bryan a. black hatfield marine science center oregon state university newport, oregon rockfish, tree...

66
Bryan A. Black Bryan A. Black Hatfield Marine Science Center Hatfield Marine Science Center Oregon State University Oregon State University Newport, Oregon Newport, Oregon Rockfish, tree rings, and climate- Rockfish, tree rings, and climate- driven linkages between marine and driven linkages between marine and terrestrial ecosystems terrestrial ecosystems

Upload: daniela-benson

Post on 17-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Bryan A. BlackBryan A. Black

Hatfield Marine Science CenterHatfield Marine Science CenterOregon State UniversityOregon State UniversityNewport, OregonNewport, Oregon

Rockfish, tree rings, and climate-driven linkages Rockfish, tree rings, and climate-driven linkages between marine and terrestrial ecosystemsbetween marine and terrestrial ecosystems

Temporal and spatial variability of growth

Tree rings most familiar example-effects of competition-effects of site factors, pollutants-effects of climate-reconstructions (thousands of yrs.!)

VERY VERSATILE

Importance of IncrementsImportance of Increments

Many organisms form annual increments-mollusks, corals, sponges, dinosaurs

Dendrochronology applied to other organismsDendrochronology applied to other organisms

and… FISH

In fish, growth increments formed in:-vertebrae, various bones-fin rays-scales-otoliths

Resolving otolith incrementsResolving otolith increments

cut here

Growth increment formation- opaque zone: fast growth, low protein- translucent zone: slow growth, high protein

OtolithsOtoliths

1939: year of1939: year ofbirthbirth

1989: year of1989: year ofcapturecapture

direction of growth

direction of growth

Candidate for dendrochronology techniques?-no resorption problems-some fish can get old!

ex. 100 yr old yelloweye rockfish-increments appear to be annual

Should be long enough time series if incrementsare clear

Dendrochronology applied to other organismsDendrochronology applied to other organisms

The physical environment affects otolith ring width-induces synchronous growth patterns-”bar codes” should match among otoliths-if not: error likely

Method of accurately dating each growth increment

Dendrochronology (tree-ring analysis): crossdating

Required: Synchronous GrowthRequired: Synchronous Growth

Matching growth “bar codes”

Required: Synchronous GrowthRequired: Synchronous Growth

Tree 1

Tree 2

Tree 3

Trees cored in year 2000Trees cored in year 20002000

2000

19951995

19901990

1985

1985

1980

1980

most recent increment(formed in 2000)

to tree center

Photo credit: H.D. Grissino-Mayer, The Ultimate Tree-Ring Web Pages

Crossdating in TreesCrossdating in Trees

18371837narrownarrowyearyear

1806 1806 narrownarrowyearyear

18161816widewideyearyear

18301830widewideyearyear

direction of growthdirection of growth

bark

bark

That works for trees, but will it apply to fish???

Crossdating in FishCrossdating in Fish

19831983

Sebastes diploproa, splitnose rockfish

Photo credit:Lifted from M. Love’s webpagePhoto credit:Lifted from M. Love’s webpage

Target Species: Splitnose RockfishTarget Species: Splitnose Rockfish

15 clear splitnose otolithscollected in 1989 NMFS surveyvariety of ages (31 to 64 yrs)thin sectioned

Axis of measurementAxis of measurement

Signature Year ExampleSignature Year Example

1983El Nino

19051905

1994199419941994

19301930

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

(m

m)

Measurements of splitnose rockfish

Synchronous GrowthSynchronous Growth

19361936 19581958 19701970 19831983

Statistically, how do we prove it?-correlate all otoliths with one another-low correlation = potential errors

but we only want the climate signal

must remove effects of:-age, vigor, artifacts of preparation

isolate climate signal via DETRENDING

CrossdatingCrossdating

DetrendingDetrending

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

(m

m)

DetrendingDetrending

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

(m

m)ring width

measurements,splines

0.7

0.8

0.9

1

1.1

1.2

1.3

1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

xdetrended,

mean = 1

all splitnose residual chronologiesN = 15

DetrendingDetrending

0.4

0.6

0.8

1

1.2

1.4

1.6

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x

Correlate each otolith with sample-wide averages

CrossdatingCrossdating

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x (

sta

ck

ed

)

Step 1: select the first otolith time series

CrossdatingCrossdating

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x (

sta

ck

ed

)

selected seriesselected series

Step 2: average remaining (14) samples

CrossdatingCrossdating

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x (

sta

ck

ed

)

selected seriesselected series

rem

ain

ing

14 s

erie

sre

mai

nin

g 14

ser

ies

Step 3: correlate single series with average of others

CrossdatingCrossdating

1920 1930 1940 1950 1960 1970 1980 1990

year

ring

wid

th in

dex

(sta

cked

)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x

average of remaining 14 seriesaverage of remaining 14 series

r = 0.62p < 0.001

selected seriesselected series

If we overlooked 1983 (combined 1984 and 1983)

CrossdatingCrossdating

1920 1930 1940 1950 1960 1970 1980 1990

year

ring

wid

th in

dex

(sta

cked

)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x

average of remaining 14 seriesaverage of remaining 14 series

r = -0.11

0.6

0.8

1

1.2

1.4

1.6

1.8

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x selected seriesselected serieswith errorwith error

Step 4: repeat for each of the series

CrossdatingCrossdating

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x (

sta

ck

ed

)

selected seriesselected seriesr = 0.58r = 0.58

Step 4: repeat for each of the series

CrossdatingCrossdating

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x (

sta

ck

ed

) selected seriesselected seriesr = 0.64r = 0.64

Step 4: repeat for each of the series

CrossdatingCrossdating

1920 1930 1940 1950 1960 1970 1980 1990

year

rin

g w

idth

in

de

x (

sta

ck

ed

)

selected seriesselected seriesr = 0.45r = 0.45

CrossdatingCrossdating

sample 1 r = 0.62r = 0.62

sample 2 r = 0.58r = 0.58

sample 3 r = 0.64r = 0.64

sample 4 r = 0.45r = 0.45

sample 5 r = 0.49r = 0.49

sample 6 r = 0.64r = 0.64

sample 7 r = 0.44r = 0.44

sample 8 r = 0.60r = 0.60

sample 9 r = 0.72r = 0.72

sample 10 r = 0.61r = 0.61

sample 11 r = 0.71r = 0.71

sample 12 r = 0.61r = 0.61

sample 13 r = 0.21r = 0.21

sample 14 r = 0.17r = 0.17

sample 15 r = 0.43r = 0.43

averageaverage r = 0.528r = 0.528

CrossdatingCrossdating

sample 1 r = 0.62r = 0.62

sample 2 r = 0.58r = 0.58

sample 3 r = 0.64r = 0.64

sample 4 r = 0.45r = 0.45

sample 5 r = 0.49r = 0.49

sample 6 r = 0.64r = 0.64

sample 7 r = 0.44r = 0.44

sample 8 r = 0.60r = 0.60

sample 9 r = 0.72r = 0.72

sample 10 r = 0.61r = 0.61

sample 11 r = 0.71r = 0.71

sample 12 r = 0.61r = 0.61

sample 13 r = 0.21 potential problemsr = 0.21 potential problems

sample 14 r = 0.17 potential problemsr = 0.17 potential problems

sample 15 r = 0.43r = 0.43

averageaverage r = 0.528r = 0.528

Step 5: check thenremeasure, drop, orkeep problematic series

context:eastern forestshemlock, maplespruce, beech: ISC = 0.5 – 0.6

CrossdatingCrossdating

sample 1 r = 0.62 r = 0.62 r = 0.69r = 0.69

sample 2 r = 0.58 r = 0.58 r = 0.59r = 0.59

sample 3 r = 0.64 r = 0.64 r = 0.66r = 0.66

sample 4 r = 0.45 r = 0.45 r = 0.45r = 0.45

sample 5 r = 0.49 r = 0.49 r = 0.50r = 0.50

sample 6 r = 0.64 r = 0.64 r = 0.62r = 0.62

sample 7 r = 0.44 r = 0.44 r = 0.45r = 0.45

sample 8 r = 0.60 r = 0.60 r = 0.54r = 0.54

sample 9 r = 0.72 r = 0.72 r = 0.72r = 0.72

sample 10 r = 0.61 r = 0.61 r = 0.63r = 0.63

sample 11 r = 0.71 r = 0.71 r = 0.70r = 0.70

sample 12 r = 0.61 r = 0.61 r = 0.61r = 0.61

sample 13 r = 0.21 r = 0.21 r = 0.42r = 0.42

sample 14 r = 0.17 r = 0.17 r = 0.36r = 0.36

sample 15 r = 0.43 r = 0.43 r = 0.43r = 0.43

averageaverage r = 0.528 r = 0.528 r = 0.545r = 0.545

Spatial considerationsSpatial considerations

Initial data set included fish from approx. 36-40 degrees latitude

I attempted to add more otoliths

Twelve out of 20 didn’t work!

Why?

Spatial considerationsSpatial considerations

-0.2

0

0.2

0.4

0.6

0.8

1

34 36 38 40 42 44 46 48 50

Latitude (degrees)

Inte

rse

rie

s c

orr

ela

tio

n

new otolithoriginal otolith

Splitnose chronology: 48 otolithsSplitnose chronology: 48 otoliths

0.7

0.8

0.9

1

1.1

1.2

1920 1930 1940 1950 1960 1970 1980 1990 2000

year

rin

g w

idth

in

dex

valid: 36 to 40 degrees latitudevalid: 36 to 40 degrees latitude

Age ValidationAge Validation

1989: year of1989: year ofcapturecapture

1939: year of1939: year ofbirthbirth

1983: El Nino1983: El Nino

1958: El Nino1958: El Nino

all growth increments correctly datedex. 51 year old fish

Splitnose chronology: 48 otolithsSplitnose chronology: 48 otoliths

0.7

0.8

0.9

1

1.1

1.2

1920 1930 1940 1950 1960 1970 1980 1990 2000

year

rin

g w

idth

in

dex

valid: 36 to 40 degrees latitudevalid: 36 to 40 degrees latitude

El NiEl Niñño / La Niñao / La Niña

Figure credit: NOAA Climate Prediction Center

Departures from normal….

El Niño La Niña

Pacific Decadal OscillationPacific Decadal Oscillation

Figure credit: Joint Institute for the Study of the Atmosphere and Ocean: U. Washington

warm phase cool phase

UpwellingUpwelling

Upwelling events: deep, cold, nutrient-rich watervery productive!

Figure credit: D. Reed and Pacific Marine Environmental Lab

Environmental indicesEnvironmental indices

High values = COOL watersUpwelling IndexNorthern Oscillation Index (El Niño)

High values = WARM watersSea Surface TemperaturesPacific Decadal Oscillation

USE MONTHLY AVERAGES

10

11

12

13

14

1940 1950 1960 1970 1980 1990 2000

year

tem

pe

ra

ture

( C

)

0.7

0.8

0.9

1

1.1

1.2

1.3

1940 1950 1960 1970 1980 1990 2000

year

rin

g w

idth

in

de

x

Effects of environmentEffects of environment

splitnose master chronologysplitnose master chronology

Feb average SSTFeb average SST

r = -0.60; p < 0.001r = -0.60; p < 0.001

ring

wid

th in

de

xte

mp

era

ture

( C

)

Effects of environmentEffects of environment

-0.6

-0.4

-0.2

0

0.2M

AY

(L)

JUN

(L)

JUL

(L)

AU

G(L

)

SE

P(L

)

OC

T(L

)

NO

V(L

)

DE

C(L

)

JAN

FE

B

MA

R

AP

R

MA

Y

JUN

JUL

AU

G

SE

P

month

corr

elat

ion

co

effi

cien

t

Sea surface temperatureSea surface temperature

**

**

**

** *

** p < 0.01* p < 0.05

Effects of environmentEffects of environment

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

MA

Y(L

)

JUN

(L)

JUL(

L)

AU

G(L

)

SE

P(L

)

OC

T(L

)

NO

V(L

)

DE

C(L

)

JAN

FE

B

MA

R

AP

R

MA

Y

JUN

JUL

AU

G

SE

P

month

corr

elat

ion

co

effi

cien

t

upwelling index

Northern Oscillation Index

Pacific Decadal Oscillation

sea surface temperature

**

**

**

** *

*** *

***

** **

**

**

** * **

**

** p < 0.01* p < 0.05

Spatial components of growth–environment relationships?Spatial components of growth–environment relationships?

February sea surface temperatures 1950:1994

2 degree x 2 degree cells

correlate with splitnose chronology

Spatial components of growth–environment relationships?Spatial components of growth–environment relationships?

Otolith and tree ring chronologies comparable

Possible sites: tree line in Coast Mountains-strong maritime influence-harsh conditions

Noble fir on Marys Peak

Terrestrial vs. marine growth patternsTerrestrial vs. marine growth patterns

Noble fir measurementsNoble fir measurements

0

2

4

6

8

10

12

14

16

1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

year

rin

g w

idth

(m

m)

24 trees24 trees47 radii;47 radii;

crossdating check: ISC of 0.7; all trees significant

Noble fir chronologyNoble fir chronology

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

year

rin

g w

idth

in

de

x

noble fir master chronologynoble fir master chronology

Effects of environment: temperatureEffects of environment: temperature

-5

0

5

10

15

20

25

1880 1900 1920 1940 1960 1980 2000 2020year

de

gre

es

( C

)

JanT

FebT

MarT

AprT

MayT

JunT

JulT

AugT

SepT

OctT

NovT

DecT

Effects of environment: TERRESTRIALEffects of environment: TERRESTRIAL

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

JUL(

L)

AU

G(L

)

SE

P(L

)

OC

T(L

)

NO

V(L

)

DE

C(L

)

JAN

FE

B

MA

R

AP

R

MA

Y

JUN

JUL

AU

G

SE

P

OC

T

NO

V

DE

C

corr

elat

ion

co

effi

cien

t

temperaturetemperatureprecipitationprecipitation

**

**

**

* *

*

*

*

** p < 0.01* p < 0.05

Effects of environment: MARINEEffects of environment: MARINE

JUL(

L)

AU

G(L

)

SE

P(L

)

OC

T(L

)

NO

V(L

)

DE

C(L

)

JAN

FE

B

MA

R

AP

R

MA

Y

JUN

JUL

AU

G

SE

P

OC

T

NO

V

DE

C

corr

elat

ion

co

effi

cien

t

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4Sea Surface TemperatureSea Surface TemperaturePacific Decadal OscillationPacific Decadal OscillationNorthern Oscillation IndexNorthern Oscillation Index

*

*

**

** p < 0.01* p < 0.05

Do rockfish and noble fir correlate?

The BIG questionThe BIG question

Not at all! Not at all! r = 0.05r = 0.05

NOAA ITRDB

tree chronologies throughout OR, WA, CA

correlations with rockfish chronology?

Other tree ring chronologiesOther tree ring chronologies

Rockfish and tree-ring correlationsRockfish and tree-ring correlations

Mountain hemlock vs. rockfishMountain hemlock vs. rockfish

-4

-3

-2

-1

0

1

2

3

4

1920 1930 1940 1950 1960 1970 1980 1990 2000

year

no

rmal

ized

rin

g w

idth

ind

ex

splitnose rockfish

mountain hemlcok(on Mt. Rainier)

Mountain hemlock: terrestrial corr.Mountain hemlock: terrestrial corr.

JUL(

L)

AU

G(L

)

SE

P(L

)

OC

T(L

)

NO

V(L

)

DE

C(L

)

JAN

FE

B

MA

R

AP

R

MA

Y

JUN

JUL

AU

G

SE

P

OC

T

NO

V

DE

C

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

corr

elat

ion

co

effi

cien

t

temperaturetemperatureprecipitationprecipitation

** p < 0.01* p < 0.05

****

**

**

**

Mountain hemlock: marine corr.Mountain hemlock: marine corr.

JUL(

L)

AU

G(L

)

SE

P(L

)

OC

T(L

)

NO

V(L

)

DE

C(L

)

JAN

FE

B

MA

R

AP

R

MA

Y

JUN

JUL

AU

G

SE

P

OC

T

NO

V

DE

C

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

corr

elat

ion

co

effi

cien

t

Sea Surface TemperatureSea Surface TemperaturePacific Decadal OscillationPacific Decadal OscillationNorthern Oscillation IndexNorthern Oscillation Index

** p < 0.01* p < 0.05

** ****

**

** *** *

**

**

****

*

*

**

*

*

**

corr

elat

ion

co

effi

cien

t

-0.3-0.2-0.1

00.10.20.30.4

CascadesCascadeshemlockhemlock

JUL(

L)

AU

G(L

)

SE

P(L

)

OC

T(L

)

NO

V(L

)

DE

C(L

)

JAN

FE

B

MA

R

AP

R

MA

Y

JUN

JUL

AU

G

SE

P

OC

T

NO

V

DE

C

-0.4

-0.2

0

0.2

0.4 splitnose splitnose rockfishrockfish

Sea Surface TemperatureSea Surface TemperaturePacific Decadal OscillationPacific Decadal OscillationNorthern Oscillation IndexNorthern Oscillation Index

Correlations comparedCorrelations compared

corr

elat

ion

co

effi

cien

t

-0.3-0.2-0.1

00.10.20.30.4

CascadesCascades

JUL(

L)

AU

G(L

)

SE

P(L

)

OC

T(L

)

NO

V(L

)

DE

C(L

)

JAN

FE

B

MA

R

AP

R

MA

Y

JUN

JUL

AU

G

SE

P

OC

T

NO

V

DE

C

-0.3

-0.2

-0.1

0

0.1

0.2

Sea Surface TemperatureSea Surface TemperaturePacific Decadal OscillationPacific Decadal OscillationNorthern Oscillation IndexNorthern Oscillation Index

Marys Marys PeakPeak

-0.4

-0.2

0

0.2

0.4 splitnose splitnose rockfishrockfish

Rockfish growth reconstruction:Select tree crns. that

-significantly correlate w/ rockfish-extend to 1990-excellent quality throughout

Average tree ring crns together-back to 1880 (20 crns)

Simple linear regression

Trees as Proxy Data for RockfishTrees as Proxy Data for Rockfish

Reconstruction to 1880Reconstruction to 1880

RR22 = 0.44 = 0.44

0.6

0.8

1

1.2

1.4

1860 1880 1900 1920 1940 1960 1980 2000

year

rin

g w

idth

in

dex

rockfish chronologyreconstruction

y = -0.4217*tree_ring + 1.4155

Reconstruction to 1600Reconstruction to 1600

0.8

0.9

1

1.1

1.2

1600 1650 1700 1750 1800 1850 1900 1950 2000

year

ring

wid

th in

dex

y = -0.37*tree_ring + 1.3683

RR22 = 0.39 = 0.39

Growth increment data: Not limited to trees!

Uses:1) age validation2) effects of environment

Important for management and ecology!

ConclusionsConclusions

Future directions: geoduck clamsFuture directions: geoduck clams

150 yrs old!

strong synchronous growthmax. ages of 100 yrs.river chronometers

Future directions: freshwater musselsFuture directions: freshwater mussels

Ecosystem LinkagesEcosystem Linkages

forestsforeststree ringstree rings

riversriversmussel ringsmussel rings

nearshorenearshoreclam ringsclam rings

continental shelfcontinental shelffish ringsfish rings

Hatfield Marine Science CenterNewport, OR Tues. May 30 to Wed. June 7

Dendro Fieldweek 2006Dendro Fieldweek 2006

[email protected]