connector D-Sub 9 (male).

Flux-Gate Working PrincipleThe <ux-Gate principle uses a saturable inductor for sensing the !eld produced by an external current. The performance can be compared to a Hall-Effect Sensor. In the Hall effect sensor, the sensing element is a thin semiconductor sheet that generates a voltage when a magnetic !eld is applied across it. This voltage depends on the external !eld and the external exciting current. In the same way, the saturable inductor inductance value (L) depends on the magnetic core permeability . The core permeability changes both with an external !eld and with an exciting current through the inductor. Both sensing systems are showed in !gure 1.

ParameterConventional

Current TransformersHall Effect

SensorsRogowsky

CoilsShunt

ResistorsDCT

Flux Gate

DC, AC or both AC AC , DC AC AC,DC AC,DCBandwidth Low Medium Very High Low High

Insulation High High High Low HighDimensions Small Small Medium Very Small Medium

Linearity Good Medium Good Good Very GoodHigh Currents Medium Medium Good Bad Very Good

MeasurementsSaturation Problem Yes Yes No No No

Power Consume Low Low Low High MediumDrift Temperature Low High Very Low Very Low Low

Page 105: Brochure

188

Flu

x -

Gat

e Tra

nsd

uce

rs

Figure 2: IE without External Current Figure 3: IE without External Current

DC Current Transducers

The L value depends on the current Iex and the external current Ip . Both currents inducemagnetic !elds that change the permeability of the saturable inductor core. The currentacross the inductor is the response to a concrete voltage applied and a function of lex and Ip, due changes the total <ux around the core increasing or decreasing permeability.In the !gures showed below, the waveforms of Ie currents are showed. Figure 2 shows the case for zero external current. At this stage the core permebility and the inductance value are high.

Figure 2 represents the response to a voltage step. When the inductance is discharchedandthe core is not saturated, the current increases with a low slope produced by the high L value. This period corresponds to the track 1. For a concrete current value, the core saturates and the L value deacreases rapidly. Therfore the signal slope is higher and the current rises very fast. This effect is shown in track 2. Finnally, current is limited by the winding resistance and the applied voltage value.

In !gure 3, which is also a response to a voltage step, the external current is high, andaccordingly, the core permaebility is smaller than nominal value, so the core is saturatedand the L value deacreses, so current rises rapidly. This period corresponds to the track 1. When current Iex generates a magnetic !eld equal and opposite to the external !eld produced by Ip , the core permeability increases and current slope is again very low(track 2). In the same way than at !gure 2, for a concrete current value, the core saturates, therefore the L value deacreses and the current slope current grows. Finnally, as in !gure 2, current is limited by the winding resistance and the applied voltage value.

According to explained above, we can use the inductance changes to detect the external!eld generated by primary current, and therefore the current <owing through the conductor. This is the main principle to measure current with a Flux-Gate device, the sensor is a saturable inductor excited by a square wave. It is usual to use a low frequency square wave to saturate the core like we have explained in the !gures 2 and 3. The typical frecuency values are around 200 to 600 Hz.

Figure 1

Page 106: Brochure

189

Flu

x -

Gat

e Tra

nsd

uce

rs

DCT Operating PrincipleAs we have explained before, the operating principle is based in a saturable inductor.The !gure 4 shows the current wave form when a low frequency voltage square wave is applied to a saturable inductor, without any external current, the value of the direct current (DC) is zero. This condition is called Zero Flux Condition.

As shown in above !gure, the <ux average value, which is the area con!ned between current wave form and the X axis, is equal to zero. When a current passes through the primary cable, a magnetic !eld appears in the system, therefore the current changes to average value not equal to zero (See !gure 5). The diference between both wafe forms showed corresponds to the current direction applied. If we generate then, a magnetic !eld to cancel this effect, we will obtain again the Zero Flux condition. Knowing the current applied to cancel this effect and return the system to the Zero Flux Condition, we calculate with high precision the current passing through the primary conductor. In order to have high accuracy, to identical saturable inductors are used to detect the primary current.

The PREMO DCT current transducer operates, therefore, based on this principle. A common winding, called compensation winding, is placed around both cores. The objective of the compensation winding is to cancel the external !eld. The system is completed with an electronic circuit to impose always the Zero Flux Condition monitoring the compensation current.

Figure 5. Effect in Current when external !eld is applied

Figure 5.1 Figure 5.2

Figure 6. Two saturable inductor and compensation winding

DC Current Transducers

Figure 4. Current by a saturable inductance without external !eld applied

Page 107: Brochure

190

Flu

x -

Gat

e Tra

nsd

uce

rs

Block DiagramFollowing we represent theoperation block diagram ofthe PREMO DCT-700Acurrent transducer, accordingto the explained operatingprinciple:

One of the main advantages of the proposed circuit, is the use of the PWM technique for the Zero <ux condition control. A feedback is established between the current wave forms in the saturable cores in order to force the average value of them always to zero.This effect is obtained by the compensated current control. The ampli!er that works with PWM control are known like class D ampli!er.

PWM Control and Class D Ampli!ersThe operation of Class-D ampli!er is based on analog principles. The standard classes of analog ampli!ers are A, B, AB, and C. The class of an ampli!er is identi!ed on the basis of transistor’s operating point, also known as quiescent point of the transistor.Transistor operating point denotes a speci!c value of collector current “Ic” for a given “Ib” base current. Hence, the position of operating point on the load line depends on transistor biasing. The idea to migrate toward higher power ampli!er classes like AB and C is to improve the ampli!er ef!ciency in terms of power skinny from the DC power supply. This improved ef!ciency reduces the heat sink requirements for ampli!ers and for all the device. But the ef!ciencies achieved with class C are still around 70 percent.This is where class-D technology plays a very important role for obtaining higher ef!ciency.In class-D ampli!ers, the transistors used in the output stage (power stage) operate as switches. The transistors operate either in the cut-off region or in the saturation region so that the current through the transistors is very low (ideally zero when cut-off) or the voltage across the transistors is very low (ideally zero when transistors are in saturation). This reduces the amount of power drawn from the power supply and hence increases the power ef!ciency of the ampli!er; it also helps to design ampli!ers with smaller heatsinks. In order to make work the transistor as a switch we must use a PWM technique control, that produces a square wave to control the transistor. Under a PWM control, the transistor will work always in saturated or cut region.

DC Current Transducers

Page 108: Brochure

191

Flu

x -

Gat

e Tra

nsd

uce

rs

Main Advantages- High Accuracy over high bandwidth. - Very low output noise and offset drift.- Negligible insertion losses.- High immunity to interference.- Overload Capability.- Excellent linearity.

Applications- Precise and high stability inverters- Energy measurements- High Precision Power Supplies- Feed back element in high performance gradient ampli!ers for MRI- Medical Equipment

Electrical Parameters

Accuracy

DCT-700ADC Current Transducer

Primary Current 0 to 700 A DC Ipn

Measuring Range ± 10Vcc ± 700 A DC Ip

Overload Condition ± 2000 A (100ms) IOV

Burden Resistor Range (IP =700A) Vcc = ± 12V

1 Ohm Min RB

Secondary Nominal Current 700 mA IS

Conversion Ratio 1:1000 N

Supply Voltage (± 10 %) ± 10 to30 VDC Vcc

Current Consumption Vcc = ±12V

100 mA +IS Icc

Accuracy at Ip T = 25 ºC < 0.5%

Linear Error ( Beetwen 400 to 700 A ) Vcc = ±12V, Rb = 1 Ohm

< 5 ppm LFR

Linear Error (Beetwen 150A to 400A) Vcc = ±12V, Rb = 5 Ohm

< 10 ppm LMR

Linear Error ( Beetwen 0.01 to 150A ) Vcc = ±12V, Rb = 20 Ohm

< 100 ppmLLR

Offset Current 5uA Max IOS

Offser Current Temperature Drift < 5 ppm/ºC KIOS

Time Response ( 10% to 90% of Ip) <1us TR

di/dt Followed Accurately > 100A/us

Frequency Bandwidth ( Ip = 10A DC)

DC to 100kHz ( -3dB ) FC

Page 109: Brochure

192

Flu

x -

Gat

e Tra

nsd

uce

rs

Output Connector

General Data

According To

- UNE EN 50178 - UNE EN 50155

Power Consumption Characteristics

Power Consumption for full range measurements and nominal conditions . Burden resistor = 1 Ohm.

DCT-700ADC Current Transducer

ConnectorDB-9 Standard Type

( Female )

Fault Operation Condition( Led Power Off )

Ip > 120%

Maximum Switching Current( pins 3 to 8 and pin 3 to 7 )

2A

Maximum Switching Voltage( pins 3 to 8 and pin 3 to 7 )

30 VDC/120 VAC

Compensation Winding MaximumResistance ( T = 50ºC )

10 Ohm RC

Lenght Two Wire Cable to R Burden ( Connected between pin 1 and 6 )

50 cm (typical)

Operating Temperature -20 to +70 ºC TA

Storage Temperature -20 to +85 ºC TS

Weight 800 g

Primary Diameter Hole 30 mm

Basic Insulation (Between Primary and Measurement Current)

3500 V AC 50Hz 1' VI

Page 110: Brochure

193

Flu

x -

Gat

e Tra

nsd

uce

rs

DCT-700A InstallationIn the following picture we show as to connect the secondary side of current transducer.

Between the pins 3 and 8 the DCT have a normally closed switch while the measureis correct. In the same manner, DCT provide a normally open switch while the measureis correct between pins 3 and 7.

D-SUB standard connectorThe D-sub connection correspond to the next table.

9-POLE D-SUBPin 1 : Connected to GND internallyPin 2 : (For Factory use only)Pin 3 : Input to normally closed/open SwitchPin 4 : 0VPin 5 : Earth connexionPin 6 : Output Current + ( Current Direction F to B)Pin 7 : Output to normally open switch (1A DC MAX)Pin 8 : Output to normally closed switch (1A DC MAX)Pin 9 : Vcc

DCT-700ADC Current Transducer

Page 111: Brochure

194

Flu

x -

Gat

e Tra

nsd

uce

rs

Burden resistor and voltage rangeThe burden resistor ( Rb in the picture ) must be changed in function of the primary current. The values of R burden and maximum voltage generate are showed below.Premo advice to use this values ( at least approximatelly ) to ensure a good response of the transducer in terms of accuracy, linearity and power consumption.

These values are recommended for a resistances that can dissipate 0,5W

Dimensions

DCT-700ADC Current Transducer

Page 112: Brochure

195

Hal

l - E

ffec

t Se

nso

rs

HCT SERIESHall Effect Current TransducersFeatures- DC, AC Hall Effect Current Transducers.- Open Loop and Closed Loop operation Modes.- Wide range of primary current measurements, from 5 A up to 2000 A RMS.- Wide range of frequencies Band Width, Typically from 0 up to 50,100 and 200 kHz.- Useful to measure Current spikes, overshoots and ringing effects.- Bipolar and Unipolar Power Supply.- Different ways for connection, PTH or standard connector.- Output voltage signals typically for Open Loop Ones, Current signal outputs for closed loop ones.- Customized outputs Possibilities.- UL94V-0 material.- RoHS compliant.

Application- General Industrial applications for current Monitoring.- Current measure on input stage batteries inverters.- UPS Applications (Uniterrumpibles Power Supplies).- General using in Switched Power Supplies, for digital control systems.

Approved Standards

Recommended installation Diagrams (Typical).

Closed Loop Devices Open Loop Devices

Page 113: Brochure

196

Hal

l - E

ffec

t Se

nso

rs

HCT SERIESHall Effect Current TransducersTypical Accuracy Vs Primary Current Range and Output transfer function.In the graphs showed as per below accuracy levels reached with each family are presented. The curves present the typical average values. Ideal transfer function input current vs output signals are presented as well.

Code FamilyNominal Current(A RMS)

Measuring Current(A DC)

Secondary Output Signal

Supply Voltage

(V)

Accuracy(See Note 1)

Linearity(See Note 2)

MountingIsolation

(V AC 50Hz)

HCT-25A05 A05 25 ±50 ±25 mA ±15 ±0.5% 0,20% PCB 2500

HCT-35A05 A05 35 ±70 ±35 mA ±15 ±0.5% 0,20% PCB 2500

HCT-06DS5 DS5 6 ±19.2 2.5±0.625 V 5 ±0.7% 0.1% PCB 3000

HCT-15DS5 DS5 15 ±48 2.5±0.625 V 5 ±0.7% 0.1% PCB 3000

HCT-25DS5 DS5 25 ±80 2.5±0.625 V 5 ±0.7% 0.1% PCB 3000

HCT-50DS5 DS5 50 ±150 2.5±0.625 V 5 ±0.7% 0.1% PCB 3000

HCT-06DSR5 DSR5 6 ±19.2 2.5±0.625 V 5 ±0.7% 0.1% PCB 3000

HCT-15DSR5 DSR5 15 ±48 2.5±0.625 V 5 ±0.7% 0.1% PCB 3000

HCT-25DSR5 DSR5 25 ±80 2.5±0.625 V 5 ±0.7% 0.1% PCB 3000

HCT-50DSR5 DSR5 50 ±150 2.5±0.625 V 5 ±0.7% 0.1% PCB 3000

HCT-10SY SY 10 ±30 ± 4 V ±12-18 ±0.7% 0.1% PCB 3000

HCT-15SY SY 15 ±45 ± 4 V ±12-18 ±0.7% 0.1% PCB 3000

HCT-20SY SY 20 ±60 ± 4 V ±12-18 ±0.7% 0.1% PCB 3000

HCT-25SY SY 25 ±75 ± 4 V ±12-18 ±0.7% 0.1% PCB 3000

HCT-50SY SY 50 ±150 ± 4 V ±12-18 ±0.7% 0.1% PCB 3000

HCT-50LX LX 50 ±150 ± 4 V ± 15 ±0.7% 0.1% PCB 5000

HCT-100LAS5 LASS 100 ±300 2.5±0.625 V 5 ±0.7% 0.1% PCB 5000

HCT-25LAH LAH 25 ±100 ± 25 mA ± 12-15 ±0.5% 0.1% PCB 5000

HCT-50LAH LAH 50 ±150 ± 25 mA ± 12-15 ±0.5% 0.1% PCB 5000

HCT-100LAH LAH 100 ±280 ± 50 mA ± 12-15 ±0.5% 0.1% PCB 5000

HCT-100LP LP 100 ±300 ±50 mA ±12-18 ±0.5% 0,10% PCB 3000

HCT-200LP LP 200 ±600 ±100 mA ±12-18 ±0.5% 0,10% PCB 3000

HCT-50AP AP 50 ±150 ±50 mA ±12-18 ±0.5% 0,10% PCB 3000

HCT-100AP AP 100 ±300 ±50 mA ±12-18 ±0.5% 0,10% PCB 3000

HCT-200AP AP 200 ±600 ±100 mA ±12-18 ±0.5% 0,10% PCB 3000

HCT-10PX5 PX5 10 ±223.5V@+Inom/1.5v@-Inom

±5 ±0.5% 0,10% PCB 3000

HCT-30PX5 PX5 30 ±663.5V@+Inom/1.5v@-Inom

±5 ±5% 0,10% PCB 3000

HCT-1000SH SH 1000 ±3000 ±200 mA ±15-24 ±1% 0,10% Connector 4000

HCT-1000LF LF 1000 ±2000 ±200 mA ±15-24 ±1% 0,10% Connector 60000

HCT-2000LF LF 2000 ±5000 ±400 mA ±15-24 ±2% 0,10% Connector 4000

General Electrical speci!cations. Closed Loop Devices

Notes(1) Accuracy levels at Nominal current, measured at room temperature over a 1 Ohm, non-inductive precision burden resistor ( for all the model except PX5 ones). (2) Typical linearity response, measuring from 10% to 100% of nominal current.(3) Individual data sheet for each transducer available on Premo Website. All data are related to room temperature, 25ºC ± 2 ºC.

Page 114: Brochure

197

Hal

l - E

ffec

t Se

nso

rs

HCT-50ECH ECH 50 ±150 50 mA ±12-18% ±0.2 0.1% PCB 3000

HCT-75ECH ECH 75 ±225 50 mA ±12-18% ±0.2 0.1% PCB 3000

HCT-100ECH ECH 100 ±300 50 mA ±12-18% ±0.2 0.1 % PCB 3000

HCT-200ECH ECH 200 ±500 50 mA ±12-18% ±0.2 0.1% PCB 3000

HCT-50LTH LTH 50 ±150 50 mA ±12-18% ±0.2 ±0.1% Panel 3000

HCT-100LTH LTH 100 ±300 100 mA ±12-18% ±0.2 ±0.1% Panel 3000

HCT-200LTH LTH 200 ±600 100 mA ±12-18% ±0.2 ±0.1% Panel 3000

HCT-300LTH LTH 300 ±900 100 mA ±12-18% ±0.2 ±0.1% Panel 3000

HCT-100LTHA LTHA 100 ±300 50 mA ±12-18% ±0.2 0.1% Panel 6000

HCT-200LTHA LTHA 200 ±600 100 mA ±12-18% ±0.2 0.1% Panel 6000

HCT-300LTHA LTHA 300 ±900 100 mA ±12-18% ±0.2 0.1% Panel 6000

HCT-100BSR5 BSR5 100 ±2003.5V@+Inom / 1.5V@-Inom

5 ±1% < 1 % Connector 3000

HCT-200BSR5 BSR5 200 ±4003.5V@+Inom / 1.5V@-Inom

5 ±1% < 1 % Connector 3000

HCT-300BSR5 BSR5 300 ±6003.5V@+Inom / 1.5V@-Inom

5 ±1% < 1 % Connector 3000

HCT-600BSR5 BSR5 600 ±9003.5V@+Inom / 1.5V@-Inom

5 ±1% < 1 % Connector 3000

Code FamilyNominal Current(A RMS)

Measuring Current(A DC)

Secondary Output Signal

Supply Voltage

(V)

Accuracy(See Note 1)

Linearity(See Note 2)

MountingIsolation

(V AC 50Hz)

General Electrical speci!cations. Closed Loop Devices

HCT SERIESHall Effect Current Transducers

Notes(1) Accuracy levels at Nominal current, measured at room temperature over a 1 Ohm, non-inductive precision burden resistor ( for all the model except PX5 ones). (2) Typical linearity response, measuring from 10% to 100% of nominal current.(3) Individual data sheet for each transducer available on Premo Website. All data are related to room temperature, 25ºC ± 2 ºC.

Page 115: Brochure

198

Hal

l - E

ffec

t Se

nso

rs

General Electrical speci!cations. Open Loop Devices

Code FamilyNominal Current(A RMS)

Measuring Current(A DC)

Secondary Output Signal

Supply Voltage

(V)

Accuracy(See Note 1)

Linearity(See Note 2)

MountingIsolation

(V AC 50Hz)

HCT-100BP1 HCT-BP1 100 ±300 ±4 V ±15 ±1% < 1 % PCB 2500

HCT-200BP1 HCT-BP1 200 ±600 ±4 V ±15 ±1% < 1 % PCB 2500

HCT-600BP1 HCT-BP1 600 ±1000 ±4 V ±15 ±1% < 1 % PCB 2500

HCT-100BP2 HCT-BP2 100 ±300 ±4 V ±15 ±1% < 1 % PCB 2500

HCT-200BP2 HCT-BP2 200 ±600 ±4 V ±15 ±1% < 1 % PCB 2500

HCT-600BP2 HCT-BP2 600 ±1000 ±4 V ±15 ±1% < 1 % PCB 2500

HCT-050BS HCT-BS 50 ±150 ±4 V ±12 -18 V ±1% < 1 % PCB 3000

HCT-100BS HCT-BS 100 ±300 ±4 V ±12 -18 V ±1% < 1 % PCB 3000

HCT-200BS HCT-BS 200 ±600 ±4 V ±12 -18 V ±1% < 1 % PCB

HCT-300BS HCT-BS 300 ±600 ±4 V ±12 -18 V ±1% < 1 % PCB 3000

HCT-400BS HCT-BS 400 ±1000 ±4 V ±12 -18 V ±1% < 1 % PCB 3000

HCT-500BS HCT-BS 500 ±1000 ±4 V ±12 -18 V ±1% < 1 % PCB 3000

HCT-600BS HCT-BS 600 ±1000 ±4 V ±12 -18 V ±1% < 1 % PCB 3000

HCT-50BP5 HCT-BP5 50 ±1003.5V@+Inom/1.5v@-Inom

5 ±1% < 1 % PCB 3000

HCT-100BP5 HCT-BP5 100 ±2003.5V@+Inom/1.5v@-Inom

5 ±1% < 1 % PCB 3000

HCT-50LB HCT-LB 50 ±150 ±4 V ±15 ±1% < 1 % PCB 2500

HCT-100LB HCT-LB 100 ±200 ±4 V ±15 ±1% < 1 % PCB 2500

HCT-50BRR5 HCT-BRR5 50 1003.5V@+Inom / 1.5V@-Inom

5 ±1% ≤1 %Wire+

Connector3000

HCT-100BRR5 HCT-BRR5 100 2003.5V@+Inom / 1.5V@-Inom

5 ±1% ≤1 %Wire+

Connector3000

HCT-200BRR5 HCT-BRR5 200 4003.5V@+Inom / 1.5V@-Inom

5 ±1% ≤1 %Wire+

Connector3000

HCT-300BRR5 HCT-BRR5 300 6003.5V@+Inom / 1.5V@-Inom

5 ±1% ≤1 %Wire+

Connector3000

HCT-400BRR5 HCT-BRR5 400 8003.5V@+Inom / 1.5V@-Inom

5 ±1% ≤1 %Wire+

Connector3000

HCT-500BRR5 HCT-BRR5 500 9003.5V@+Inom / 1.5V@-Inom

5 ±1% ≤1 %Wire+

Connector3000

HCT-600BRR5 HCT-BRR5 600 9003.5V@+Inom / 1.5V@-Inom

5 ±1% ≤1 %Wire+

Connector3000

HCT-500F HCT-F 500 ±1200 ±4 V ±15 ±1% < 1 % Connector 5000

HCT-800F HCT-F 800 ±1600 ±4 V ±15 ±1% < 1 % Connector 5000

HCT-1000F HCT-F 1000 ±2000 ±4 V ±15 ±1% < 1 % Connector 5000

HCT-100N HCT-N 100 ±300 ±4 V ±15 ±1% < 1 % Connector 3000

HCT-200N HTC-N 200 ±600 ±4 V ±15 ±1% < 1 % Connector 3000

HCT-300N HCT-N 300 ±900 ±4 V ±15 ±1% < 1 % Connector 3000

HCT-1000K HCT-K 1000 ±2000 ±4 V ±15 ±1% < 1 % Connector 6000

HCT-1200K HCT-K 1200 ±2500 ±4 V ±15 ±1% < 1 % Connector 6000

HCT-020DHR420 DHR420 20 ±120 4-20 mA 20-30 ±1% < 0,5 % Connector 4000

HCT-050DHR420 DHR420 50 ±120 4-20 mA 20-30 ±1% < 0,5 % Connector 4000

HCT-100DHR420 DHR420 100 ±600 4-20 mA 20-30 ±1% < 0,5 % Connector 4000

HCT-200DHR420 DHR420 200 ±600 4-20 mA 20-30 ±1% < 0,5 % Connector 4000

HCT-300DHR420 DHR420 300 ±1000 4-20 mA 20-30 ±1% < 0,5 % Connector 4000

HCT-400DHR420 DHR420 400 ±1000 4-20 mA 20-30 ±1% < 0,5 % Connector 4000

HCT-500DHR420 DHR420 500 ±1500 4-20 mA 20-30 ±1% < 0,5 % Connector 4000

HCT-500DHR420 DHR420 600 ±1500 4-20 mA 20-30 ±1% < 0,5 % Connector 4000

HCT-1000DHR420 DHR420 1000 ±1500 4-20 mA 20-30 ±1% < 0,5 % Connector 4000

HCT SERIESHall Effect Current Transducers

Notes: (1) Accuracy levels at Nominal current, measured at room temperature over a 1 Ohm, non-inductive precision burden resistor (for all the model except PX5 ones). (2) Typical linearity response, measuring from 10% to 100% of nominal current. (3) Individual data sheet for each transducer available on Premo Website. / All data are related to room temperature, 25ºC ± 2 ºC.

Page 116: Brochure

199

Hal

l - E

ffec

t Se

nso

rs

HCT SERIESHall Effect Current Transducers

AP FAMILY

LTP FAMILY

Data at 25ºC. Burden resistor used 10 Ohm ± 0.2 %. Vcc ± 15V

Data at 25ºC. Burden resistor used 10 Ohm ± 0.2 %. Vcc ± 15V

LP FAMILY

Data at 25ºC. Burden resistor used 10 Ohm ± 0.2 %. Vcc ± 15V

A05 FAMILY

Data at 25ºC. Burden resistor used 10 Ohm ± 0.2 %. Vcc ± 15V

Notes(1) Accuracy levels at Nominal current, measured at room temperature over a 10 kOhm burden resistor .(2) Typical linearity response, measuring from 10% to 100% of nominal current(3) Individual data sheet for each transducer available on Premo Website. All data are related to room temperature 25ºC ± 2 ºC

Page 117: Brochure

200

Hal

l - E

ffec

t Se

nso

rs

HCT SERIESHall Effect Current Transducers

LF & SH FAMILY

BP1 & BP2 FAMILY

BP5 FAMILY

Data at 25ºC. R load 10 kOhm ± 5 % Vcc = ± 15 V

Data at 25ºC. R load 10 kOhm ± 5 % Vcc = ± 15 V

Data at 25ºC. Burden Resistor 10 Ohm ± 0.2% Vcc = ± 24 V

PX5 FAMILY

Data at 25ºC. Vcc = 5 V

Page 118: Brochure

201

Hal

l - E

ffec

t Se

nso

rs

HCT SERIESHall Effect Current Transducers

F FAMILY

N FAMILY

K FAMILY

Data at 25ºC. R load 10 kOhm ± 5 % Vcc = ± 15 V

Data at 25ºC. R load 10 kOhm ± 5 % Vcc = ± 15 V

Data at 25ºC. R load 10 kOhm ± 5 % Vcc = ± 15 V

LB FAMILY

Data at 25ºC. R load 10 kOhm ± 5 % Vcc = ± 15 V

Page 119: Brochure

202

Hal

l - E

ffec

t Se

nso

rs

HCT SERIESHall Effect Current Transducers

HCT-ECH FAMILY

HCT-LTH FAMILY

HCT-LTHA FAMILY

Pin Value

+ +VCC

- -VCC

M Output

N No connect

Pin Value

+ +VCC

- -VCC

M Output

N No connect

Pin Value

+ HCT-LTHA HCT-LTHA2

- +VCC

-VCC

M Output

Nc No connect N/A

Pin description

Page 120: Brochure

203

Hal

l - E

ffec

t Se

nso

rs

HCT SERIESHall Effect Current Transducers

Dimensions

A05

DSR5

D55

SY

LAS5 LAH

Page 121: Brochure

204

Hal

l - E

ffec

t Se

nso

rs

HCT SERIESHall Effect Current Transducers

Dimensions

LP

AP (200)

AP (50 & 100)

LTP

PX5 SH

Page 122: Brochure

205

Hal

l - E

ffec

t Se

nso

rs

HCT SERIESHall Effect Current Transducers

LF (1000)

BP2

LF (2000)

Dimensions

BP1

BP5 BS

Page 123: Brochure

206

Hal

l - E

ffec

t Se

nso

rs

BS1

BSR5

LB

Dimensions

BRR5

F N

HCT SERIESHall Effect Current Transducers

Page 124: Brochure

207

Hal

l - E

ffec

t Se

nso

rs

K DHR420

Dimensions

HCT SERIESHall Effect Current Transducers

Packaging

Antistatic trays with carton grids in carton box

LX

Page 125: Brochure

208

Curr

ent

Tra

nsf

orm

ers

Current Transformers & Sensors Series

IntroductionIn many applications, to know the current <owing through a given conductor is very useful. As well as the voltage transduction is easy, the comparable process for currentis more complex. Because of this need, a lot of technological options have been developed to achieve this goal - measuringelectric current.It is important to the designer to understand well all these options in order to select the most suitable one.

Shunt ResistorShunt resistors are, maybe at priori, the simplest way to measure current. The principle is based in a serial connection of a resistance. It is preferable to have very low tolerance, to allow current <owing through resistor to measure it. Ohm’s Law tells us that the voltage measured and the current are related, both magnitudes are related by the Shunt resistance value, R[1].Variations in the current will be detected as variations of voltage in the Shunt. This voltage can be used in feedback processesor for activating security conditions. The representation of a shunt resistance coupled to the circuit is showed in !gure1.

Shunt resistors give a very accurate currentmeasurement, offer a cost effective solution and are easy to set up. Even so, their use to sense high currents is not recommended, because measurement current losses are proportional to quadratic value of this current.

On one hand, Shunt resistors are usually used to sense current in certain applications, to check the quality of an electrical net, regarding power factor and THD1 of the application. On the other hand, they are useful in motors control systems current sensing by means of frequency variation or switched mode power supplies. The greatest inconvenient of this kind of sensor is that it is not isolated galvanically in the circuit, besides the impossibility to measure high currents because of high dissipation heating.

Rogowski CoilRogowski coil consists on a coil containingan air core with a toroidal shape. When current <ows through a cable, a magnetic !eld H is created. Its direction is related to the direction of the current; as is shown in the !gure 2.

If current <ows through a Rogowski coil (Figure 3), a certain voltage is induced in the terminals of the coil rolled up on the air core[3]. This voltage is proportional to current derivative and coil L mutual inductance.

Figure 1 Figure 2

1- Total Harmonic Distortion, THD parameter informs about the quality of the current that <ows in a line, related with the number of harmonics contained in the frequency spectra of the current. Optimal THD parameter: 1.

Page 126: Brochure

209

Curr

ent

Tra

nsf

orm

ers

Current Transformers & Sensors Series

Therefore, it is only necessary an integration stage on the terminals of the Rogowski coil to get the desired value of current. It’s obvious that Rogowski coil can not measure DC levels of current, because voltage is induced by an AC current rather than by a DC current. With an air core, Rogowski coil is able to measure AC current with high level offset, because there are not core saturation problems.

Typical restriction is the resonance frequency, because of the existence of parasitic capacitance. This frequency limitsRogowski coil frequency operability. In any case, a suitable reeling of the coil, makes possible that this frequency may have a high value, near MHz in many cases.

There are two kinds of Rogowski coils: rigid and <exible. The operation principle is the same, but the difference lies in the coil. One kind of coil is <exible, that is, it has the same features and has the possibility to surround any line current. Otherwise, rigid coil is more accurate and has better stability in the measurement. Both applications are showed in !gures4.a and 4.b.

50/60 Hz Current TransformersAnother way to measure current is using the magnetic coupling between two coils rolled up in the same magnetic core. In this case, the secondary coil has got a high number of turns (higher the number, higher the precision). Primary coil will have one turn and will carry the current to measure, the ideal magnetic coupling tells us:

Current transformers for net frequencies of 50/60Hz are designed with different kinds of magnetic cores. One kind are iron-steel laminations, since at this frequency range this material is able to measure currents up to 600 or 700 A ,[3].Current transformers can measure AC current levels but they cannot admit DC current, because DC levels saturate the magnetic core.

Other kind of cores, as for example nanocrystalline and amorphous cores, makes it possible to get more measurement accuracy, although, on the other hand, they are not suitable to measure high levels of current, up to 100 A. These low frequency transformers, based in nanocrystalline and amorphous cores, can carry, in some cases, levels of DC current without saturation of the core.In !gure 5, equivalent circuit of a current transformer is shown next.

Figure 6a shows a picture of the high current transformers based in iron-steel laminates. Figures 6.b shows low frequency transformers, based on ferrite, amorphous or nanocrystalline cores are shown.

Figure 3

Figure 5

Figure 4.a Figure 4 Figure 4.b

(Figure 4.a Flexible Coil, 4.b Rigid Coil.)

Page 127: Brochure

210

Curr

ent

Tra

nsf

orm

ers

Current Transformers & Sensors Series

High Frequency Current TransformersThe operation principle is the same as in the previous case. To measure currents at high frequencies properly, it is necessary that magnetic cores having a high magnetic permeability at these frequencies [3,4]. Iron-steel laminates, that are useful at 50/60 Hz currents, are substituted by ferrites, amorphous or nanocrystalline materials.

These sensors have smaller size than high current industrial ones and thanks to theirmagnetic properties, they can operate at high frequencies. One of the applications is the sensing of the current in switching power supplies to implement current mode loop control. They have a great advantage regarding Shunt resistors, because they are galvanically isolated between primary and secondary currents.Figure 7 shows this current transformers.

Hall Effect Based SensorsHall sensors are based in Hall effect. This effect consists on the appearance of a voltage when a current <ows through a conductive plate and a magnetic !eld is applied. Usually this conductive plate is made of a semiconductor material.Voltage generated is perpendicular to the direction of current and the applied magnetic !eld [1,5], as shown in !gure 8:

This is the Hall con!guration. Theoretical relation between voltage generated and applied magnetic !eld has the form:

Where B is the magnetic <ux density and I the current that <ows through the plate. Typical values of this voltage are of the order of microvolts, therefore, it is necessary to add an ampli!er stage to make an adequate reading of the generated Hall voltage.This stage adds an offset voltage in the measurement of B[5].

Sensor has different response to magnetic <ux density and frequency according to the electronic stage and the Hall transducer (semiconductor plate). It can cover ranges of DC to 100 kHz and 1gauss to 30 Teslas, approximately. And according to the design, this sensor can measure currents between 1 mA and 1kA.

Figure 6.a

Figure 6.b

Figure 7

Figure 8

Page 128: Brochure

211

Curr

ent

Tra

nsf

orm

ers

Current Transformers & Sensors Series

Fluxgate SensorA Fluxgate [1] transducer has almost the same scheme than Rogowski coil, since it consists in a coiled magnetic core, as in !gure 11:

Usually, magnetic cores shape <uxgate sensors have a high magnetic permeability, very low coercitivity and as many number of turns in the coil as possible to improve its sensitivity. Ferrites are the standard materials for this purpose, because of the good frequency response.Fluxgate sensor operation consists on

applying a square signal to the coil (VSAT), which saturates the magnetic core, obtaining the response shown in !gure 12.

Thus, associated electronics !xes current sensor capabilities and increases its cost; Figure 9 shows a diagram of the response of the Hall sensor.

An example of a current sensor based in a Hall sensor would be a “closed loop Hall effect current sensor”:

In this example, Hall sensor measures the magnetic <ux density induced in a toroidal core by the primary current. Magnetic core, for getting more sensitivity in the transduction, should have a high magnetic permeability and low magnetic losses.

Figure 9

Figure 10

Figure 11

Figure 12

Page 129: Brochure

212

Curr

ent

Tra

nsf

orm

ers

Current Transformers & Sensors Series

With the response signal, an average along a period of time is made. This value is always zero, as long as another induced signal is not added or does not interfere in the transducer. If this happens, the mean value is different from zero.

This kind of sensors measures both AC and DC signals. The following !gures (13a,13b) give us an example of a DC signal measurement. It can be seen that the current directions are opposite respectively.

Application frequency range of this sensor depends on the electronic stage associated and the frequency response of the magnetic cores, usually toroidal cores.

Comparative TableA comparative table of the different solutions in this article is shown. Principal features of each one are mentioned in this table.

References[1] Measurement, Instrumentation and Sensors Handbook, CRC Press, 1999.[2] D.A. Ward, J.La.T. Exon, Engineering Science and Educational Journal, June 1993.[3] Ras, Enrique. Transformadores de Potencia de Medida y Protección. 6ª Edición. Marcombo.[4] Waters, C. Current Transformers Provide Accurate, Isolated Measurements. PCIM Magazine, Diciembre 2006.[5] Hall Effect Sensing and Application, Honeywell manual.

Figure 13 Figure 13.b

ParameterCurrent

TransformersHall Effect

SensorsRogowski

CoilFlux Gate Shunt

Cost Medium High Low High Low

Bandwidth Low Medium High Medium Low

Isolation High High High High Low

Dimensions Medium Medium Low Medium Low

Linearity Good Medium Very Good Good

High Current Measurement Good Good Very Good Very Good Low

Saturation Problems Yes Yes No No No

Power Dissipation Low Medium Low Medium Low

Temperature Effects Low Medium Very Low Low Medium

Page 130: Brochure

213

Curr

ent

Tra

nsf

orm

ers

CM SeriesSMD Current Transformer Up to 6A

Features- Designed for switching power supply applications.- Nominal primary current 6 A rms.- Low pro!le: 4.9mm height.- Pick and place mounting.- Frequency range above 100KHz. - Taped & Reeled.- Operating temperature from -25º C to 105º C.

Product List

Notes:- Inductance at 0.1 Vac, 10KHz.- Terminating resistor for 1 V out with 6 amps AC in the primary.- Reverse polarity parts are available for all turns ratios: (CM-020R / CM-125R).- Hipot is 500 Vrms / 50 Hz / 2 seconds.- Ls: Secondary inductance.

Dimensions Schematics

Part Number Turns RatioLs min(µH)

Sec Rcu(Ω Max)

Load Resistor RB(Ω)

CM - 020 1 : 20 75 0.55 3.33

CM - 030 1 : 30 170 0.87 5.00

CM - 040 1 : 40 300 1.14 6.67

CM - 050 1 : 50 470 1.50 8.33

CM - 060 1 :60 675 1.75 10.00

CM - 070 1 : 70 920 4.75 11.67

CM - 100 1 : 100 1875 5.50 16.67

CM - 125 1 : 125 3000 6.50 20.83

Page 131: Brochure

214

Curr

ent

Tra

nsf

orm

ers

CS SeriesSMD Current Transformer Up to 15A

Features- Designed for switching power supply applications.- Low pro!le and self leaded, surface mount.- UL94-V0 Plastic material.- Taped & Reeled according to EIA 481.- Less than 8mm height.- Up to 15 Arms primary current.- Storage temperature -30º to 130º C.- Operating temperature from -20º to 105º C.

Product List

Notes:- Inductance is mesured at 100 KHz, 20 mVrms. *10 KHz, 60 mVrms.- Hipot is 500 Vrms, measured at 50 Hz, 2 seconds.- I, Rt are reference values only.- Reference values are for the one turn winding connected in parallel for unipolar operation at 200 KHz.

Dimensions Footprint

Schematics

Part NumberIp

(Arms)RB(Ω)

Ls(mH Min)

Sec Rcu(Ω Max)

Turns(Ns)

CS - 050 15 25 4.6 0,3 50

CS - 100 15 50 18.5 0,8 100

CS - 200 15 100 74* 2,8 200

Page 132: Brochure

215

Curr

ent

Tra

nsf

orm

ers

CSAU SERIESAutomotive HEV Current Transformer up to 35 Amps

Features- Design for high performance 2-3kW SMPS- Very low pro!le: 8.5mm max- Primary current up to 35 Arms- Working frequency from 100 to 250kHz- High isolation between primary and secondary- Potted solution assures safety creepage distance ≥5mm- High Operating Temperature -40 to 155 ºC.- AOI (Automatic Optical Inspection) component- Very stable performances versus temperature- No thermal aging effect- UL94V-0 material- RoHS compliant

General Application- Automotive HEV DC/DC Converters and Batteru Chargers- Industrial high power SMPS

Electrical speci!cations

Notes(1) All test data are referenced to 25°C ambient temperature(2) Inductance values are measured at 100kHz/0.1V(3) See L vs. Idc curve beside(4) Burden resistor from 5 to 10 Ohms(5) Continues operating temperature range must be within -40/+155ºC (ambient + self heating)

Typical inductance variation versus temperature

CodePrimary CurrentIrms (A)

Seconday Turns

Secondary InductancemH (Min)

DCR Primary typ (mOhm)

DCR Secondary typ

(Ohm)

Primary to Secondary Isolation

(kVdc)

CSAU-050 35 50 1.0 0.5 0.2 3

CSAU-100 35 100 4.0 0.5 0.8 3

CSAU-200 35 200 16.0 0.5 4.3 3

Page 133: Brochure

216

Curr

ent

Tra

nsf

orm

ers

CSAU SERIESAutomotive HEV Current Transformer up to 35 Amps

Dimensions

Recommended PCB layout (view in mounting direction)

Electrical diagram

Page 134: Brochure

217

Curr

ent

Tra

nsf

orm

ers

CS-35AAutomotive EV/HEV Isolated SMD Current Transformer up to 35Amps

Features- Design for high performance 2-3kW SMPS- Height : 8.5mm MAX, Pick & Place compatible- Footprint : SMD 31 x 25.5mm MAX

- 1:100 turn ratio for 5-10Ω burden resistor- Working frequency from 50 to 250kHz- 3kV isolation between primary and secondary- Creepage distance > 5mm- High operating temperature range -40 to +155°C- AOI (Automatic Optical Inspection) component- UL94V-0 and RoHS material- Design compliant with AEC-Q200 requirements- No thermal aging effect- Weight : approx. 5g

General Application- Peak current sensing, current measurement for bridge control- Automotive EV/HEV DC/DC converters and battery chargers- Industrial high power SMPS

CodePrimary Current(Arms)

Seconday Turns

Secondary InductanceMIN (mH)

Secondary DCR MAX (Ω)

Primary DCR MAX (mΩ)

Primary to Secondary Isolation

(kVac)

CS-35A 35 100 5 1.6 1 3

Notes(1) All test data are referenced to 25°C ambient temperature(2) The inductance value is measured at 100kHz/0.1Vac(3) The isolation is tested at 50Hz/2sec (1min for quali!cation)(4) The creepage distance is guaranteed > 5mm

(5) Continuous operating temperature range must be within -40/+155°C (including self-heating of the part)(6) A burden resistor value from 5 to 10Ω is recommended(7) The amplitude error is estimated better than +/-2.5% on the 50-250kHz and -40/+155°C range (Rb = 5 to 10Ω)

Electrical speci!cations

Dimensions (mm)

Recommended Pad-Layout

Page 135: Brochure

218

Curr

ent

Tra

nsf

orm

ers

Features- Negligible amplitude error due to low core losses.- Reduced phase error due to simple electronic calibration.- Improved stability of the permeability across the entire temperature range.- Reduced core size or number of windings.- Frequency 50/60 Hz.- Operating temperature from -40º C to 85º C.

Product List

Notes:Nsec = 2500 *Nsec = 2000Ip primary-current range.Ipmax max.permissible AC-primary current without saturation.IDCmax max. DC-current value without saturation for class 1-counter (IEC 1036).tan F max. phase error concerning of Ip.RB burden resistance for 0.3V signal voltage at Ipmax.VB burden voltage RB during max Ip.Linearity better than <0.3% between 0.1A to Ip.Amplitude error better than 1%.Values in product list are referenced to 50 Hz measurements.Dielectric strenght 2500 Vac/50 Hz/1 min.Contact us for further technical data.

Test Circuit and Electrical Schematic

Part Numberfor pins

Part numberfor lead wire

IP(ARMS)

IPMax

(ARMS)IDCMax

(ADC)

Phase error

tan (º)

BurdenRB (Ω)

Burden voltage

VB (VRMS)

Centre hole

Ø (mm)

CWP-0061 B1 CWL-0061 C1 0.10 - 6 6 - < 0.5 125.0 0.3 6/7

CWP-0062 B1 (*) CWL-0062 C1 (*) 0.10 - 6 6 - < 0.6 100.0 0.3 6/7

- CWL-0201 A1 0.25 - 20 79 - < 0.3 37.5 0.3 5

- CWL-0202 A1 0.25 - 20 135 36 < 4 37.5 0.3 5

- CWL-0601 A2 0.50 - 60 83 - < 0.2 12.5 0.3 7

CWP-0600 B2 CWL-0602 A2 0.50 - 60 270 80 < 3.7 12.5 0.3 8.5/7

- CWL-1001 A3 1 - 100 176 - < 0.15 7.5 0.3 10

CWP-1000 B3 CWL-1002 A3 1 - 100 345 113 < 5 7.5 0.3 11.5/9.5

CWP/CWL SeriesHigh Precision 50 Hz KWh-meter Current Transformer

FOR A AND C HOUSING FOR B HOUSING

Page 136: Brochure

219

Curr

ent

Tra

nsf

orm

ers

CWP/CWL SeriesHigh Precision 50 Hz KWh-meter Current Transformer

Dimensions for A housing

Dimensions for B housing

Dimensions for C housing

TypeA

(MAX)B

(MAX)C

(MAX)D

(MIN)

A1 30.5 29.0 15 5.0

A2 31.5 31.5 15 8.0

A3 35.0 35.0 19 9.0

TypeA

(MAX)B

(MAX)C

(MAX)D

(MIN)

C1 25.0 23.5 11.5 7.0

TypeA

(MAX)B

(MAX)C

(MAX)D

(MIN)E

(±0.1)F

(±0.1)G

(±0.1)H

(±0.1)I

(±0.1)

B1 25.5 25.5 12.0 6.0 13.0 7.62 21.59 1.27 0.00

B2 31.5 32.0 15.0 8.0 16.0 10.00 25.50 2.54 2.54

B3 34.5 34.5 15.0 11.5 17.3 10.16 27.94 2.54 2.54

Tolerances ± 0.1 unless otherwise noted.

Dimensions in mm.

Page 137: Brochure

220

Curr

ent

Tra

nsf

orm

ers

CF SeriesPTH SMPS Current Transformer Up to 15A

Features- Speciallly designed for current-mode feedback in PWM switched mode power supplies and converters.- Fully encapsulated in Polyurethane according to UL94 V0. - Frequency range from 5 - 200 KHz.- Isolation Primary to Secondary 2750 Vac.- Extended isolation to full !ll EN60950 standard available on request.- Maximum primary current 15 A rms.- Operating temperature from -20º C to 85º C.

Product List

Notes:L: Inductance: (1-3) tested at 10 KHz & 10 mVV x t: V = RB x Is t = 1/2FIP (A): Primary currentRB (W): Recommended Terminating ResistanceIs (A): Secondary currentF (Hz): Frequency

Dimensions Test Circuit and Schematics

Part NumberPrim/Sec

RatioIp

(ARMS Max)Sec L

(mH Min)Sec Rcu(Ω Max)

V x (Max)

CF 050 1/50 15 5.0 0.65 175 VµS

CF 100 1/100 15 22.0 1.30 350 VµS

CF 200 1/200 15 94.5 4.50 700 VµS

Page 138: Brochure

221

Curr

ent

Tra

nsf

orm

ers

CA SeriesPTH SMPS Current Transformer Up to 15A

Features- Designed for switching power supply applications- Transformer meets IEC950 insulation requirements- Frequency range from 20 KHz to 200 KHz- Material according to UL94-VO- Operating temperature from -20º C to 85ºC

Product List

Notes:- Maximum ratings speci!ed with rated secondary terminating resistance and 1 turn primary.- Amp-microsecond (AmSec.) rating of primary equals volt microsecond (VµSec.) rating of secondary when secondary is terminated in rated resistance. (Amp-microseconds is equals to the product of a square pulse of current in amps, times the current pulse width in microseconds).- When terminated with rated terminating resistance, the inductor scale factor is Vout = 1 volt per amp. For center tapped units terminating resistance for each half of winding is listed value divided by two.- 1 turn primary peak sense current is 20 amps for all parts listed above.

Dimensions

Test Circuit and Schematics

Part NumberTurns

Ns

SecondaryInductanceMH (Min)

Secondary InductanceTest Voltatge(15.75 KHz)

RS(Ω Max)

RB(Ω Nom)

Primary UnipolarAmp µ Sec.

Rating (Max)

Primary BipolarAmp µ Sec.

Rating (Max)

CA-050X 50 7.7 0.5 0.55 50 150 300

CA-100X 100 30.9 1.0 1.2 100 300 600

CA-200X 200 123.6 2.0 3.5 200 600 1200

Page 139: Brochure

222

Curr

ent

Tra

nsf

orm

ers

CV/CH SeriesSMPS High Isolation (2500V min) Current Transformers

Features- Designed for switching power supply application.- Wide range of housings.- Cases made of UL94-V0 material.- Insulation 2.5 KVac.- Typical Frequency range 10 KHz ~ 200 KHz.- Storage temperature from - 20º C to 100º C.- Operating temperature from - 20º to 85º C.

Product List

Notes LS: Secondary inductance 10KHz / 10 mV. VB x : V = RB x Is t = 1/2F IP (A): Primary current. IS (A): Secondary current. RB (Ω): Load resitance. F (Hz): Switching frequency. Rcu (Ω): Secondary winding DCR.

Test Circuit

Part NumberPrim/Sec

RatioIpn

(ARMS)Sec Ls

(mH Min)Sec Rcu(Ω Max)

V x (VµS Max)

CV1 - 050 1/50 15 7.5 0.30 175CV1 - 100 1/100 15 30 0.70 350

CV1 - 200 1/200 15 120 4 700CV2 - 050 1/50 25 8 0.30 300

CV2 - 100 1/100 25 35 0.80 600CV2 - 200 1/200 25 140 3.80 1200

CV3 - 050 1/50 40 8 0.20 500CV3 - 100 1/100 40 33 0.50 1000

CV3 - 200 1/200 40 135 3 2000CV4 - 050 1/50 55 12 0.20 700

CV4 - 100 1/100 55 45 0.60 1400CV4 - 200 1/200 55 180 2 2800

CH2 - 050 1/50 25 8 0.30 300CH2 - 100 1/100 25 35 0.80 600

CH2 - 200 1/200 25 120 4.2 1200CH3 - 050 1/50 40 8 0.20 500

CH3 - 100 1/100 40 33 0.50 1000CH3 - 200 1/200 40 135 3 2000

CH4 - 050 1/50 55 12 0.20 700CH4 - 100 1/100 55 45 0.60 1400

CH4 - 200 1/200 55 180 2 2800

CH series CV series

Page 140: Brochure

223

Curr

ent

Tra

nsf

orm

ers

CV/CH SeriesSMPS High Isolation (2500V min) Current Transformers

Product List CV Serie

Dimensions in mm.Tolerances ± 0.1 unless otherwise noted.

Dimensions

Bottom view

Product List CH Serie

Dimensions in mm.Tolerances ± 0.1 unless otherwise noted.

Dimensions

Bottom view

Type A B C D E F

CV1 20 18 10.5 5 15 5

CV2 25.5 23 12.5 7.5 17.5 5

CV3 29.5 27 15 10 22.5 6

CV4 33.5 32 15 10 25 8

Type A B C D E F

CH2 23 22 15 20 12.5 5

CH3 28 28 17.5 25 15 6

CH4 33 32 17.5 30 20 8

Page 141: Brochure
Page 142: Brochure

INDUCTIVE COMPONENTS

FOR GENERAL APPLICATIONS

THT InductorsSMD RF Chip inductors SMD Power Inductors

Page 143: Brochure

226

TH

T I

nd

uct

ors

SR SERIESCoils and Chokes for general use

R.F. I SUPPRESSION INDUCTANCESThe chokes included in this series have been specially designed in order to be used whether in small household appliances or directly in the printed circuit board, together with “Cx” and “Cy” additional capacitors to carry out the !ltering process.

There are three different types of axialchokes, each one !tting a specialrequirement:Type A: without isolation.Type B: covered with UL tube.Type C: covered with UL tube + <exible leads.

Features- Working voltage: 250 Vac.- Value margin: from 2 µH to 60 µH.

CodingSR - 6R0 - 10SR = Type6R0 = Inductance code10 = Tolerance

Table of dimensions

Code ‘‘L’’ CurrentType A mm Type B mm Type C mm SRF Freq.

TYP.D1 D2 L1 L2 D1 D2 L1 L2 D1 D2 D3 L1 L2

SR-2PRO-20 2 µH 2 Amp 5 0.6 18 60 6 0.6 18 60 6 0.8 1.7 18 110 1.6 MHz

SR-2PRO-20 4 µH 2 Amp 5.5 0.65 22 60 6.5 0.65 22 60 6.5 0.8 1.7 25 110 1.6 MHz

SR-2PRO-20 6 µH 1 Amp 5 0.6 18 60 6 0.6 18 60 6 0.8 1.7 18 110 1.6 MHz

SR-2PRO-20 10 µH 1 Amp 5.5 0.65 22 60 6.5 0.65 22 60 6.5 0.8 1.7 25 110 1.6 MHz

SR-2PRO-20 10 µH 2 Amp 7 0.8 30 60 8 0.8 30 60 8 0.8 1.7 35 110 1.6 MHz

SR-2PRO-20 15 µH 0.5 Amp 5 0.6 18 60 6 0.6 18 60 6 0.8 1.7 18 110 160 KHz

SR-2PRO-20 25 µH 0.5 Amp 5.5 0.65 22 60 6.5 0.65 22 60 6.5 0.8 1.7 25 110 160 KHz

SR-2PRO-20 25 µH 1 Amp 7 0.8 30 60 8 0.8 30 60 8 0.8 1.7 35 110 160 KHz

SR-2PRO-20 60 µH 0.5 Amp 7 0.8 30 60 8 0.8 30 60 8 0.8 1.7 35 110 160 KHz

tolerance: - - ±2 ±0.2 ±2 MIN ±2 ±0.2 ±2 MIN ±0.2 ±0.2 ±2 ±2 MIN -

Page 144: Brochure

227

TH

T I

nd

uct

ors

SR SERIESCoils and Chokes for general use

SR-0513

CodeInductance(µH)±10%

Resistance DC(Ω) Max

I Sat(A) Max

I rms(A) Max

SR0513-3R9K 3,9 0,019 7,3 1,28

SR0513-4R7K 4,7 0,022 6,3 1,28

SR0513-5R6K 5,6 0,024 5,6 1,28

SR0513-6R8K 6,8 0,026 5,3 1,28

SR0513-8R2K 8,2 0,028 4,5 1,28

SR0513-100K 10 0,033 4,1 1,28

SR0513-120K 12 0,037 3,6 1,28

SR0513-150K 15 0,040 3,3 1,28

SR0513-180K 18 0,044 3,0 1,28

SR0513-220K 22 0,050 2,7 1,28

SR0513-270K 27 0,058 2,5 1,28

SR0513-330K 33 0,075 2,2 1,008

SR0513-390K 39 0,094 2,0 0,804

SR0513-470K 47 0,109 1,8 0,804

SR0513-560K 56 0,140 1,7 0,804

SR0513-680K 68 0,145 1,5 0,804

SR0513-820K 82 0,152 1,4 0,804

SR0513-101K 100 0,208 1,2 0,632

SR0513-121K 120 0,283 1,1 0,508

SR0513-151K 150 0,340 1,0 0,508

SR0513-181K 180 0,62 0,95 0,508

SR0513-221K 220 0,430 0,86 0,508

SR0513-271K 270 0,557 0,77 0,400

SR0513-331K 330 0,665 0,70 0,400

SR0513-391K 390 0,772 0,64 0,400

SR0513-471K 470 1,15 0,59 0,315

SR0513-561K 560 1,27 0,54 0,315

SR0513-681K 680 1,61 0,49 0,250

SR0513-821K 820 1,96 0,44 0,200

SR0513-102K 1000 2,30 0,40 0,200

SR0513-122K 1200 2,65 0,35 0,200

SR0513-152K 1500 3,45 0,33 0,158

SR0513-182K 1800 4,03 0,29 0,158

SR0513-222K 2200 4,48 0,27 0,158

SR0513-272K 2700 5,90 0,24 0,125

SR0513-332K 3300 6,56 0,22 0,125

SR0513-392K 3900 8,63 0,20 0,100

SR0513-472K 4700 10,5 0,18 0,100

SR0513-562K 5600 13,9 0,166 0,082

SR0513-682K 6800 16,3 0,151 0,082

SR0513-822K 8200 20,8 0,136 0,065

SR0513-103K 10000 26,4 0,125 0,050

SR0513-123K 12000 29,2 0,114 0,050

SR0513-153K 15000 42,5 0,098 0,039

SR0513-183K 18000 48,3 0,091 0,039

Dimensions in mm

Page 145: Brochure

228

TH

T I

nd

uct

ors

SR SERIESCoils and Chokes for general use

SR-1019

CodeInductance(µH)±10%

Resistance DC(Ω) Max

I Sat(A) Max

I rms(A) Max

SR1019-3R9K 3,9 0,007 15,5 4,0SR1019-4R7K 4,7 0,008 13,9 4,0SR1019-5R6K 5,6 0,011 12,6 4,0SR1019-6R8K 6,8 0,011 11,6 4,0SR1019-8R2K 8,2 0,013 9,89 4,0SR1019-100K 10 0,017 8,7 4,0SR1019-120K 12 0,019 8,21 4,0SR1019-150K 15 0,022 7,34 4,0SR1019-180K 18 0,023 6,64 4,0SR1019-220K 22 0,026 6,07 4,0SR1019-270K 27 0,027 5,36 4,0SR1019-330K 33 0,032 4,82 4,0SR1019-390K 39 0,033 4,36 4,0SR1019-470K 47 0,035 3,98 4,0SR1019-560K 56 0,037 3,66 3,2SR1019-680K 68 0,047 3,31 2,5SR1019-820K 82 0,060 3,10 2,0SR1019-101K 100 0,090 2,79 1,6SR1019-121K 120 0,113 2,54 1,6SR1019-151K 150 0,129 2,22 1,6SR1019-181K 180 0,150 1,98 1,6SR1019-221K 220 0,162 1,89 1,6SR1019-271K 270 0,208 1,63 1,6SR1019-331K 330 0,212 1,51 1,6SR1019-391K 390 0,281 1,39 1,6SR1019-471K 470 0,380 1,24 1,2SR1019-561K 560 0,420 1,17 1,0SR1019-681K 680 0,548 1,05 1,0SR1019-821K 820 0,655 0,97 0,8SR1019-102K 1000 0,844 0,87 0,8SR1019-122K 1200 1,04 0,79 0,6SR1019-152K 1500 0,18 0,70 0,6SR1019-182K 1800 1,56 0,64 0,6SR1019-222K 2200 2,00 0,58 0,5SR1019-272K 2700 2,06 0,53 0,4SR1019-332K 3300 2,53 0,47 0,4SR1019-392K 3900 2,75 0,43 0,4SR1019-472K 4700 3,19 0,39 0,4SR1019-562K 5600 3,92 0,359 0,315SR1019-682K 6800 5,69 0,322 0,250SR1019-822K 8200 6,32 0,293 0,250SR1019-103K 10000 7,30 0,266 0,250SR1019-123K 12000 9,21 0,241 0,200SR1019-153K 15000 10,5 0,214 0,200SR1019-183K 18000 14,8 0,198 0,158SR1019-223K 22000 21,8 0,180 0,125SR1019-273K 27000 22,7 0,162 0,125SR1019-333K 33000 25,7 0,146 0,125SR1019-393K 39000 31,8 0,135 0,100SR1019-473K 47000 36,1 0,122 0,100SR1019-563K 56000 40,9 0,112 0,100SR1019-683K 68000 57,3 0,101 0,082SR1019-823K 82000 79,3 0,090 0,065SR1019-104K 100000 89,7 0,081 0,065

Dimensions in mm

Page 146: Brochure

229

TH

T I

nd

uct

ors

K/KP SERIESCoils and Chokes for general use

High intensity inductanceSeries of coiled inductors over a ferrite core with a wide range of saturation currents. They are specially recommended to be usedin switched mode power supplies, RFI !lters and pretuned circuits.Two models are available: the K series, without sheathing, and the KP series, sheathed.The KP series presents a specially high resistance against humidity because its is sheathed in epoxy. Features- Approximate weight: Series K: 30 gr.; Series KP: 45 gr. Max.- High reliability.- Wide current range.- Core material: ferrite.- Operating temperature: -20ºC to +80ºC.

CodeL ±20%F=1 KHz

RDC MAX.(Ω) 20ºC

IDC MAX.(A)

S.R.F.(MHz) MIN.

100 10µH 0.018 9.0 40.00

150 15µH 0.022 8.5 19.3

220 22µH 0.028 7.3 10.0

330 33µH 0.048 5.6 5.08

470 47µH 0.058 5.1 4.62

680 68µH 0.073 4.5 2.90

101 100µH 0.105 3.8 2.67

151 150µH 0.159 3.0 2.00

221 220µH 0.202 2.7 1.67

331 330µH 0.316 2.2 1.29

471 470µH 0.445 1.85 1.12

681 680µH 0.62 1.55 0.98

102 1mH 0.90 1.3 0.70

152 1.5mH 1.34 1.05 0.50

222 2.2mH 1.98 0.87 0.45

332 3.3mH 3.05 0.70 0.36

472 4.7mH 4.62 0.57 0.31

682 6.8mH 5.50 0.52 0.26

103 10mH 9.38 0.40 0.20

153 15mH 16.00 0.32 0.155

223 22mH 20.40 0.26 0.135

333 33mH 30.80 0.22 0.110

473 47mH 44.50 0.18 0.091

683 68mH 50.60 0.16 0.080

104 100mH 112 0.12 0.058

154 150mH 143 0.10 0.047

224 220mH 250 0.08 0.039

334 330mH 322 0.06 0.034

474 470mH 414 0.04 0.032

Measuring Frequency: 1KHz; 0,35V

Coding:K/KP - 102K/KP = Type102 = Inductance code, I mH

Inferior Vista

Page 147: Brochure

230

TH

T I

nd

uct

ors

C/CP/CS SERIESCoils and Chokes for general use

Low stray capacitance inductorsThese coils are manufacturedwith a special coiling systemthat reduces the eddy capacityand provides improveddistribution of the openmagnetic !eld.Its main applications are:coupling and decouplingcircuits, RFI !lters, power lines,etc.

Features- Maximum weight: C and CS series, 2 gr.; Series CP, 2.8 gr.- Terminals: 0.85 diameter tin plated copper wire.- Covered with UL tube for the C series, and in resin for the CP series.- High reliability.- High dielectric rigidity and insulation resistance.- Operating temperature: -20ºC to +80ºC.  CodingC/CP/CS - 150 - K.C/CP/CS = Type (dependingon coating).150 = inductance code, 15 mH.K = Tolerance.

TypeC/CS/CP

InductanceµH ±%

test frec.(MHz)

QMIN.

R DC(Ω)

MAX.

I DC(A)

MAX.

S.R.F.(MHz) MIN.

R15M 0.15 20 25.2 80 0,012 5 >40R22M 0.22 20 25.2 80 0,015 5 >40R33M 0.33 20 25.2 80 0,045 4 >40R47M 0.47 20 25.2 70 0,052 4 >40R68M 0.68 20 25.2 70 0,057 4 >401R0M 1 20 25.2 70 0,062 3.5 >401R2M 1.2 20 7.96 70 0,065 3.3 >401R5M 1.5 20 7.96 65 0,069 3.2 >401R8M 1.8 20 7.96 65 0,075 3 >402R2M 2.2 20 7.96 65 0,082 2.9 >402R7M 2.7 20 7.96 50 0,089 2.7 >403R3M 3.3 20 7.96 50 0,096 2.6 >403R9M 3.9 20 7.96 50 0,104 2.5 >404R7M 4.7 10 7.96 50 0,115 2.4 >405R6M 5.6 10 7.96 50 0,126 2.3 >406R8K 6.8 10 7.96 50 0,133 2.1 >408R2K 8.2 10 7.96 50 0,142 2 >40100K 10 10 7.96 50 0,161 1.9 33.0120K 12 10 2.52 50 0,182 1.8 30.7150K 15 10 2.52 50 0,315 0.96 26.4180K 18 10 2.52 50 0,354 0.88 23.4220K 22 10 2.52 50 0,490 0.80 19.9270K 27 10 2.52 50 0,565 0.76 18,9330K 33 10 2.52 50 0,615 0.75 17,0390K 39 10 2.52 50 1,177 0.62 12,9470K 47 10 2.52 50 1,340 0.60 12,5560K 56 10 2.52 50 1,470 0.58 12,1680K 68 10 2.52 50 1,630 0.56 11,1820K 82 10 2.52 50 2,400 0.46 9,2101K 100 10 2.52 50 2,800 0.45 8,2121K 120 10 0.796 50 3,090 0.44 7,9151K 150 10 0.796 50 3,520 0.42 7,8181K 180 10 0.796 50 5,940 0.32 5,4221K 220 10 0.796 50 6,160 0.29 5,0271K 270 10 0.796 50 7,000 0.28 4,6331K 330 10 0.796 50 7,880 0.26 4,4391K 390 10 0.796 50 8,730 0.24 4,1471K 470 10 0.796 50 12,88 0.19 3,3561K 560 10 0.796 50 13,80 0.18 3,3681K 680 10 0.796 50 14,65 0.18 2,9821K 820 10 0.796 60 16,15 0.16 2,7102K 1000 10 0.796 60 20,00 0.16 2,4122K 1200 10 0.252 60 21,25 0.14 2,2152K 1500 10 0.252 60 25,00 0.12 2,1182K 1800 10 0.252 60 37,50 0.11 2,0222K 2200 10 0.252 60 45,00 0.10 1,8272K 2700 10 0.252 60 48,80 0.096 1,5332K 3300 10 0.252 60 56,30 0.068 1,5392K 3900 10 0.252 50 103 0.068 1,1472K 4700 10 0.252 45 106 0.068 1,1562K 5600 10 0.252 45 120 0.065 1,0682K 6800 10 0.252 45 134 0.060 1,0822K 8200 10 0.252 45 143 0.060 0,9

Page 148: Brochure

231

TH

T I

nd

uct

ors

P/PP SERIESCoils and Chokes for general use

High inductance chokesThese chokes are wound in an open magnetic circuit ferrite drum core with pins. They have a very compact size and they are available in a wide range of inductanceand current rating, wich provides a high degree of humidity resistance. There are 2 available types of !nish:- P in open construction.- PP tube isolated.

Applications As chockes in resonant circuits, !lter circuits, etc.

Features - Values range: from 33 µH to 150 mH.- Working voltage: 250 Vac.- Working Temperature: from -20°C to + 80°C.- High “Q”.  Coding82 µH ± 10% P6D-820KP6D = Type820K = InductanceK = Tolerance

Code L max R D max S=0,05

P6D/PP6D 11,0 2,5 ±0,5 7,0 0,65

P8D/PP8D 13,0 5,0 ±1,0 9,0 0,65

P10D/PP10D 13,0 5,0 ±1,0 12,0 0,80

Page 149: Brochure

232

TH

T I

nd

uct

ors

P/PP SERIESCoils and Chokes for general use

P6D/PP6D

CodeL

µHQ

MIN.Test frequency

(MHz)R DC MAX.

(Ω)

Rated DCCurrent

(mA) MAX.

P6D/PP6D-3R3K 3,3 20 7,96 0,016 3500

P6D/PP6D-4R7K 4,7 20 7,96 0,020 3000

P6D/PP6D-6R8K 6,8 20 7,96 0,022 2500

P6D/PP6D-100K 10 30 2,52 0,039 2000

P6D/PP6D-150K 15 30 2,52 0,045 1700

P6D/PP6D-220K 22 30 2,52 0,062 1400

P6D/PP6D-330K 33 30 2,52 0,10 1100

P6D/PP6D-470K 47 30 2,52 0,15 950

P6D/PP6D-680K 68 30 2,52 0,22 800

P6D/PP6D-101K 100 20 796 0,35 650

P6D/PP6D-151K 150 20 796 0,43 540

P6D/PP6D-221K 220 20 796 0,90 440

P6D/PP6D-331K 330 20 796 1,50 360

P6D/PP6D-471K 470 20 796 1,80 300

P6D/PP6D-681K 680 20 796 2,50 250

P6D/PP6D-102K 1000 100 252 3,20 200

P6D/PP6D-122K 1200 70 252 3,5 180

P6D/PP6D-152K 1500 70 252 4,5 170

P6D/PP6D-182K 1800 70 252 5,0 155

P6D/PP6D-222K 2200 70 252 6,0 140

P6D/PP6D-272K 2700 70 252 7,2 125

P6D/PP6D-332K 3300 70 252 10,5 115

P6D/PP6D-392K 3900 70 252 11,7 105

P6D/PP6D-472K 4700 70 252 13,6 95

P6D/PP6D-562K 5600 70 252 16,6 85

P6D/PP6D-682K 6800 70 252 19,6 80

P6D/PP6D-822K 8200 70 252 25,2 70

P6D/PP6D-103K 10000 70 79,6 29,5 65

P6D/PP6D-123K 12000 70 79,6 33,8 60

P6D/PP6D-153K 15000 70 79,6 45,4 55

P6D/PP6D-183K 18000 70 79,6 50,4 50

P6D/PP6D-223K 22000 70 79,6 60,0 45

P6D/PP6D-303K 30000 70 79,6 91,5 40

P6D/PP6D-333K 33000 70 79,6 98,5 35

P6D/PP6D-393K 39000 70 79,6 140 32

P6D/PP6D-473K 47000 70 79,6 160 30

P6D/PP6D-503K 50000 70 79,6 170 29

P6D/PP6D-563K 56000 70 79,6 181 28

P6D/PP6D-683K 68000 50 79,6 282 25

P6D/PP6D-823K 82000 50 79,6 312 23

P6D/PP6D-104K 100000 30 25,2 380 20

P6D/PP6D-124K 120000 30 25,2 430 18

P6D/PP6D-154K 150000 30 25,2 520 16 K= ±10%

Page 150: Brochure

233

TH

T I

nd

uct

ors

P/PP SERIESCoils and Chokes for general use

P8D/PP8D

CodeL

µHQ

MIN.Test frequency

(MHz)SRF

(MHz) TypR DC MAX.

(Ω)

Rated DCCurrent

(mA) MAX.

P8D/PP8D-3R3K 3,3 30 7,96 65 0,012 5000

P8D/PP8D-3R9K 3,9 30 7,96 55 0,014 4500

P8D/PP8D-4R7K 4,7 30 7,96 45 0,016 4300

P8D/PP8D-5R6K 5,6 30 7,96 38 0,020 3900

P8D/PP8D-6R8K 6,8 30 7,96 27 0,022 3700

P8D/PP8D-8R2K 8,2 30 7,96 21 0,024 3500

P8D/PP8D-100K 10 50 2,52 17 0,025 3200

P8D/PP8D-120K 12 50 2,52 15 0,027 3000

P8D/PP8D-150K 15 50 2,52 13 0,033 28000

P8D/PP8D-180K 18 50 2,52 12 0,039 2600

P8D/PP8D-220K 22 50 2,52 11 0,047 2400

P8D/PP8D-270K 27 50 2,52 10 0,052 2100

P8D/PP8D-330K 33 50 2,52 8,5 0,075 1900

P8D/PP8D-390K 39 40 2,52 7,7 0,082 1700

P8D/PP8D-470K 47 40 2,52 6,7 0,10 1500

P8D/PP8D-560K 56 40 2,52 6,4 0,15 1300

P8D/PP8D-680K 68 30 2,52 5,8 0,18 1200

P8D/PP8D-820K 82 30 2,52 5,2 0,20 1100

P8D/PP8D-101K 100 30 796 4,4 0,20 900

P8D/PP8D-121K 120 30 796 4,2 0,22 800

P8D/PP8D-151K 150 30 796 3,7 0,24 720

P8D/PP8D-181K 180 30 796 3,5 0,28 650

P8D/PP8D-221K 220 20 796 3,3 0,35 600

P8D/PP8D-271K 270 20 796 2,9 0,40 550

P8D/PP8D-331K 330 20 796 2,6 0,47 500

P8D/PP8D-391K 390 20 796 2,4 0,68 460

P8D/PP8D-471K 470 20 796 2,2 0,80 420

P8D/PP8D-561K 560 20 796 2,0 1,0 380

P8D/PP8D-681K 680 20 796 1,8 1,2 350

P8D/PP8D-821K 820 20 796 1,7 1,5 310

P8D/PP8D-102K 1000 40 252 1,5 1,8 280

P8D/PP8D-122K 1200 40 252 1,4 2,0 250

P8D/PP8D-152K 1500 40 252 1,3 2,4 230

P8D/PP8D-182K 1800 40 252 1,1 2,8 210

P8D/PP8D-222K 2200 40 252 1 3,3 190

P8D/PP8D-272K 2700 40 252 0,88 5,0 170

P8D/PP8D-332K 3300 40 252 0,78 5,6 150

P8D/PP8D-392K 3900 40 252 0,72 6,2 140

P8D/PP8D-472K 4700 40 252 0,65 7,0 130

P8D/PP8D-562K 5600 40 252 0,58 9,1 120

P8D/PP8D-682K 6800 40 252 0,55 10 110

P8D/PP8D-822K 8200 20 252 0,5 15 100

P8D/PP8D-103K 10000 20 79,6 0,42 24 90

P8D/PP8D-473K 47000 60 79,6 0,2 80 40P8D/PP8D-104K 100000 20 79,6 0,14 180 28

Page 151: Brochure

234

TH

T I

nd

uct

ors

P/PP SERIESCoils and Chokes for general use

P10D/PP10D

CodeL

µHQ

MIN.Test frequency

(MHz)SRF

(MHz) TypR DC MAX.

(Ω)

Rated DC Current(A) MAX.

Isat 1ms

P10D/PP10D-3R3M 3,3 10 7,96 36 0,010 8,8 5,9

P10D/PP10D-4R7M 4,7 10 7,96 28 0,015 7,2 4,8

P10D/PP10D-6R8M 6,8 10 7,96 18 0,016 6,1 4,6

P10D/PP10D-100M 10 20 2,52 16 0,025 5,0 3,7

P10D/PP10D-150K 15 20 2,52 12 0,029 4,2 3,4

P10D/PP10D-220K 22 20 2,52 9,5 0,040 3,4 2,9

P10D/PP10D-330K 33 30 2,52 7,0 0,062 2,8 2,3

P10D/PP10D-470K 47 30 2,52 5,8 0,075 2,3 2,1

P10D/PP10D-680K 68 20 2,52 4,7 0,13 1,9 1,6

P10D/PP10D-101K 100 20 796 3,8 0,16 1,6 1,4

P10D/PP10D-151K 150 20 796 3,1 0,26 1,3 1,1

P10D/PP10D-221K 220 20 796 2,5 0,33 1,1 1,0

P10D/PP10D-331K 330 20 796 2,0 0,52 0,88 0,82

P10D/PP10D-471K 470 10 796 1,6 0,66 0,75 0,72

P10D/PP10D-681K 680 10 796 1,3 1,1 0,61 0,56

P10D/PP10D-102K 1000 20 252 1,1 1,4 0,51 0,50

P10D/PP10D-152K 1500 30 252 0,82 2,4 0,43 0,38

P10D/PP10D-222K 2200 20 252 0,76 3,2 0,35 0,33

P10D/PP10D-332K 3300 30 252 0,64 4,9 0,28 0,26

P10D/PP10D-472K 4700 30 252 0,54 7,6 0,24 0,21

P10D/PP10D-682K 6800 30 252 0,45 9,8 0,20 0,18

P10D/PP10D-103K 10000 30 79,6 0,38 18 0,17 0,14

Rated DC Current: It is either the inductance is 10% lower than its initial value in DC saturation or temperature raise becomes ∆T=20°C (Ta=20°C), whichever is lower

Page 152: Brochure

235

SMD

RF C

hip

ind

uct

ors

CS0603Ceramic Chip Inductor 0603 High Q (1.6nH-390nH)

FeaturesLeadless small size inductor wound on high alumina ceramic bodies. High Q factor and self-resonance frequencies, allow excellent operation in GSM frequencies, DECT, cordless communications, wireless LANS, etc. Operating temperature -40 ºC to +125 ºC . Excellent solderability and resistance to soldering heat. High reliability and easy surface mount assembly. Wide range of inductance values are available for <exible needs.

Materials0603 type in High alumina ceramic body Al

2O

3 96% .

Metallization: Mo/Mn + Ni (min 2µm) + Au <ash.

Product List

1. Closer tolerances upon request.2. Replace the + by the code letter for the required inductance tolerance (B=±0.2nH, S=±0.3nH, G=2%, J=5%, K=10%).

Ordering code 2 LR (nH) Tolerance1

Q@900MHz

Min Typical

SRF Min(MHz)

RDC max(Ω)

IDC max(mA)

CS0603 - 1R6+ 1,6 @ 250 MHz B, S 24 40 1250 0,03 700CS0603 - 1R8+ 1,8 @ 250 MHz B, S 16 35 1250 0,045 700CS0603 - 2R0+ 2 @ 250 MHz B, S 16 31 6900 0,08 700CS0603 - 3R9+ 3,9 @ 250 MHz B, S 22 51 6900 0,08 700CS0603 - 4R3+ 4,3 @ 250 MHz B, S 22 45 5900 0,08 700CS0603 - 4R7+ 4,7 @ 250 MHz B, S 20 47 5800 0,13 700CS0603 - 5R1+ 5,1 @ 250 MHz K, J 20 47 5700 0,14 700CS0603 - 5R6+ 5,6 @ 250 MHz K, J 16 40 5500 0,15 700CS0603 - 6R8+ 6,8 @ 250 MHz K, J, B 30 63 5800 0,11 700CS0603 - 7R5+ 7,5 @ 250 MHz K, J, B 28 64 4800 0,106 700CS0603 - 8R2+ 8,2 @ 250 MHz K, J, B 30 72 4600 0,1 700CS0603 - 8R7+ 8,7 @ 250 MHz K, J 28 66 4600 0,109 700CS0603 - 9R1+ 9,1 @ 250 MHz K, J 28 60 4000 0,135 700CS0603 - 9R5+ 9,5 @ 250 MHz K, J 28 62 4500 0,135 700CS0603 - 100+ 10 @ 250 MHz K, J, G 30 66 3800 0,13 700CS0603 - 110+ 11 @ 250 MHz K, J 33 68 4000 0,09 700CS0603 - 120+ 12 @ 250 MHz K, J, G 35 72 4000 0,13 700CS0603 - 130+ 13 @ 250 MHz K, J 38 75 4000 0,106 700CS0603 - 150+ 15 @ 250 MHz K, J, G 35 68 4000 0,17 700CS0603 - 160+ 16 @ 250 MHz K, J 34 66 3300 0,17 700CS0603 - 180+ 18 @ 250 MHz K, J, G 38 77 3100 0,17 700CS0603 - 200+ 20 @ 250 MHz K, J 38 72 3000 0,22 700

Page 153: Brochure

236

SMD

RF C

hip

ind

uct

ors

CS0603Ceramic Chip Inductor 0603 High Q (1.6nH-390nH)

Product List

1. Closer tolerances upon request.2. Replace the + by the code letter for the required inductance tolerance (B=±0.2nH, S=±0.3nH, G=2%, J=5%, K=10%).

Ordering code 2 LR (nH) Tolerance1

Q@900MHz

Min Typical

SRF Min(MHz)

RDC max(Ω)

IDC max(mA)

CS0603 - 220+ 22 @ 250 MHz K, J, G 38 70 3000 0,22 700CS0603 - 240+ 24 @ 250 MHz K, J 37 75 2650 0,135 700CS0603 - 270+ 27 @ 250 MHz K, J, G 40 75 2800 0,22 600CS0603 - 300+ 30 @ 250 MHz K, J 45 57 2300 0,22 600CS0603 - 330+ 33 @ 250 MHz K, J, G 43 78 2300 0,22 600CS0603 - 360+ 36 @ 250 MHz K, J 43 70 2200 0,25 600CS0603 - 390+ 39 @ 250 MHz K, J, G 43 66 2200 0,25 600CS0603 - 430+ 43 @ 250 MHz K, J 38 62 2000 0,28 600CS0603 - 470+ 47 @ 250 MHz K, J, G 40 65 2000 0,28 600CS0603 - 510+ 51 @ 250 MHz K, J 40 66 1900 0,31 600CS0603 - 560+ 56 @ 250 MHz K, J, G 40 66 1900 0,31 600CS0603 - 620+ 62 @ 250 MHz K, J 40 60 1700 0,34 600CS0603 - 680+ 68 @ 250 MHz K, J, G 40 57 1700 0,34 600CS0603 - 720+ 72 @ 150 MHz K, J, G 35 60 1700 0,49 400CS0603 - 820+ 82 @ 150 MHz K, J, G 35 58 1700 0,54 400CS0603 - 900+ 90 @ 150 MHz K, J 35 52 1700 0,54 400CS0603 - 101+ 100 @ 150 MHz K, J, G 35 51 1400 0,63 400CS0603 - 111+ 110 @ 150 MHz K, J, G 35 22 1400 0,63 400CS0603 - 121+ 120 @ 150 MHz K, J, G 35 45 1300 0,65 300CS0603 - 131+ 130 @150 MHz K, J 35 40 1000 0,92 280CS0603 - 151+ 150 @ 150 MHz K, J, G 35 33 1000 0,92 280CS0603 - 181+ 180 @ 100 MHz K, J, G 30 26 1000 1,25 240CS0603 - 201+ 200 @ 100 MHz K, J 30 23 1000 1,25 240CS0603 - 211+ 210 @ 100 MHz K, J 27 23 1000 1,7 200CS0603 - 221+ 220 @ 100 MHz K, J, G 30 23 1000 1,7 200CS0603 - 24+1 240 @ 100 MHz K, J 30 15 1000 1,7 200CS0603 - 271+ 270 @ 100 MHz K, J, G 30 10 1000 1,8 170CS0603 - 331+ 330 @ 100 MHz K, J 25 - 450 2 150CS0603 - 391+ 390 @ 100 MHz K, J 20 - 350 2 170

Page 154: Brochure

237

SMD

RF C

hip

ind

uct

ors

CS0805FCeramic Chip Inductor 0805 High Q (2.2nH-1000nH)

FeaturesCS0805 ceramic wound chip inductor is manufactured under 100% test of L and Q actual operating frequencies. Fully automatic machine made, this series issues 0-defects. High Q factor and self-resonance frequencies, allow excellent operation in GSM frequencies, DECT, cordless communications, wireless LANS, etc.High production capacity ensures immediate delivery time.Operating temperature: -40 ºC +125 ºC. Storage temperature: -40 ºC +125 ºC.

Materials0805 type in High alumina ceramic body Al

2O

3 96% .

Metallization: W + Ni (min 2µm) + Au <ash. Dimensions

Page 155: Brochure

238

SMD

RF C

hip

ind

uct

ors

Product List

1 Replace the + by the code letter for the required inductance tolerance (F=1%,G=2%, J=5%, K=10%,M=20%).

Ordering code 1 LR (nH) Tolerance QminSRF Min(MHz)

DCR max(Ω)

Irms(mA)

CS0805F-2R2+ 2.2@1000MHz M,K,J 35 @ 1000 MHz 3000 0.03 600CS0805F-2R7+ 2.7@250MHz M,K,J 35 @ 1000 MHz 6000 0.03 600CS0805F-2R8+ 2.8@250MHz M,K,J 80 @ 1500 MHz 7900 0.06 800CS0805F-2R9+ 2.9@250MHz M,K,J 50 @ 1500 MHz 4700 0.05 600CS0805F-3R0+ 3.0@250MHz M,K,J 65 @ 1500 MHz 7900 0.06 800CS0805F-3R3+ 3.3@250MHz M,K,J 50 @ 1500 MHz 7900 0.08 600CS0805F-5R6+ 5.6@250MHz M,K,J 65 @ 1000 MHz 5500 0.08 600CS0805F-6R8+ 6.8@250MHz M,K,J 50 @ 1000 MHz 5500 0.11 600CS0805F-7R5+ 7.5@250MHz M,K,J 50 @ 1000 MHz 4500 0.14 600CS0805F-8R2+ 8.2@250MHz M,K,J,G 50 @ 1000 MHz 4700 0.12 600CS0805F-100+ 10@250MHz M,K,J,G 60 @ 500 MHz 4200 0.10 600CS0805F-110+ 11@700MHz M,K,J,G 45 @ 500 MHz 3000 0.15 600CS0805F-120+ 12@250MHz M,K,J,G 50 @ 500 MHz 4000 0.15 600CS0805F-150+ 15@250MHz M,K,J,G 50 @ 500 MHz 3400 0.17 600CS0805F-180+ 18@250MHz M,K,J,G 50 @ 500 MHz 3300 0.20 600CS0805F-220+ 22@250MHz M,K,J,G 55 @ 500 MHz 2660 0.22 500CS0805F-240+ 24@250MHz M,K,J,G 50 @ 250 MHz 2000 0.22 500CS0805F-270+ 27@250MHz M,K,J,G 55 @ 500 MHz 2500 0.25 500CS0805F-330+ 33@250MHz M,K,J,G 60 @ 500 MHz 2050 0.27 500CS0805F-360+ 36@250MHz M,K,J,G 55 @ 500 MHz 1700 0.27 500CS0805F-370+ 37@350MHz M,K,J,G 40 @ 500 MHz 1800 0.27 500CS0805F-380+ 38@350MHz M,K,J,G 40 @ 500 MHz 1800 0.27 500CS0805F-390+ 39@250MHz M,K,J,G 60 @ 500 MHz 2000 0.29 500CS0805F-430+ 43@200MHz M,K,J,G 60 @ 500 MHz 1650 0.34 500CS0805F-470+ 47@200MHz M,K,J,G 60 @ 500 MHz 1650 0.31 500CS0805F-560+ 56@200MHz K,J,G,F 60 @ 500 MHz 1550 0.34 500CS0805F-680+ 68@200MHz K,J,G,F 60 @ 500 MHz 1450 0.38 500CS0805F-820+ 82@150MHz K,J,G,F 65 @ 500 MHz 1300 0.42 400CS0805F-910+ 91@150MHz K,J,G,F 65 @ 500 MHz 1200 0.48 400CS0805F-101+ 100@150MHz K,J,G,F 65 @ 500 MHz 1200 0.46 400CS0805F-111+ 110@150MHz K,J,G,F 50 @ 500 MHz 1000 0.48 400CS0805F-121+ 120@150MHz K,J,G,F 50 @ 250 MHz 1100 0.51 400CS0805F-151+ 150@100MHz K,J,G,F 50 @ 250 MHz 920 0.56 400CS0805F-181+ 180@100MHz K,J,G,F 50 @ 250 MHz 870 0.64 400CS0805F-221+ 220@100MHz K,J,G 50 @ 250 MHz 850 0.70 400CS0805F-241+ 240@100MHz K,J,G 44 @ 250 MHz 690 1.00 350CS0805F-271+ 270@100MHz K,J,G 48 @ 250 MHz 650 1.00 350CS0805F-301+ 300@150MHz K,J,G 25 @ 250 MHz 450 1.40 300CS0805F-331+ 330@100MHz K,J,G 48 @ 250 MHz 600 1.40 310CS0805F-361+ 360@100MHz K,J,G 35 @ 250 MHz 460 0.90 300CS0805F-391+ 390@100MHz K,J,G 48 @ 250 MHz 560 1.50 290CS0805F-431+ 430@100MHz K,J 25 @ 100 MHz 400 1.70 190CS0805F-471+ 470@50MHz K,J 33 @ 100 MHz 375 1.76 250CS0805F-561+ 560@25MHz K,J 23 @ 50 MHz 340 1.90 230CS0805F-681+ 680@25MHz K,J 23 @ 50 MHz 188 2.20 190CS0805F-821+ 820@25MHz K,J 23 @ 50MHz 215 2.35 180CS0805F-911+ 910@25MHz K,J 24 @ 50MHz 250 2.30 170CS0805F-102+ 1000@25MHz K,J 23 @ 50MHz 260 2.70 170

CS0805FCeramic Chip Inductor 0805 High Q (2.2nH-1000nH)

Page 156: Brochure

239

SMD

RF C

hip

ind

uct

ors

CS1008FCeramic Chip Inductor 1008 High Q (10nH-4700nH)

FeaturesLeadless small size inductor wound on high alumina ceramic bodies. High Q factor and self-resonance frequencies, allow excellent operation in GSM frequencies, DECT, cordless communications, wireless LANS, etc. Operating temperature: -40 ºC +125 ºC. Storage temperature: -40 ºC +125 ºC.

Materials1008 CS type in High alumina ceramic body Al

2O

3 96% (Rubalit 708).

Metallization: Mo/Mn + Ni (min 2µm) + Au <ash

Product List

Ordering code 1 LR (nH) Tolerance QminSRF Min(MHz)

RDC (Ω)max

Irms(mA)

CS1008F-100+ 10@50MHz M,K 50@500MHz 4100 0.08 1000CS1008F-120+ 12@50MHz M,K 50@500MHz 3300 0.09 1000CS1008F-150+ 15@50MHz M,K 50@500MHz 2500 0.10 1000CS1008F-180+ 18@50MHz M,K,J,G 50@500MHz 2500 0.11 1000CS1008F-220+ 22@50MHz M,K,J,G 55@350MHz 2400 0.12 1000CS1008F-270+ 27@50MHz M,K,J,G 55@350MHz 1600 0.13 1000CS1008F-330+ 33@50MHz M,K,J,G 60@350MHz 1600 0.14 1000CS1008F-390+ 39@50MHz M,K,J,G 60@350MHz 1500 0.15 1000CS1008F-470+ 47@50MHz M,K,J,G 65@350MHz 1500 0.16 1000CS1008F-560+ 56@50MHz K,J,G 65@350MHz 1300 0.18 1000CS1008F-680+ 68@50MHz K,J,G 65@350MHz 1300 0.20 1000CS1008F-820+ 82@50MHz K,J,G 60@350MHz 1000 0.22 1000CS1008F-101+ 100@25MHz K,J,G 60@350MHz 1000 0.56 650CS1008F-121+ 120@25MHz K,J,G 60@350MHz 950 0.63 650CS1008F-151+ 150@25MHz K,J,G 45@100MHz 850 0.70 580CS1008F-181+ 180@25MHz K,J,G 45@100MHz 750 0.77 620CS1008F-221+ 220@25MHz K,J,G 45@100MHz 700 0.84 500CS1008F-271+ 270@25MHz K,J,G 45@100MHz 600 0.91 500CS1008F-331+ 330@25MHz K,J,G 45@100MHz 570 1.05 450CS1008F-391+ 390@25MHz K,J,G 45@100MHz 500 1.12 470CS1008F-471+ 470@25MHz K,J,G 45@100MHz 450 1.19 470CS1008F-561+ 560@25MHz K,J,G 45@100MHz 415 1.33 400CS1008F-621+ 620@25MHz K,J,G 45@100MHz 375 1.40 300CS1008F-681+ 680@25MHz K,J,G 45@100MHz 375 1.47 400CS1008F-751+ 750@25MHz K,J,G 45@100MHz 360 1.54 360CS1008F-821+ 820@25MHz K,J,G 45@100MHz 350 1.61 400CS1008F-911+ 910@25MHz K,J,G 35@50MHz 320 1.68 380CS1008F-102+ 1000@25MHz K,J,G 35@50MHz 290 1.75 370CS1008F-122+ [email protected] K,J,G 35@50MHz 250 2.00 310CS1008F-152+ [email protected] K,J,G 28@50MHz 200 2.30 330CS1008F-182+ [email protected] K,J,G 28@50MHz 160 2.60 300CS1008F-222+ [email protected] K,J,G 28@50MHz 160 2.80 280CS1008F-272+ [email protected] K,J,G 22@25MHz 140 3.20 290CS1008F-332+ [email protected] K,J,G 22@25MHz 110 3.40 290CS1008F-392+ [email protected] K,J,G 20@25MHz 100 3.60 260CS1008F-472+ [email protected] K,J,G 20@25MHz 90 4.00 260

1 Replace the + by the code letter for the required inductance tolerance (F=1%,G=2%, J=5%, K=10%,M=20%).

Page 157: Brochure

240

SMD

RF C

hip

ind

uct

ors

FS0805Ferrite Chip Inductor 0805 High L (0.470µH-10.00µH)

FeaturesLeadless inductor wound on ferrite body . High SRF , allow excellent operation in RFID 13.56 MHz, !lters in GSM frequencies, DECT, cordless communications, wireless LANS, etc.FS0805 ferrite wound chip inductor is manufactured under 100% test of L and Q actual operating frequencies. Fully automatic machine made. High production capacity ensures immediate delivery time.

Materials0805 FS type in ferrite bodyMetallization: Ag+Ni+Sn100

Dimensions

Product List

1. Closer tolerances upon request.2. Replace the + by the code letter for the required inductance tolerance (G=2% (if available), J=5%, K=10%, M=20%).

Ordering code 2 LR (µH) Tolerance QminSRF Min(MHz)

RDC (Ω)max

IDC max(mA)

FS0805-471+ [email protected] MHz G, J, K 45 @ 100 MHz 375 0.95 500

FS0805-561+ [email protected] MHz G, J, K 45 @ 100 MHz 340 1.10 450

FS0805-681+ [email protected] MHz G, J, K 35 @ 100 MHz 188 1.20 400

FS0805-821+ [email protected] MHz G, J, K 35 @ 100 MHz 215 1.50 300

FS0805-102+ 1.00 @ 25.2 MHz G, J, K 35 @ 50 MHz 200 2.13 180

FS0805-122+ 1.20 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 200 2.38 150

FS0805-152+ 1.50 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 200 2.90 130

FS0805-182+ 1.80 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 120 3.00 120

FS0805-222+ 2.20 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 110 3.10 110

FS0805-272+ 2.70 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 100 3.50 100

FS0805-332+ 3.30 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 70 2.30 210

FS0805-392+ 3.90 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 60 2.50 200

FS0805-472+ 4.70 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 50 2.80 180

FS0805-562+ 5.60 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 45 3.00 160

FS0805-682+ 6.80 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 45 3.20 130

FS0805-822+ 8.20 @ 7.96 MHz G, J, K 15 @ 7.96 MHz 40 3.50 120

FS0805-103+ 10.0 @ 2.52 MHz G, J, K 15 @ 2.52 MHz 40 5.00 80

Page 158: Brochure

241

SMD

RF C

hip

ind

uct

ors

FS1008Ferrite Chip Inductor 1008 High L (1.2µH-10.00µH)

FeaturesLeadless inductor wound on ferrite body. High SRF, allow excellent operation in RFID 13.56 MHz, !lters in GSM frequencies, DECT, cordless communications, wireless LANs, etc.Operating temperature: -40 ºC +85 ºC. Storage temperature: -40 ºC +125 ºC.Low DCR and higher current ratings.Resistance to solder heat 260 ºC 10 s.

Materials1008 FS type in ferrite body. Metallization: Ag+Ni+Sn100.

Table of dimensions

Dimensions

Ordering code 2 LR (µH) Tolerance1 Quality Factor Min.

Test Freq. (MHz)L Q

SRF Min.(MHz)

RDC (Ω) max.

IDC max.(mA)

FS1008-122+ 1.2 @ 7.96 MHz M,K,J 48 7.9 50 210 0.68 650

FS1008-152+ 1.5 @ 7.96 MHz M,K,J 41 7.9 50 190 0.76 630

FS1008-182+ 1.8 @ 7.96 MHz M,K,J 39 7.9 50 170 0.84 600

FS1008-222+ 2.2 @ 7.96 MHz M,K,J 34 7.9 50 150 1.3 315

FS1008-272+ 2.7@ 7.96 MHz M,K,J 34 7.9 50 125 1.4 300

FS1008-332+ 3.3@ 7.96 MHz M,K,J 32 7.9 50 120 1.46 450

FS1008-392+ 3.9 @ 7.96 MHz M,K,J 32 7.9 7.9 105 1.56 420

FS1008-472+ 4.7 @ 7.96 MHz M,K,J 31 7.9 7.9 90 1.68 400

FS1008-562+ 5.6 @ 7.96 MHz M,K,J 15 7.9 7.9 50 1.90 190

FS1008-682+ 6.8 @ 7.96 MHz M,K,J 15 7.9 7.9 30 1.70 175

FS1008-822+ 8.2 @ 7.96 MHz M,K,J 15 7.9 7.9 30 2.20 160

FS1008-103+ 10 @ 2.52 MHz M,K,J 12 7.9 7.9 30 2.50 155

1. Closer tolerances upon request.2. Replace the + by the code letter for the required inductance tolerance (G=2%, J=5%, K=10%, M=20%).

Page 159: Brochure

242

SMD

RF C

hip

ind

uct

ors

MO1210Plastic Moulded Inductor High L (0.12µH-150µH)

Features- Moulded wound chip inductors.- Operating temperature (-40ºC to +125ºC).- Resistance to solder heat 260 ºC, 10 s.- High current capacity.- Excellent solderability and resistance to soldering heat.- Suitable for <ow and re<ow soldering.

Dimensions

Product List

Applications- Computers.- VCR and TV.- Notebooks.- Digital cameras

Materials:A: Ferrite DR core.B: Enamelled copper wire class HC: Terminal: Cu/SnD: Encapsulate: epoxy NOVOLAC moulding compound.

1. Closer tolerances upon request. 2. Replace the + by the code letter for the required inductance tolerance (G=2%, J=5%, K=10%, M=20%).

Ordering code 2 LR (µH)

Tol.1 Marking QMin3

fL;fQ (MHz)

IDC

max. (mA)

RDC max.(Ω)

SRF Min.(MHz)

MO1210-121M 0.12 M R12 30 25.20 450 0.22 500MO1210-151M 0.15 M R15 30 25.20 450 0.25 450MO1210-181M 0.18 M R18 30 25.20 450 0.28 400MO1210-221M 0.22 M R22 30 25.20 450 0.32 350MO1210-271M 0.27 M R27 30 25.20 450 0.36 320MO1210-331M 0.33 M R33 30 25.20 450 0.40 300MO1210-391M 0.39 M R39 30 25.20 450 0.45 250MO1210-471M 0.47 M R47 30 25.20 450 0.50 220MO1210-561M 0.56 M R56 30 25.20 450 0.55 180MO1210-681M 0.68 M R68 30 25.20 450 0.60 160MO1210-821M 0.82 M R82 30 25.20 450 0.65 140MO1210-102K 1.00 K 1R0 30 7.960 400 0.70 120MO1210-122K 1.20 K 1R2 30 7.960 390 0.75 100MO1210-152K 1.50 K 1R5 30 7.960 370 0.85 85MO1210-182K 1.80 K 1R8 30 7.960 350 0.90 80MO1210-222K 2.20 K 2R2 30 7.960 320 1.00 75MO1210-272K 2.70 K 2R7 30 7.960 290 1.10 70MO1210-332K 3.30 K 3R3 30 7.960 260 1.20 60MO1210-392K 3.90 K 3R9 30 7.960 250 1.30 55MO1210-472K 4.70 K 4R7 30 7.960 220 1.50 50MO1210-562K 5.60 K 5R6 30 7.960 200 1.60 47MO1210-682K 6.80 K 6R8 30 7.960 180 1.80 43MO1210-822K 8.20 K 8R2 30 7.960 170 2.00 40MO1210-103K 10.0 K 100 30 2.520 150 2.10 36MO1210-123K 12.0 K 120 30 2.520 140 2.50 33MO1210-153K 15.0 K 150 30 2.520 130 2.80 28MO1210-183K 18.0 K 180 30 2.520 120 3.30 25MO1210-223K 22.0 K 220 30 2.520 110 3.70 23MO1210-273K 27.0 K 270 30 2.520 80 5.00 18MO1210-333K 33.0 K 330 30 2.520 70 5.60 17MO1210-393K 39.0 K 390 30 2.520 65 6.40 16MO1210-473K 47.0 K 470 30 2.520 60 7.00 15MO1210-563K 56.0 K 560 30 2.520 55 8.00 13MO1210-683K 68.0 K 680 30 2.520 50 9.00 12MO1210-823K 82.0 K 820 30 2.520 45 10.0 11MO1210-104K 100 K 101 20 0.796 40 11.0 10MO1210-124K 120 K 121 20 0.796 70 11.0 10MO1210-154K 150 K 151 20 0.796 65 15.0 8

Page 160: Brochure

243

SMD

RF C

hip

ind

uct

ors

MO1812Plastic Moulded Inductor High L (1µH-330µH)

Features- Moulded wound chip inductors.- Operating temperature (-40ºC to +125ºC).- Resistance to solder heat 260 ºC 10 s.- High current capacity.- Excellent solderability and resistance to soldering heat.- Suitable for <ow and re<ow soldering.Dimensions

Product List

Applications- Computers.- VCR and TV.- Notebooks.- Digital cameras

Materials:A: Ferrite DR core.B: Enamelled copper wire class HC: Terminal: Cu/SnD: Encapsulate: epoxy NOVOLAC moulding compound.

1. Closer tolerances upon request. 2. Replace the + by the code letter for the required inductance tolerance (G=2%, J=5%, K=10%, M=20%).

Ordering code 2 LR (nH)

Tol.1 Marking QMin3

fL;fQ (MHz)

IDC

max. (mA)

RDC max.

(Ω)SRF Min.(MHz)

MO1812-101M 0.10 ±20% R10 35 25.20 800 0.18 300MO1812-121M 0.12 ±20% R12 35 25.20 770 0.20 280MO1812-151M 0.15 ±20% R15 35 25.20 730 0.22 250MO1812-181M 0.18 ±20% R18 35 25.20 700 0.24 220MO1812-221M 0.22 ±20% R22 40 25.20 665 0.25 200MO1812-271M 0.27 ±20% R27 40 25.20 635 0.26 180MO1812-331M 0.33 ±20% R33 40 25.20 605 0.28 165MO1812-391M 0.39 ±20% R39 40 25.20 575 0.30 150MO1812-471M 0.47 ±20% R47 40 25.20 545 0.32 145MO1812-561M 0.56 ±20% R56 40 25.20 520 0.36 140MO1812-681M 0.68 ±20% R68 40 25.20 500 0.40 135MO1812-821M 0.82 ±20% R82 40 25.20 475 0.45 130MO1812-102K 1.00 ±10% 1R0 50 7.960 450 0.50 100MO1812-122K 1.20 ±10% 1R2 50 7.960 430 0.55 80MO1812-152K 1.50 ±10% 1R5 50 7.960 410 0.60 70MO1812-182K 1.80 ±10% 1R8 50 7.960 390 0.65 60MO1812-222K 2.20 ±10% 2R2 50 7.960 380 0.70 55MO1812-272K 2.70 ±10% 2R7 50 7.960 370 0.75 50MO1812-332K 3.30 ±10% 3R3 50 7.960 355 0.80 45MO1812-392K 3.90 ±10% 3R9 50 7.960 330 0.85 40MO1812-472K 4.70 ±10% 4R7 50 7.960 315 0.90 35MO1812-562K 5.60 ±10% 5R6 50 7.960 300 1.00 33MO1812-682K 6.80 ±10% 6R8 50 7.960 285 1.10 27MO1812-822K 8.20 ±10% 8R2 50 7.960 270 1.20 25MO1812-103K 10.0 ±10% 100 50 2.520 250 1.40 20MO1812-123K 12.0 ±10% 120 50 2.520 225 1.60 18MO1812-153K 15.0 ±10% 150 50 2.520 200 2.00 17MO1812-183K 18.0 ±10% 180 50 2.520 190 2.50 15MO1812-223K 22.0 ±10% 220 50 2.520 180 2.80 13MO1812-273K 27.0 ±10% 270 50 2.520 170 3.20 12MO1812-333K 33.0 ±10% 330 50 2.520 160 3.60 11MO1812-393K 39.0 ±10% 390 50 2.520 150 4.00 10MO1812-473K 47.0 ±10% 470 50 2.520 140 4.50 10MO1812-563K 56.0 ±10% 560 50 2.520 135 5.00 9.0MO1812-683K 68.0 ±10% 680 50 2.520 130 5.50 9.0MO1812-823K 82.0 ±10% 820 50 2.520 120 6.00 8.0MO1812-104K 100 ±10% 101 40 0.796 110 7.00 8.0MO1812-124K 120 ±10% 121 40 0.796 110 8.00 6.0MO1812-154K 150 ±10% 151 40 0.796 105 9.00 5.0MO1812-184K 180 ±10% 181 40 0.796 102 9.50 5.0MO1812-224K 220 ±10% 221 40 0.796 100 10.00 4.0MO1812-274K 270 ±10% 271 40 0.796 92 12.00 4.0MO1812-334K 330 ±10% 331 40 0.796 85 14.00 3.5MO1812-394K 390 ±10% 391 40 0.796 80 18.00 3.0MO1812-474K 470 ±10% 471 40 0.796 62 26.00 3.0MO1812-564K 560 ±10% 561 30 0.796 50 30.00 3.0MO1812-684K 680 ±10% 681 30 0.796 50 30.00 3.0MO1812-824K 820 ±10% 821 30 0.796 30 35.00 2.5MO1812-105K 1000 ±10% 102 20 0.252 30 40.00 2.5

Page 161: Brochure

244

SMD

RF C

hip

ind

uct

ors

Chip InductorsGeneral Speci"cations - Soldering & Packing

SolderingReJow soldering, vapour-phase soldering.- Recommended Peak Temperature 250°C Max.- 250ºC up /within 10secs.- Max. Re<ow temperature: 260°C.- Gradient of temperature rise: av 1-4ºC/sec.- Preheat: 160-190ºC/within 90-120secs.- 220ºC up /within 30-60secs.- Composition of solder Sn-3Ag-0.5Cu.

The re<ow pro!le will depend on the oven and solder paste used. We recommend to test different re<ow curves and choose the one which !ts all component & process requirements.

Measuring equipments and conditions1.- Rated inductance LR Measured at frequency fL, with impedance analyser HP 4286 A or HP4287 and test !xture HP 16192 A. 2.- Q factor Qmin Measured at frequency fQ, with impedance analyser HP 4286 A or HP4287 and test !xture HP 16192 A.3.- Rated current IR Maximum permissible dc with an inductance decrease of L/L

o 10% and/or a temperature increase of 20 ºC

referred to 85 ºC ambient temperature.4.- Self-resonance frequency fres,min Measured with network analyser HP 8753D and 1 mm pad distance of CECC test !xture.5.- DC resistance Rmax Measured at 20 ºC ambient temperature, measuring current < I

R.

Product List

SeriesReel dimensions Tape dimensions

PARTS/REELA B C D E W P Po P1 D T

CS0402 180 50 13 14.4 8.4 8 4 4 2 - 0.25 10000

CS0603 180 50 13 14.4 8.4 8 4 4 2 - 0.25 3000

CS0805F 180 50 13 14.4 8.4 8 4 4 2 1.6 0.25 3000

FS0805 180 50 13 14.4 8.4 8 4 4 2 2 0.3 2000

CS1008F 180 50 13 14.4 8.4 8 4 4 2 2.4 0.25 2000

FS1008 180 50 13 14.4 8.4 8 4 4 2 2.4 0.25 2000

MO1210 178 21 13 12.5 10 8 4 4 2 - - 1000

MO1812 178 21 13 16.5 14 12 8 8 4 - - 500

Page 162: Brochure

245

SMD

Po

wer

Ind

uct

ors

SMD POWER INDUCTORS SHIELDED

PSH3018 PSH3027 PSH4028

Dimensions 3.8x3.8x1.65 mm 3.8x3.8x2.8 mm 4.8x4.8x2.8 mm

Inductance 1.5µH - 100µH 4.7µH - 220µH 1.2µH - 560µH

DC Current 1.75A - 0.25A 2A - 380mA 3.1A - 220mA

DC Resistance 35mΩ - 2.05Ω 30mΩ - 1.05Ω 20mΩ - 3Ω

PSH5018 PSH5028 PS0703

Dimensions 5.8x5.8x1.8 mm 5.8x5.8x2.8 mm 7.3x7.3x3.5 mm

Inductance 1.2µH - 220 µH 2.6µH - 680µH 10µH - 1000µH

DC Current 3A - 230mA 3A - 130mA 2.1A - 0.17A

DC Resistance 0.03Ω - 2.5Ω 0.03Ω - 4.3Ω 0.072Ω - 5.8Ω

PS0704 PS0804 PS0805

Dimensions 7.3x7.3x4.5 mm 8.0x10.5x3.7 mm 8.0x10.5x4.5 mm

Inductance 10µH - 1000µH 5µH - 470µH 2.2µH - 1000µH

DC Current 2.1A - 0.20A 1.7A -0.16A 2.5A - 0.15A

DC Resistance 0.052Ω - 4.1Ω 0.08Ω - 3.6Ω 0.04Ω - 5Ω

Complete family speci!cations available for download at www.grupopremo.com

Page 163: Brochure

246

SMD

Po

wer

Ind

uct

ors

SMD POWER INDUCTORS SHIELDED

PS1003 PS1004 PS1307

Dimensions 10.1x12.7x2.7 mm 9.9x4.5x2.9 mm 13.0x7.0x5.0 mm

Inductance 1.8µH - 470µH 10µH - 1500µH 10µH - 1000µH

DC Current 3A - 0.16A 3.5A - 0.26A 4.6A - 0.5A

DC Resistance 0.038Ω - 5.1Ω 0.035Ω - 4Ω 0.04Ω - 2.1Ω

PS6028 PS7032 PS7045

Dimensions 6.0x6.0x2.8 mm 7.0x7.0x3.2 mm 7.0x7.0x4.5 mm

Inductance 1µH - 1000µH 3.3µH - 1000µH 10µH - 1000µH

DC Current 3A - 0.09A 2.4A - 0.15A 2A - 0.25A

DC Resistance 0.022Ω - 8.2Ω 0.027Ω - 5.4Ω 0.042Ω - 2.4Ω

PS1204 PS1205-A PS1205-B

Dimensions 12.5x12.5x4 mm 12.5x12.5x5 mm 12.5x12.5x5 mm

Inductance 0.75µH - 2µH 0.9µH - 10.5µH 0.9µH - 10.5µH

DC Current 13A - 10A 18A - 6.5A 18A - 6.5A

DC Resistance 3mΩ - 6mΩ 2.5mΩ - 13.5mΩ 2.5mΩ -1 3.5mΩ

Complete family speci!cations available for download at www.grupopremo.com

Page 164: Brochure

247

SMD

Po

wer

Ind

uct

ors

SMD POWER INDUCTORS SHIELDED

PS1206 PS1206-B PSH6022

Dimensions 12.5x12.5x5.7 mm 12.5x12.5x5.7 mm 6.8x6.8x2.3 mm

Inductance 2.7µH - 4.8µH 0.7µH - 3µH 0.9µH - 1000µH

DC Current 13A - 9A 16.5A - 10.5A 4.8A - 0.16A

DC Resistance 6mΩ - 7mΩ Ω - 7mΩ 14mΩ - 5Ω

PS0908 PS1608 PS4530

Dimensions 9.5x10.5x7.5 mm 6.5x4.4x2.9 mm 6.5x4.4x3.05 mm

Inductance 1.5µH -15000µH 1µH - 10000µH 1000µH - 10000µH

DC Current 5.6A - 75mA 3A - 20mA 100mA - 10mA

DC Resistance 14mΩ - 40Ω 40mΩ - 32.8Ω 9Ω - 74Ω

PS0603 PS0604 PS3316

Dimensions 6.5x6.5x3.1 mm 6.5x6.5x4.6 mm 10.0x12.7x4.9 mm

Inductance 1.5µH - 1000µH 1.5µH - 1000µH 1µH - 3300µH

DC Current 2.2A - 0.1A 2.8A - 0.12A 4.5A - 0.1A

DC Resistance 0.032Ω - 14Ω 0.028Ω - 6.1Ω 0.017Ω - 10Ω

Complete family speci!cations available for download at www.grupopremo.com

Page 165: Brochure

248

SMD

Po

wer

Ind

uct

ors

SMD POWER INDUCTORS SHIELDED

PS5022 SHA SHB

Dimensions 14.0x18.2x6.8 mm 12.7x12.7x5 mm 12.7x12.7x6 mm

Inductance 10µH - 1000µH 2.5µH - 820µH 2.5µH - 1500µH

DC Current 4A - 0.45A 5A - 0.30A 6.2A - 0.2A

DC Resistance 0.04Ω - 2.45Ω 24mΩ - 3Ω 16mΩ - 3.5Ω

SHC PS1260 PSB0503

Dimensions 12.7x12.7x8 mm 12.5x12.5x6 mm 5.2x5.2x2.8 mm

Inductance 2.5µH - 1500µH 1.2µH - 100µH 1.2µH - 100µH

DC Current 7.8A - 0.36A 9.2A - 1.7A 3.5A - 0.47A

DC Resistance 11.4mΩ - 2.35Ω 8mΩ -180mΩ 16.8mΩ - 625mΩ

PSB5028 PSB6013 PSB6025

Dimensions 5.2x5.2x2.8 mm 6.2x6.5x1.4 mm 6.2x6.5x2.5 mm

Inductance 4.7µH - 220µH 1µH - 68µH 1.2µH - 220µH

DC Current 2.5A - 360mA 3.2A - 0.6A 4A - 0.42A

DC Resistance 24mΩ - 870mΩ 28mΩ - 720mΩ 14.5mΩ - 0.95Ω

Complete family speci!cations available for download at www.grupopremo.com

Page 166: Brochure

249

SMD

Po

wer

Ind

uct

ors

SMD POWER INDUCTORS SHIELDED

PSB8040 PSB8058 PSU3014

Dimensions 8.0x8.0x3.8 mm 8.0x8.0x5.8 mm 3.3x3.5x1.4 mm

Inductance 3.3µH - 150µH 3.9µH - 100µH 1.2µH - 22µH

DC Current 6A - 0.9A 6.5A - 1.7A 1.85A - 0.32A

DC Resistance 13.8mΩ - 445mΩ 12mΩ - 124mΩ 38mΩ- 0.7Ω

PSU3017 PSU4018 PSP1045

Dimensions 3.3x3.5x1.8 mm 4.3x4.5x1.8 mm 11x9.35x4.5 mm

Inductance 2.2µH - 47µH 1µH - 100µH 0.36µH - 3.2µH

DC Current 1.7A - 0.36A 2.7A - 320mA 23A - 8A

DC Resistance 35mΩ - 540mΩ 30mΩ - 1.17Ω 1.3mΩ - 8mΩ

PSP1055

Dimensions 11x9.35x5.5 mm

Inductance 0.36µH - 8.8µH

DC Current 28A - 6A

DC Resistance 1.7mΩ - 17.2mΩ

Complete family speci!cations available for download at www.grupopremo.com

Page 167: Brochure

250

SMD

Po

wer

Ind

uct

ors

SMD POWER INDUCTORS UNSHIELDED

PN0315 PN0302 PN0403

Dimensions 3.0x2.8x1.5 mm 3.0x2.8x2.5 mm 4.5x4.0x3.2 mm

Inductance 2.2 µH-100 µH 1 µH-1200 µH 1 µH -1000 µH

DC Current 1.2A - 0.2A 2.7A - 80mA 3.8A - 90mA

DC Resistance 0.095Ω -3.5Ω 0.06Ω -30Ω 0.033Ω - 14Ω

PN0502 PN0602 PS5009

Dimensions 5.0x4.5x2.0 mm 5.6x2.5x2.3 mm 5.6x6.0x0.95 mm

Inductance 100 µH - 2700 µH 1 µH - 1000 µH 1 µH-100 µH

DC Current 270mA - 53mA 4.6A - 120mA 1.5A - 0.15A

DC Resistance 1.5Ω - 40Ω 30.0mΩ -11.0Ω 0.06Ω -3.2Ω

PS5014 PS5017 PS5023

Dimensions 5.6x6.0x1.45 mm 5.6x6.0x1.9 mm 5.6x6.0x2.5 mm

Inductance 1 µH-100 µH 2.2 µH -3300µH 2.2 µH - 1000 µH

DC Current 2.5A - 0.22A 2000mA - 50mA 2.2A - 0.1A

DC Resistance 0.032Ω - 1.95Ω 0.04Ω - 57Ω 0.028Ω - 11.5Ω

Complete family speci!cations available for download at www.grupopremo.com

Page 168: Brochure

251

SMD

Po

wer

Ind

uct

ors

SMD POWER INDUCTORS UNSHIELDED

PS6011 CDH3216 CDH32

Dimensions 6.8x7.5x1.05 mm 3.2x1.6x1.85 mm 3.2x2.5x2.0 mm

Inductance 4.7 µH - 100 µH 0.12µH-100µH 1µH-560µH

DC Current 1.2A - 0.21A 970mA - 80mA 445mA - 40mA

DC Resistance 0.096Ω - 2.05Ω 0.112Ω -16.8Ω 0.5Ω-28Ω

CDH3225 CDH3226 CDH45

Dimensions 3.2x2.5x2.0 mm 3.2x2.5x1.55 mm 4.5x3.2x2.6 mm

Inductance 1µH-560µH 1µH-100µH 1µH-2200µH

DC Current 800mA - 60mA 1000mA - 100mA 1.4A - 30mA

DC Resistance 0.117Ω - 28.6Ω 0.078Ω - 4.55Ω 0.08Ω - 63.00Ω

PSC2507 PSC3506 PN0906

Dimensions 6.4x5.5x2.0 mm 9.20x7.90x1.65 mm 9.5x10.5x6.0 mm

Inductance 1.2µH - 470µH 4.7µH - 220µ H 2.2µH - 10000µH

DC Current 2.60A - 0.13A 1.50A - 0.24A 4.0A - 0.04A

DC Resistance 0.036Ω -12.6Ω 0.125Ω - 3.900Ω 0.032Ω - 33Ω

Complete family speci!cations available for download at www.grupopremo.com

Page 169: Brochure

252

SMD

Po

wer

Ind

uct

ors

SMD POWER INDUCTORS UNSHIELDED

PN1105 PN1108 PN0603

Dimensions 10.0x11.1x4.8 mm 11.2x11.2x7.7 mm 5.6x3.7x2.3 mm

Inductance 10µH - 200µH 0.50µH - 220µH 1.5µH - 470 µH

DC Current 4A - 1A 16.7A - 1.1A 3A - 150mA

DC Resistance 0.045Ω- 0.65Ω 3.6mΩ - 560mΩ 0.04Ω -4.55Ω

PN54 PN75 PN105

Dimensions 5.6x4.5x2.3 mm 7.5x5.0x2.6 mm 9.5x5.5x2.9 mm

Inductance 1.2µH-820µH 1.5µH-4700µH 1.5µH-4700µH

DC Current 4.2A - 140mA 6A - 80mA 6.4A - 100mA

DC Resistance 0.02Ω - 5.20Ω 0.015Ω - 21Ω 0.018Ω -18Ω

PN1011 PN1307 PN1608

Dimensions 9.5x11.5x2.9 mm 13.0x7.0x5.0 mm 6.60x4.50x2.92mm

Inductance 10µH-1000mH 1.5µH-1000µH 1µH-1000µH

DC Current 8A - 800mA 9.5A - 0.65A 2.90A - 0.10A

DC Resistance 0.035Ω -1.90Ω 5mΩ -1600mΩ 0.05Ω -13.80Ω

Complete family speci!cations available for download at www.grupopremo.com

Page 170: Brochure

253

SMD

Po

wer

Ind

uct

ors

SMD POWER INDUCTORS UNSHIELDED

PN0805 PN3316 PN5022

Dimensions 8.0x10.5x5 mm 10.0x12.7x5.0 mm 14.0x18.2x6.6 mm

Inductance 3.3µH-330µH 1µH-10000µH 1µH-1000µH

DC Current 5.2A - 0.5A 9.00A - 0.10A 10.0A - 0.50A

DC Resistance 0.022Ω -1.50Ω 0.007Ω -39 Ω 4mΩ -1800mΩ

PNN5022-A PNN5022-B CDH45A

Dimensions 22.0x15.0x6.8 mm 22.0x15.0x7.0 mm 4.5x3.2x2.6 mm

Inductance 120µH-1000µH 0.8µH-100µH 1µH - 2200µH

DC Current 1.60A - 0.56A 16.0A - 2.0A 500mA - 30mA

DC Resistance 230mΩ -1800mΩ 2.3mΩ -168.0mΩ 0.20Ω - 50Ω

CDH45B CDH50 PSQ0703

Dimensions 4.5x3.2x2.6 mm 4.8x4.0x4.5 mm 6.5x4.5x2.7 mm

Inductance 1µH - 470µH 2.2µH - 470µH 1µH - 1000µH

DC Current 1.08A - 90mA 2.4A - 170mA 2.2A - 80mA

DC Resistance 0.08Ω - 8.5Ω 0.032Ω - 5.2 Ω 0.042Ω -14.2Ω

Complete family speci!cations available for download at www.grupopremo.com

Page 171: Brochure

254

SMD

Po

wer

Ind

uct

ors

SMD POWER INDUCTORS UNSHIELDED

PSQ0805 PSC2505 PNN6028

Dimensions 9.0x6.0x5.0 mm 6.40x5.50x1.65 mm 6.0x6.0x2.8 mm

Inductance 0.56µH - 47µH 1.2µH - 330µH 1.5µH - 1000µH

DC Current 9A - 1A 2.30A - 0.13A 4A - 0.13A

DC Resistance 4.5 mΩ - 260mΩ 0.09Ω -10.00Ω 0.028Ω - 12.50Ω

PNN7045 PNN1030 PNN1045

Dimensions 7.0x7.0x4.5 mm 10.0x10.0x3.0 mm 10.0x10.0x4.5 mm

Inductance 1.2µH - 1000µH 2.7µH - 1000µH 2.7µH - 1000µH

DC Current 3.8A - 0.22A 3A - 0.20A 4.8A - 0.38A

DC Resistance 0.022Ω - 4Ω 0.028Ω - 4.7Ω 0.026Ω - 2.7Ω

PNN1305

Dimensions 12.7x12.7x4.8 mm

Inductance 2.5µH - 1000µH

DC Current 7.2A - 0.46A

DC Resistance 14mΩ - 2.350mΩ

Complete family speci!cations available for download at www.grupopremo.com

Page 172: Brochure

255

Filt

ers

and

Ind

uct

ive

Co

mp

onen

ts f

or

HV

and

HE

V

EMC Filters and Inductive Components for Hybrid and Electrical Vehicles

DescriptionPREMO is developing new solutions of EMC !lters for Battery Chargers in Plug-in Hybrid and Electrical Vehicles in order to ful!ll the standard EN61851-21 or similar standard, and to assure the vehicle is free of interference problems.

These !lters are quali!ed according to the standard AECQ200C and manufactured in dedicated production lines audit by some of the main car manufacturers.

Premo can give a global solution from 3.3 kW to 43 kW battery chargers EMC !lters are in single phase, three phase or dc mode, with low, fast or ultra fast charge.

Premo also provide inductive components solution from 2.2 kW up to 20kW including PFC chokes, main transformers, output chokes, gate drive transformers and high frequency current transformers.

Current transducers for ac or dc mode with high accuracy are integrated in some of the !lters, in order to measure the main and the possible leakage current.

Premo is working with some of the mains car manufacturers that are developing electrical vehicles with battery charger on board in order to optimize the connection between vehicle and grid.

SchematicHigh Voltage Battery applications (Full Hybrid & Electric Cars)

Page 173: Brochure

256

Filt

ers

and

Ind

uct

ive

Co

mp

onen

ts f

or

HV

and

HE

V

EMC Filters and Inductive Components for Hybrid and Electrical Vehicles

General Speci!cationsOperating frequency: DC, 50/60 HzOperation temperature: -40 to 105ºCDesigned and built according to UL1283 and EN60939-2For battery chargers in EV, to ful!ll EN61851-21

EMC Filters Product List

Inductive Components Product List

Power Operations Phase Voltage Current

3,7 Low Single Phase 230 16

4,6 Low Single Phase 230 20

22

Low Single Phase 230 16

Low Single Phase 120 20

Low Two Phases 240 32

Fast Three - Phase 400 32

43

Low Single Phase 230 16

Fast Three - Phase 400 63

Fast DC 600 63

Reference Application Power Description

PFC-001 Battery Chargers 3.3kW PFC choke up to 3.3kW

PFC-002 Battery Chargers 10kW PFC choke up to 10kW

PFC-003 Battery Chargers 20kW PFC choke up to 20kW

HPT-001 DC/DC Converters 2.5kW Main transformer up to 160V

HPT-002 DC/DC Converters 2.2kW Main transformer up to 420V

HPT-003 Battery Chargers 3.3kW Main transformer for BC 3.3kW

CSAU Series DC/DC Converters Battery Chargers 3.3kW High frequency current transformer

HPC-001 DC/DC Converters 2.5kW Output choke 4uH / 120 Amps

HPC-002 DC/Dc Converters 2.5kW Output choke 2.5uH / 165 Amps

GHPT Series Battery Chargers 16 kW Main transformer up to 800V

*Customized EMC !lters are available on request.