brownian motion a tutorial krzysztof burdzy university of washington

40
BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Upload: caren-sharp

Post on 03-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

BROWNIAN MOTIONA tutorial

Krzysztof BurdzyUniversity of Washington

Page 2: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

A paradox

|)(|sup,]1,0[:]1,0[

tfRft

(*)))((2

1exp)(

)10,)()((1

0

2

dttfc

ttfBtfP t

Page 3: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

(*) is maximized by f(t) = 0, t>0

Microsoft stock- the last 5 years

The most likely (?!?) shape of a Brownian path:

Page 4: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Definition of Brownian motion

Brownian motion is the unique process with the following properties:(i) No memory(ii) Invariance(iii) Continuity (iv) tBVarBEB tt )(,0)(,00

Page 5: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Memoryless process

0t2t1t 3t

,,,231201 tttttt BBBBBB

are independent

Page 6: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Invariance

The distribution ofdepends only on t.

sst BB

Page 7: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Path regularity

(i) is continuous a.s.

(ii) is nowhere differentiable a.s.tBt

tBt

Page 8: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Why Brownian motion?Brownian motion belongs to several families

of well understood stochastic processes:

(i) Markov processes

(ii) Martingales

(iii) Gaussian processes

(iv) Levy processes

Page 9: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Markov processes

}0,|,{}|,{ suBstBBstB utst LL

The theory of Markov processes uses tools from several branches of analysis:(i) Functional analysis (transition semigroups)(ii) Potential theory (harmonic, Green functions)(iii) Spectral theory (eigenfunction expansion)(iv) PDE’s (heat equation)

Page 10: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Martingales are the only family of processesfor which the theory of stochastic integrals is fully developed, successful and satisfactory.

Martingales

sst BBBEts )|(

t

ss dBX0

Page 11: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Gaussian processes

nttt BBB ,,,21

is multidimensionalnormal (Gaussian)

(i) Excellent bounds for tails(ii) Second moment calculations(iii) Extensions to unordered parameter(s)

Page 12: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

The Ito formula

nt

knknknk

n

t

ss BBXdBX0

//)1(/

0

)(lim

t t

ssst dsBfdBBfBfBf0 0

0 )(2

1)()()(

Page 13: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Random walk

Independent steps, P(up)=P(down)

0,0,/ tBtWa ta

at

(in distribution)

tW

t

Page 14: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Scaling

Central Limit Theorem (CLT), parabolic PDE’s

}10,{}10,{ / tBatB at

D

t

Page 15: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

The effect is the same as replacing with

Multiply the probability of each Brownian path by

Cameron-Martin-Girsanov formula

}10,{ tBt

1

0

1

0

2))((2

1)(exp dssfdBsf s

}10,{ tBt }10),({ ttfBt

Page 16: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Invariance (2)

}10,{}10,{ 11 tBBtB t

D

t

Time reversal

0 1

Page 17: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Brownian motion and the heat equation),( txu – temperature at location x at time t

),(2

1),( txutxu

t x

Heat equation:

dxxudx )0,()(

)(),( dyBPdytyu t Forward representation

)0,(),( yBEutyu t Backward representation(Feynman-Kac formula)

0 t

y

Page 18: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Multidimensional Brownian motion

,,, 321ttt BBB - independent 1-dimensional

Brownian motions

),,,( 21 dttt BBB - d-dimensional Brownian

motion

Page 19: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Feynman-Kac formula (2)

)(xf

0

)(exp)()( dsBVBfExu sx

B x

0)()()(2

1 xuxVxu

Page 20: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Invariance (3)

The d-dimensional Brownian motion is invariantunder isometries of the d-dimensional space.It also inherits invariance properties of the1-dimensional Brownian motion.

)2/)(exp(2

1

)2/exp(2

1)2/exp(

2

1

22

21

22

21

xx

xx

Page 21: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Conformal invariance

f

}0),()({ 0 tBfBf t

analytictB )( tBf

has the same distribution as

t

stc dsBftctB0

2)( |)(|)(},0,{

Page 22: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

If then

The Ito formula Disappearing terms (1)

t t

ssst dsBfdBBfBfBf0 0

0 )(2

1)()()(

t

sst dBBfBfBf0

0 )()()(

0f

Page 23: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Brownian martingales

Theorem (Martingale representation theorem).{Brownian martingales} = {stochastic integrals}

},{,)|(

0

tsBFMMMME

dBXM

sBttsst

t

sst

Page 24: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

The Ito formula Disappearing terms (2)

t

s

t

s

t

sst

dsBsfx

dsBsfs

dBBsfx

BtfBtf

02

2

0

0

0

),(2

1),(

),(),(),(

t

s

t

s

t

dsBsfx

EdsBsfs

E

BtEfBtEf

02

2

0

0

),(2

1),(

),(),(

Page 25: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Mild modifications of BM

Mild = the new process corresponds to the Laplacian(i) Killing – Dirichlet problem(ii) Reflection – Neumann problem(iii) Absorption – Robin problem

Page 26: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Related models – diffusions

dtXdBXdX tttt )()(

(i) Markov property – yes(ii) Martingale – only if(iii) Gaussian – no, but Gaussian tails

0

Page 27: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Related models – stable processes

2/1)(dtdB /1)(dtdX

Brownian motion –Stable processes –

(i) Markov property – yes(ii) Martingale – yes and no(iii) Gaussian – no

Price to pay: jumps, heavy tails, 20 220

Page 28: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Related models – fractional BM/1)(dtdX

(i) Markov property – no(ii) Martingale – no(iii) Gaussian – yes (iv) Continuous

1 21

Page 29: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Related models – super BM

Super Brownian motion is related to2uu

and to a stochastic PDE.

Page 30: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Related models – SLE

Schramm-Loewner Evolution is a model for non-crossing conformally invariant2-dimensional paths.

Page 31: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

(i) is continuous a.s.

(ii) is nowhere differentiable a.s.

(iii) is Holder

(iv) Local Law if Iterated Logarithm

Path properties

tBt

tBt

tBt )2/1(

1|log|log2

suplim0

tt

Btt

Page 32: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Exceptional points

1|log|log2

suplim0

tt

Btt

1|)log(|log)(2

suplim

stst

BB st

st

For any fixed s>0, a.s.,

),0()(2

suplim

st

BB st

st

There exist s>0, a.s., such that

Page 33: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Cut points

For any fixed t>0, a.s., the 2-dimensionalBrownian path contains a closed looparound in every interval tB ),( ttAlmost surely, there exist such that

)1,0(t ])1,(()),0([ tBtB

Page 34: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Intersection properties

1))((.,.)4(

2))((.,.

2))((.,.)3(

))((.,.

..)2(

.,.)1(

14

13

13

12

xBCardRxsad

xBCardRxsa

xBCardRxsad

xBCardRxsa

BBtssatd

BBtstsad

ts

ts

Page 35: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Intersections of random sets

BA

dBA

)dim()dim(

The dimension of Brownian trace is 2in every dimension.

Page 36: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Invariance principle

(i) Random walk converges to Brownianmotion (Donsker (1951))(ii) Reflected random walk convergesto reflected Brownian motion(Stroock and Varadhan (1971) - domains,B and Chen (2007) – uniform domains, not alldomains)(iii) Self-avoiding random walk in 2 dimensionsconverges to SLE (200?) (open problem)

2C

Page 37: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Local time

sts

t

Bt

BM

dsLs

sup

2

1lim }{

0

t

0

1

Page 38: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Local time (2)

}10,|{|}10,{

}10,{}10,{

tBtBM

tMtL

t

D

tt

t

D

t

Page 39: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

Local time (3)

}{inf0

tLss

t

Inverse local time is a stable processwith index ½.

Page 40: BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington

References

R. Bass Probabilistic Techniques in Analysis, Springer, 1995

F. Knight Essentials of Brownian Motion and Diffusion, AMS, 1981

I. Karatzas and S. Shreve Brownian Motion and Stochastic Calculus, Springer, 1988