bsc thesis: scheduling policies for a repair shop problem · bsc thesis: scheduling policies for a...

25
BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics and operations research Supervisor: Oosterom, C.D. van First Reader: Dekker, R. Abstract In this paper we take another look at the Myopic(R) scheduling policy proposed by Liang et al. (2013). The Myopic(R) policy is much more time efficient, coming with a small loss of optimality. This policy is useful when one repair shop for every machine type is combined to one central repair shop. The other case Liang et al. (2013) look at is the base case, where one repair shop per fleet is used. In this paper multiple search methods are proposed to find the optimal costs for both the base case as the central repair shop case under the Myopic(R) policy. These search methods are based on the convexity of the cost functions of the base case and the CRS case. which is proven for the first and conjectured for the second. The proposed methods show great improvement in calculation time. In Liang et al. (2013) it is shown that the CRS is preferred over the base case for certain a certain factor α. We show for which values the cost minima of the base case and the CRS case are in equilibrium., which means that we know when it is benificial to use which repair shop strategy.

Upload: others

Post on 29-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

BSc Thesis: Scheduling policies for a repair shopproblem

Dopheide, J.J.Student Number: 371175

July 3, 2016

Econometrics and operations researchSupervisor: Oosterom, C.D. van

First Reader: Dekker, R.

Abstract

In this paper we take another look at the Myopic(R) scheduling policy proposedby Liang et al. (2013). The Myopic(R) policy is much more time efficient, comingwith a small loss of optimality. This policy is useful when one repair shop for everymachine type is combined to one central repair shop. The other case Liang et al.(2013) look at is the base case, where one repair shop per fleet is used.

In this paper multiple search methods are proposed to find the optimal costs forboth the base case as the central repair shop case under the Myopic(R) policy. Thesesearch methods are based on the convexity of the cost functions of the base caseand the CRS case. which is proven for the first and conjectured for the second. Theproposed methods show great improvement in calculation time.

In Liang et al. (2013) it is shown that the CRS is preferred over the base case forcertain a certain factor α. We show for which values the cost minima of the base caseand the CRS case are in equilibrium., which means that we know when it is benificialto use which repair shop strategy.

Page 2: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

Contents

1 Introduction 1

2 Notation 2

3 Methodology 33.1 Base Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.1.2 Search methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Central Repair Shop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.2.1 Myopic(R) policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2.2 Global balance equations . . . . . . . . . . . . . . . . . . . . . . . . 103.2.3 Search methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 BC/CRS-equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Results 124.1 Base Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134.2 Central Repair Shop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144.3 BC/CRS-equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Conclusion 16

6 Discussion and further research 16

7 Appendix 19

Page 3: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

1 INTRODUCTION 1

1 Introduction

In a production line, the manufacturing of products is often partitioned into severalstages where in every stage a different kind of machine is used. Within each stage thesame type of machine is used. All the machines together in one stage are then called afleet. Machines break down from time to time and have to be repaired. When a machineis down the operation targets cannot be met, so until the machine is repaired, the man-ufacturing plant experiences downtime-costs. To decrease the downtime-costs, it can beuseful to have spare machines in stock, so the broken ones can be replaced immediately,and the production process is not interrupted. These spares are accompanied by holdingcosts per type of machine. Therefore, it is of interest to determine a good balance betweenthe number of spares and the long-term expected downtime, so the costs for productionare at its minimum. Also, the repair shop structure is of importance. A manufacturercould use a different repair shop per fleet, or a general repair shop for all the differentfleets together (with a higher service (repair) rate). Sahba et al. (2013) shows that a centralrepair shop can be more efficient.

Sahba et al. (2013) looks at the option where there are spares kept per fleet, but also thecase where there is a general stock where all fleets can draw resources from. This last caseis beyond the scope of this research. When using a central repair shop, the scheduling ofthe repairs is of importance as well. This is caused by the fact that the downtime costsfor every machine is different. The machine that the decreases the downtime costs themost when repaired relatively to the repair time, has to be repaired first to save as muchas possible.

In this paper the Myopic(R) policy proposed by Liang et al. (2013) will be re-examined.The Myopic(R) policy is very useful, since, according to the results in Liang et al. (2013),the computational time decreases drastically compared to time required to find the opti-mal solution, while outcomes do not differ a lot from the optimal solution. The minimumcosts are determined by searching over different number of spares in stock per machinetype, and calculating the system costs for those numbers. The costs of the central repairshop while using the Myopic(R) will be compared to the one repair shop per fleet case.

Since the Myopic(R) policy is introduced to decrease computational time, it is of in-terest to use a clever way of finding the optimal number of spares as well, to decrease thecomputational time even more. In Liang et al. (2013) the way to find the optimal numberof spares is undefined and therefore we assume that they used complete enumeration,which is slow. Very few literature could be found regarding keeping spare inventory forbreaking down machines. This is said in Liang et al. (2013) as well. Therefore the purposeof this research is to make sure we find the optimal value of stock and find a method todecrease the computational time of finding the optimal number of spares kept in stockper fleet.

Intuitively, the system cost function for the number of spares is first non-increasingand then increasing. This means that there is a global minimum for the system costs. Thisintuitive assumption is supported by the fact that adding spares has a constant increase incosts, since the holding costs per machine type are constant. Furthermore, increasing thenumber of spares, causes a decrease in probability of having less machines operationalthan required, and therefore the downtime costs are non-increasing. Taylor and Jackson(1954) results show that probability of machines is the number of spare machines in theone repair shop per fleet case is strictly decreasing descending in their graphs, which maybe the case in the central repair shop case as well. This assumption has to be checked andmay be the basis for a clever search algorithm to find the optimal number of spares per

Page 4: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

2 NOTATION 2

fleet. We will prove that for the multiple repair shop case the cost function is indeed con-vex and use this result to propose two fast ways of finding the optimal number of sparesper fleet. We will show by graphs that the (marginal) cost functions in the central repairshop case are also convex for the cases we examine and will propose search methods forfinding the optimal number of spares.

Also, Liang et al. (2013) show that a central repair shop is more cost efficient thanseparate repair shops under the assumption of higher repair rates per fleet. In their paperthey assumed when two fleets are repaired in the same repair shop, their repair timesincrease with factor two. We assume that the central repair shop case is indeed beneficialover the base case when all the repair rates are multiplied by factor r when r repair shopsare combined in one repair shop. Another purpose of this research is to find out for whatfactor α the central repair shop is not preferred over the base case any more. In otherwords, we want to find out for which factor α the optimal system costs for the centralrepair shop and the separate shops are in equilibrium.

It is of interest to find this equilibrium to know for which production lines a centralrepair shop should be used, and for which lines a separate repair shop is beneficial. Alsoa hybrid method could be used, such that some machine types are repaired in the samerepair shop and others have its own repair shop or are combined in another separaterepair shop.

2 Notation

To reproduce the case where we use a different repair shop per fleet of machines and thecentral repair shop case while using the Myopic(R) scheduling policy, we first introducenotation. We use similar notation asLiang et al. (2013). From now on we will refer to therepair shop per fleet as the base case (BC), and to the combined repair shop as the centralrepair shop (CRS).

We consider r different fleets with identical machines types i, i = 1, 2, .., r within eachfleet. The number of required machines within a fleet to operate at full strength is denotedas Ni. Since we allow to keep spares per fleet as well, the number of spares kept instock per fleet is defined as Si. The total number of machines of type i owned by themanufacturer equals Ni + Si.

The number of machines that is operational and active at time t is defined as Wi(t),where 0 ≤ Wi(t) ≤ Ni. The number of functional machines that are kept in stock attime t is defined as Ii(t), where 0 ≤ Ii(t) ≤ Si. Since we will always operate at thehighest operation level, such that all functional will be used if possible. This means thatIi(t) = 0 when Wi(t) < Ni. The total number of functional machines is defined as Ai(t) =Wi(t) + Ii(t). When Ai is equal or larger than Ni, fleet i operates at full strength. WhenAi is smaller than Ni the fleet has Ni − Ai down machines.

When there are less machines operational than required to operate at full strength(Wi(t) < Ni), the manufacturer experiences less production than is optimal. This re-sults in less turnover/profit, which means that the manufacturer experiences extra costs.Therefore we define bi as the costs per time unit per machine that is down. The totalholding costs per time unit is hi × Si, where hi are the holding costs per time unit permachine. The downtime costs and holding costs are assumed to be constant per machinetype.

We say that a system i is in state ni, when there are ni machines functional. A machinefrom fleet i is repaired with a rate µi and a machine breaks down with rate λi. Thebreak down rate is state dependent, since the expected time till the first break down is

Page 5: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

3 METHODOLOGY 3

dependent on the number of machines that are in use. The break down rate in state niequals λi ·min{ni, Ni}.

3 Methodology

3.1 Base Case

We will first look into the BC. The BC can be modeled as a birth-and-death process. Abirth takes place when a machine is repaired and a death takes place when a machinebreaks down. Therefore a birth takes place with rate µi and a death takes place with λi.

In the BC every fleet has its own repair shop. This means that the probability ofhaving n functional machines in fleet i, is independent of the number of machines func-tional in fleet j, where i 6= j. Therefore, we can consider this model as r different queu-ing systems. Every repair shop has its own state space S that consists of the numbers1, 2, ..., Ni + Si, corresponding to the number of functional machines in every state. Sincethe fleets are independent in the BC we will solve the different systems one by one, andfrom now on we drop the subscript i for notational convenience.

Now we can define the probability that the system is in state n and we define theprobability of being in state n while having S spares in stock as follows. Because the statespace is dependent on the number of spares Si, the state probabilities are dependent onSi as well. Therefore, we use the following notation:

p(n|S) =µn

λn·∏ni=1 min{i,N}

∑N+Sn=0

µn

λn·∏ni=1 min{i,N}

(1)

We need to construct the cost function, because we want to minimize the total pro-duction costs, such that:

C∗BC =r

∑i=1

Ci(S∗i )

is minimal.The state probabilities in equation 1 are an important part here. The cost function is

defined as follows:

C(S) = h · S + bN

∑n=0

(N − n)p(n|S) (2)

The first term are the total holding costs for the machines kept in stock, and the secondterm are the costs for the down machines. We need to minimize this function for everyfleet i to determine the minimum costs.

To find the optimal value of S, for which the function C(S) is at its minimum, wecompute the costs for different values of S. In Liang et al. (2013) the search method isundefined and therefore we assumed that they used complete enumeration with a pre-defined maximum value of S. The choice of this maximum S is also undefined. Thechoice of a maximum Smax is hard, because taking Smax large, means that a lot of differentoptions have to be considered and computed, when complete enumeration is used. Thistakes a lot of computation time. Taking Smax small, might cause that the global minimumof the cost function is not included in the interval, such that S∗ /∈ {0, 1, ..., Smax}. There-fore the optimal S cannot be found when Smax is too small. This means that it is of greatinterest to find out if there are other possibilities to find S∗.

Page 6: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

3 METHODOLOGY 4

3.1.1 Convexity

As mentioned in Section 1, we want to show that the cost function is convex in the BC.Convexity in general for an integer function y : Z→ R, ∀x ∈ Z is defined as follows:

y(x + 1)− y(x) ≤ y(x + 2)− y(x + 1)

We will prove that the function given in 2 is convex.

Theorem 1: The cost function of the base case is convex, or equivalently:

C(S + 1)− C(S) ≤ C(S + 2)− C(S + 1) (3)

To prove this theorem we will first prove the following lemma.

Lemma 1: The probability function of the system being in state n given a stock Sis convex in S:

p(n|S + 1)− p(n|S) ≤ p(n|S + 2)− p(n|S + 1) ∀n (4)

Proof of Lemma 1: For notational convenience we will first introduce φn = µn

λn·(

n!∏n

i=N+1 i ·∏n−Ni=1 (N)

)such that Equation 1 becomes p(n|S) = φn

∑N+Sn=0 φn

. First we will work out the left hand side

of the equation and next the right hand side.

LHS:

p(n|S + 1)− p(n|S) = φn

∑N+S+1n=0 φn

− φn

∑N+Sn=0 φn

=φn

∑N+S+1n=0 φn

−∑N+S+1

n=0 φn

∑N+Sn=0 φn

∑N+S+1n=0 φn

∑N+Sn=0 φn

· φn

∑N+Sn=0 φn

=φn

∑N+S+1n=0 φn

−∑N+S+1

n=0 φn

∑N+Sn=0 φn

· φn

∑N+S+1n=0 φn

=

(1− ∑N+S+1

n=0 φn

∑N+Sn=0 φn

)· φn

∑N+S+1n=0 φn

=

(∑N+S

n=0 φn

∑N+Sn=0 φn

− ∑N+S+1n=0 φn

∑N+Sn=0 φn

)· φn

∑N+S+1n=0 φn

=

(− φN+S+1

∑N+Sn=0 φn

)· φn

∑N+S+1n=0 φn

RHS:

p(n|S + 2)− p(n|S + 1) = · · · =

(− φN+S+2

∑N+S+1n=0 φn

)· φn

∑N+S+2n=0 φn

=

(− φN+S+2

∑N+S+2n=0 φn

)· φn

∑N+S+1n=0 φn

Page 7: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

3 METHODOLOGY 5

We now have to show that:(− φN+S+1

∑N+Sn=0 φn

)· φn

∑N+S+1n=0 φn

(− φN+S+2

∑N+S+2n=0 φn

)· φn

∑N+S+1n=0 φn

Or equivalently:

− φN+S+1

∑N+Sn=0 φn

≤ − φN+S+2

∑N+S+2n=0 φn

(5)

To show this inequality we need to substitute φn back into the equation:

− φN+S+1

∑N+Sn=0 φn

= −µN+S+1

λN+S+1·∏N+S+1i=1 min{i,N}

∑N+Sn=0

µn

λn·∏ni=1 min{i,N}

= −( µ

λ )N+S+1

∑N+Sn=0 (

µλ )

n ·[

∏N+S+1i=1 min{i,N}∏n

i=1 min{i,N}

] (6)

≤ −( µ

λ )N+S+1

∑N+Sn=0 (

µλ )

n ·[

∏N+S+2i=1 min{i,N}

∏n+1i=1 min{i,N}

] (7)

≤ −( µ

λ )N+S+1

λµ ∏N+S+2

i=1 min{i, N}+ ∑N+Sn=0 (

µλ )

n ·[

∏N+S+2i=1 min{i,N}

∏n+1i=1 min{i,N}

] (8)

= −( µ

λ ) · (µλ )

N+S+1

∏N+S+2i=1 min{i, N}+ ∑N+S

n=0 (µλ )

n+1 ·[

∏N+S+2i=1 min{i,N}

∏n+1i=1 min{i,N}

]= −

( µλ )

N+S+2

∑N+S+1n=0 ( µ

λ )n ·[

∏N+S+2i=1 min{i,N}∏n

i=1 min{i,N}

]

= −µN+S+2

λN+S+2·∏N+S+2i=1 min{i,N}

∑N+S+1n=0

µn

λn·∏ni=1 min{i,N}

= − φN+S+2

∑N+S+2n=0 φn

The inequality between 6 and 7 is explained by the fact that:

∏N+S+1i=1 min{i, N}∏n

i=1 min{i, N} =

∏N+S+2i=1 min{i,N}

∏n+1i=1 min{i,N}

∏N+S+2i=1 min{i,N}

∏n+1i=1 min{i,N}

· ∏N+S+1i=1 min{i, N}∏n

i=1 min{i, N}

=∏N+S+2

i=1 min{i, N}∏n+1

i=1 min{i, N}· min{n + 1, N}

min{N + S + 2, N}

≤ ∏N+S+2i=1 min{i, N}

∏n+1i=1 min{i, N}

The inequality between 7 and 8 is explained by the fact that the term λµ ∏N+S+2

i=1 min{i, N}is always positive, since λ, µ, N > 0. Therefore inequality 5 holds and Lemma 1 (4) isproven.

Page 8: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

3 METHODOLOGY 6

Lemma 1 will be useful for proving Theorem 1.

Proof of Theorem 1:

C(S + 1)− C(S) =

(h(S + 1) + b

N

∑n=0

(N − n)p(n|S + 1)

)−(

hS + bN

∑n=0

(N − n)p(n|S))

= h + bN

∑n=0

(N − n)[

p(n|S + 1)− p(n|S)]

(9)

≤ h + bN

∑n=0

(N − n)[

p(n|S + 2)− p(n|S + 1)]

(10)

=

(h(S + 2) + b

N

∑n=0

(N − n)p(n|S + 2)

)−(

h(S + 1) + bN

∑n=0

(N − n)p(n|S + 1)

)= C(S + 2)− C(S + 1)

The inequality between 9 and 10 holds, because of Lemma 1. This proofs Theorem 1(3) that the cost function of the BC is convex.

The convexity of the BC cost function will be very useful in proposing a method thatreduces the computation time for finding the optimal value of S, and still guarantees thatwe find S∗, the number of spares in stock for which the operation costs are at its globalminimum.

Figure 1: Cost functions for two fleets with its own repair shops (BC)

0 2 4 6 8 10 12 14 16 18 2010

15

20

25

30

35

40

Number of spares in stock

Tota

l costs

Cost function of BC

N1 = 10, λ

1 = 0.09, µ

1 = 1.0, h

1 = 1.0, b

1 = 20

N2 = 5, λ

2 = 0.09, µ

2 = 0.5, h

2 = 0.9, b

2 = 18

In Figure 1 an example of the cost function is shown. The convexity is very clear forthese two functions.

3.1.2 Search methods

The first method we propose to find S∗ uses the property of a convex function, that whenit starts increasing, it will never decrease anymore. The algorithm computes the costsfor every S, until the cost function value starts increasing. This means that the previousiteration corresponds to the number of spares S at which the production costs are at itsminimum. The pseudo-code for this algorithm is as follows:

Page 9: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

3 METHODOLOGY 7

Pseudo Code Base Case 1

Set C(0)→ infSet S→ 0repeat

k→ S + 1Compute C(S)

until C(S) > C(S− 1);C∗ → C(S− 1)S∗ → S− 1Return S∗, C∗

In Figure 1 we show an example of the cost functions for two fleets (correspondingto the first row of results in Appendix 7). If we use complete enumeration, and we setSmax for both fleets at 20, 40 function evaluations have to be computed. Since the minimaare at S1 = 9 and S2 = 6, the algorithm we propose only uses 19 function evaluations.Another advantage is that it costs more time to solve a system of equations when thenumber of equations and variables increase. When S is large, there are more states inwhich the system can be and therefore there are more variables and equations. Thereforeit is beneficial to compute the cost function only for small values of S, which is done inthe proposed method.

Another search method that is proposed is the Fibonacci search method. The Fi-bonacci is similar to the well-known golden search algorithm, but is suitable for an inte-ger function such as the cost function 2 in Section 3.1. The Fibonacci search algorithm isa four point search method that shrinks a start interval iteratively wherein the minimumof the cost function will be. In the end the interval consists of four function values andthe minimum will be searched over these four values, and S∗ will be the correspondingstock to this minimum.

The advantage of this method is that function evaluations get reused, just as in thegolden search method, which saves computation time. The downside of this searchmethod is that it needs an upper bound. We did not look into how to find a upper boundthat guarantees that the minimum will indeed lie within the interval.

The pseudo-code of the algorithm is shown on the next page. We define Fi as theith Fibonacci number and Fn as the smallest Fibonacci number greater than the presetupper bound. The new upper bound of the interval will be Fn, such that the minimum issearched in the interval [0, Fn].

Page 10: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

3 METHODOLOGY 8

Pseudo Code Base Case 2

Set L→ 0Set U → FnSet CL, CU → infSet S1 → Fn−2Set S2 → Fn−1Compute C1 → C(S1)Compute C2 → C(S2)for j = 3, ..., n− 1 do

if C1 < C2 thenSet U → S2Set CU → C2Set S2 → S1Set C2 → C1Set S1 → L + Fn−jCompute C1 → C(S1)

elseSet L→ S1Set CL → C1Set S1 → S2Set C1 → C2Set S2 = U − Fn−jCompute C2 = C(S2)

endendif CL equals inf then

Compute CL → C(L)endif CL equals inf then

Compute CU → C(U)endSet C∗ → min({CL, C1, C2, CU})Set S∗ to corresponding SReturn C∗, S∗

3.2 Central Repair Shop

In the Central Repair Shop case (CRS), all machines are repaired at the same shop, butwith a higher repair rate. For now we assume that µi = r · µBC

i . Since every machineis repaired at the same shop, the state probabilities for every fleet are not independentanymore. This means that the problem becomes much larger and costs more time tosolve.

Let us first define the vector n = (n1, n2, ..., nr), which states the number of functionalmachines of every fleet. We also define vector S = (S1, S2, ..., Sr), which states the num-ber of spares kept in stock per fleet. Our goal is to find the optimal vector S for whichthe operation costs for the CRS are at its minimum. Therefore we need to minimize thecost function, which is slightly different in the CRS compared to the BC, due to the de-pendence between the fleets:

Page 11: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

3 METHODOLOGY 9

C∗ = minS

{r

∑i=1

Ci(S)

}where,

Ci(S) = hi · Si + bi

Ni

∑n=0

(Ni − n)pi(n)

The minimum costs depend on the scheduling policy that is used in the CRS. Thescheduling policy states which machine type is going to be repaired when not all ma-chines are functional. Liang et al. (2013) propose the Myopic(R) policy, which is fasterthan the optimal scheduling, and has a low cost difference with the optimal schedulingpolicy.

3.2.1 Myopic(R) policy

The Myopic(R) policy chooses to repair the machine type first for which the cost differ-ence relatively to its repair and breakdown rate, between repairing and not repairing thismachine is the largest. This cost rate difference is dependent on the number of type imachines in stock in a certain state. Therefore we define xi as the inventory position ofmachine type i. The cost difference rate is defined as follows for xi > 0:

∆cRi (xi) = −bi

Ni+xi

∑m=xi+1

pRi (m) (11)

The probability pRi (m) is the probability that m machines will break during the look

ahead time. The look ahead time in the Myopic(R) policy is the repair time. Liang et al.(2013) show that for 0 ≤ xi ≤ m:

pRi (m) =

Ni !(Ni−m+xi)!

µiλi

(Niλi)xi

(Niλi+µi)xi

∏m−xij=0 (Ni +

µiλi− j)

(12)

When xi = 0, there can be precisely Ni functional machines, or less. When xi = 0 andthere are exactly ni = Ni machines functional , the costs are defined as:›

cRi (xi) = −bi ·

(Niλi)

Niλi + µi(13)

When xi = 0 and the system is not fully operational, such that ni < Ni, the expecteddowntime rate costs are defined as:

cRi (xi) = −bi (14)

For every state n we can determine which machine has the lowest expected downtime

cost rate difference. The machine type that corresponds to this minimum for µi ·∆cRi (xi)

λiis

the machine that will be repaired in this state. As can be seen, we compensate for therepair and break down rate in this fraction, such that we look at the relative downtimecosts. Since we now know which machine will be repaired in every state we can computethe global balance equations:

Page 12: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

3 METHODOLOGY 10

3.2.2 Global balance equations

To find the long-term state probabilities, we compose a system of equations.

The left hand side of the equation (first line) is the rate that the process leaves staten = (n1, n2, ..., nr).

The first term of the right hand side (second line) is the rate that the process enters staten = (n1, n2, ..., nr) by a break down of any of the machines.

The second term of the right hand side (third line) is the rate that the process enters staten = (n1, n2, ..., nr) by a repair.

[r

∑i=1

λi(ni) + µ(n)

]P(n) =

r

∑i=1

[λi(ni + 1) · P(n + ei)] +

r

∑i=1

[µ(n− ei) · Ii · P(n− ei)]

where ei is a unit-vector.

Where

λi(ni) = min{ni, Ni} · λi

is the failure rate of a type i machine given that there are min{ni, Ni} functional and activemachines.

Where

µ(n) =

{µi, if not all machines are functional0, otherwise

where i is the to be repaired machine based on the Myopic(R) scheduling policy in Sec-tion 3.2.1.

Where

Ii =

{1, if type i machine in function µ(.) is scheduled for repair0, otherwise

At last we add the normalizing equation, such that the total probability equals one:

∑n

P(n) = 1

We will solve this system by using the MATLAB function for solving a system of equa-tions.

Page 13: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

3 METHODOLOGY 11

3.2.3 Search methods

Intuitively the CRS cost function is convex, just as the BC cost function. When the multi-ple stocks Si increase, the downtime costs are expected to be decreasing descending, andtherefore expected to be convex in S. The holding costs increase linear, so are convex inS as well. Since the sum of two convex function is also convex, the the CRS cost functionhas to be convex as well if the assumption on the downtime costs holds. We could notprove this assumption for the CRS, since it is too complex for the time span we have.

Figure 2: Cost functions for two fleets sharing the same repair shop (CRS)

Therefore we checked this assumption by numerical experiments. In Figure 2 thecost function is shown for the experiment corresponding to the first row of the results inAppendix 7. As we expected we can see in both graphs clear convex behavior. Althoughwe do not know for sure if convexity holds in every case, we propose an algorithm whichwill decrease the computational time drastically if this assumption indeed holds.

The algorithm is the same as the first proposed method in the BC for a given stock forall the fleets except for fleet 1, so for a given S2, ..., Sr. This means the stop at first increase-method is used in one dimension. In the other dimensions we use complete enumerationto guarantee convergence to the Myopic(R) optimum.

If the cost function of the Myopic(R) is convex, this method will converge. Since wehave no proof of the convexity of this function, there is no guarantee that the optimalvector S will be found. Therefore this algorithm is a heuristic for the Myopic(R) policy inthe CRS.

Another method we propose, is also based on the assumption of convexity in the costfunction. It is almost the same as the previous, but were we first only used the stop at firstincrease-method in one direction, we will now use it in all directions. This method is alsoknown as the coordinate descent-method.

The algorithm will search for an optimal value for Si given Sj, ∀j 6= i ∈ R, whereR = {1, 2, ..., r}. We will use the line search method from Section 3.1.2 to find S∗i . Whenthe optimal value for Si is found, another direction i will be chosen, and another optimumwill be searched for along the new line. The process will repeat itself until no moreimprovement is found. The algorithm will search in the following order of directions:i = 1, 2, ..., r, 1, 2, ..., r....

A slight adjustment has to be notified according to the line search method, becausewe used to start at the search at S0

i = 0, such that we only have to increase Si to find the

Page 14: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

4 RESULTS 12

minimum costs. Now that S0i ≥ 0 in each line search, the optimum can be on either sides

of the current Si. We propose to first look if a decrease is found when Si is increased, andif not so, we search in the other direction along the line.

The downside of this method that it does not guarantee convergence to the mini-mum, even for convex functions. The upside is that this method will be faster since theinformation from the previous line-search will be used in the next.

3.3 BC/CRS-equilibrium

In the BC there is one repair shop per machine type, and in the CRS there is only onerepair shop. This means that the CRS has more repairs to handle than the BC, since thebreak down rate per shop in the BC is ni ·λi, ∀i, and in the CRS this rate equals ∑r

i=1 ni ·λi.The CRS can only handle one machine at the time and the BC at most r different machinesat the same time.

For trivial reasons, the BC will therefore be lower in operational costs when µCRSi =

µBCi . Keeping the repair rates at the same in the BC and the CRS, does not make sense,

since you will just lose workforce. In Liang et al. (2013), they use µi = 2 · µBCi , when

r = 2. Therefore we assume that they used α = r in µCRSi = α · µBC

i . This makes sensewhen for example in every shop there is an equal number of repairmen, and the types ofmachines do not require a specific skill set. The total workforce is then combined in thecentral repair shop resulting in α = r.

There are also a lot of reasons to argue the α = r assumption. For example, if amachine type does need a specific skill to be repaired, combining workforce from otherrepair shops in one central repair shop will result not in µi = r · µBC

i , since the work-force from a repair shop j, where j 6= i, cannot repair machine i at the same rate as theworkforce from repair shop i.

Because the α = r assumption may be argued, we are going to look for which valueof α the operation costs in the CRS are equal to the costs in the BC. We will do this tosearch over different values of α using the golden search method. For r = 2, we use theinitial interval of α = [1, 2], because at α = 1 the BC is preferred over the CRS and asshown by Liang et al. (2013) the CRS is preferred when α = 2, with r = 2. Furthermorethe function we evaluate is the absolute value of the difference between the CRS and BCoperation costs ( f (α) = |CBC − CCRS(α)|, where CCRS(α) is the cost function of the CRS,with µi = α · µBC

i ). Since intuitively we know the minimum of this function equals 0, thestopping criterium we use is f (α) < 104. We also set the maximum number of iterationson 25.

4 Results

Before we take a look at the results of the several , we have to introduce numerical exam-ples. We will use the same instances as Liang et al. (2013) use. We consider a productionline with r = 2 fleets, with the following parameters:

• Setting h1 = 1, we consider the following holding cost rates for fleet 2: h2 ={0.9, 0.7, 0.5};

• We consider the following down time cost rate to holding cost rations: b1h1

= b2h2

=

{20, 30};

• The fleet sizes are: (N1, N2) ∈ {(10, 5), (10, 10, (10, 15), (50, 25), (50, 50), (100, 50)};

Page 15: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

4 RESULTS 13

• When N1 = 10, 100 (N1 = 50), we set µ1 = 2 (µ1 = 1), and we consider µ1µ2∈

{2, 1, 23};

• As an approximate measure of the repair shop utilization, we set u = λ1 N1µ1

= λ2 N2µ2∈

{0.45, 0.35, 0.25} corresponding to high, medium and low levels of repair shop uti-lization.

This results in a total of 3× 2× 6× 3× 3 = 324 instances which have to be computedfor all methods. The results can be found in Appendix 7.

The results of these numerical experiments did agree with the results in Liang et al.(2013), except for the coordinate descent-method. This is caused by the fact that it is aheuristic that does not always converge to the Myopic(R) optimum. For that reason thecoordinate descent-method has its own cost and optimal stock columns in the tables withresults.

4.1 Base Case

When we use complete enumeration we have to set an Smax to find the optimal numberof spare machines. For the BC we used an Smax = 50 for both fleets, which we assumedto be an arbitrarily large enough number.

In Section 3.1 we propose two search methods for finding the optimal stock S for theBC making use of the convexity of its cost function. In Appendix 7 the extensive resultscan be found.

To find out the performance of the method we look at the relative computation timedifference as a measure, where TCE is the computation time for using complete enumer-ation, where TS is the computation time of the proposed stop at first increase-method, andwhere TF is the computation time of the Fibonacci-method:

∆CES =

TCE − TS

TCE

∆CEF =

TCE − TF

TCE

∆FS =

TF − TS

TF

Table 1: Summary of BC results

min. (%) mean (%) median (%) max. (%)

∆CS 8.9 86.2 91.5 93.9

∆CF 61.11 83.1 84.3 99.4

∆FS -1192.5 -11.2 4.6 29.6

Table 1 summarizes the relative performance of the search methods in the BC. Theresults indicate that the proof of convexity makes it possible to decrease the calculationtime drastically.

Page 16: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

4 RESULTS 14

4.2 Central Repair Shop

The computation time for the instances with N1, N2 being large, will be large, since thenumber of variables and equations in the system of equations of Section 3.2.2 increases.When we use complete enumeration we have to set an Smax to find the optimal numberof spare machines. Since we have limited time, we chose to look at the results of Lianget al. (2013) and chose an Smax based on their findings. We decided that Smax

i should beconstant for a given Ni. The values for Smax

i can be found below.

(N1, N2)

(10, 5) (10, 10) (10, 15) (50, 25) (50, 50) (100, 50)

Smax1 20 20 20 25 25 25

Smax2 16 20 22 25 25 31

To determine the performance of the several search methods in the CRS while usingthe Myopic(R) policy, we propose the following measures:

∆CES1 =

TCE − TS1

TCE

∆CECD =

TCE − TF

TCE

∆S1CD =

TS1 − TCD

TS1

Here is TCE the computation time of finding the minimum while using complete enu-meration again, TS1 the stop at first increase-method in one dimension and TCD the coordi-nate descent method where the stop at first increase-method is used in every dimension.

Due to the time constraints not all results for the complete enumeration could beobtained. The last 40 instances are not created. In 44 out of 324 cases the same minimumas with the methods that did converge. These are therefore not included in the measures.For the other two methods all proposed instances are obtained and therefore included in∆S1

CD.

Table 2: Summary of CRS - Myopic(R) policy results

min. (%) mean (%) median (%) max. (%)

∆CES1 44.5 82.2 85.8 91.8

∆CECD 84.4 96.8 98.3 99.7

∆S1CD 50.2 85.5 88.1 96.9

Table 2 summarizes the relative performance of the search methods in the BC. Theresults indicate that the two heuristics save a lot of computation time.

The stop at first increase-method in one direction converged in for all instances, whichsuggests that cost function for the CRS is also convex.

The coordinate descent method does not converge to the optimal stock S∗ for all in-stances. In 44 out of 324 the method did not converge and higher costs were found. Thisis caused by the fact that in some cases no improvement of costs could be found in anydirection i, but only in a direction where you adjust Si and Sj with i 6= j at the same time.

Page 17: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

4 RESULTS 15

We only summarize the relative increase for the 44 instances that did not converge,and not include the instances for which the coordinate descent method did converge. Therelative positive deviations from the minimum are summarized in Table 3.

Table 3: Deviation from the minimum costs

min. (%) mean (%) median (%) max. (%)

1.7 0.4 0.2 1.7

The results indicate that the coordinate descent method does not deviate much fromthe minimum costs for the Myopic(R) policy and save a lot of computation time.

4.3 BC/CRS-equilibrium

To find the equilibria we used the stop at first increase-method, since it converges thefastest to the Myopic(R) optimum. Due to time constraints, and the long computationtimes, even for the stop at first increase-method, we did not compute all values of α. Wedid compute alpha for (N1, N2) ∈ {(10, 5), (10, 10), (10, 15), (50, 25)}. The obtained val-ues for α can be found in Appendix 7.

The average value of α equals 1.601. The results showed that their was a high cor-relation between the utilization factor u and the equilibrium factor α. The correlationbetween α and u equals 0.972. This is also shown in the scatter plot in Figure 3 and inTable 4 we give the mean values of α for different utilization factors:

Figure 3: Scatter plot showing the relation between utilization rate and equilibrium factor

α

0.25 0.3 0.35 0.4 0.45

u

1.3

1.4

1.5

1.6

1.7

1.8

1.9Repair shop utilization vs. equilibrium factor α plot

Table 4: Mean alpha for different utilization rates

u 0.25 0.35 0.45

α 1.399 1.601 1.803

Page 18: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

5 CONCLUSION 16

5 Conclusion

We can conclude that due to the proof of convexity of the BC cost function smart searchmethods can be used to decrease the calculation time significantly for finding the min-imum production line costs. The stop at first increase-method performs better than theFibonacci search method in most of the cases, with a computation time decrease of re-spectively 86.2% and 83.1%. The better performance of the stop at first increase-methodis mostly faster due to the fact that the optimal stock for the Myopic(R) policy is smallfor most instances and therefore this method does not use many iterations to find theminimum costs. Also, this method always converges to minimum costs. When a largestock is needed for to assure minimum costs, the Fibonacci method is preferred. The dis-advantage of the Fibonacci method is that a maximum possible stock has to be set. Thismaximum number of spares is unknown, and therefore we do not know if the minimumwill lie in the preset interval [0, Smax]. The stop at first increase-method is therefore pre-ferred. If there would be a method to estimate the optimal stock, a hybrid method couldbe beneficial. Then the Fibonacci method will be used when the expected optimal stockis large.

For the Myopic(R) policy we proposed two heuristics to find the minimum costs. Thefirst method will converge to the minimum if the cost function is convex, which seemsvery likely according the results, because in all the proposed instances the method con-verged. The average decrease in time is 82.2%. The second method we proposed has aneven smaller average computation time (a decrease of 96.8 %), but does not converge insome cases (13.5%). The cost difference with the optimal value is on average 0.4% for thenot converged cases. This means that the loss is really small and therefore the coordinatedescent method has a great performance, since it saves lot of computation time. In Lianget al. (2013) an average loss of 0.66% was considered as close enough to the optimum.Due to this fast search method another 0.0005% is added, which can be considered as aninsignificant increase.

Finding the equilibria where the BC has the same costs as the CRS with the Myopic(R)scheduling policy, has shown that the utilization rate is highly correlated with the factorα. We think this is caused by the fact that a high utilization makes combining repairshops less beneficial, and the assumption that a high factor α corresponds to the CRSbeing a less profitable substitute for the BC. Combining shops with a high utilization isless profitable since combining makes sense when the workforce in one shop can be usedfor repairing other machine types. If the workforce is already occupied all the time withrepairing the machine type of its shop, it cannot be used for repairing other machinestypes.

6 Discussion and further research

Although improvements are made, there are several limitations to this research. Due totime constraints there was a lack code optimizing. This means that the computation timescould have been lower, influencing the result. On the other hand, it is expected that thiswill reduce the computation times for all methods and that the relative difference will beapproximately the same.

Also, not all instances were considered in this research due to the same time con-straint as mentioned before. This means that we cannot use our recommendations for all

Page 19: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

REFERENCES 17

instances.For the complete enumeration, Fibonacci- and the stop at first increase-method in one

direction for the CRS case, a maximum value for S had to be set before solving the prob-lem. We did not find a way to find an upper bound for S such that convergence to theminimum is guaranteed. In further research it will be useful to find a way to set an Smax

that assures convergence.For the CRS we set Smax by looking at the results from Liang et al. (2013). This means

that if we had to choose Smax without this knowledge, and we would have chosen an-other value, it could have been lower, meaning we would not find the minimum, or itcould have been higher and the computation time difference in Section 4.1 and 4.2 wouldbe even greater and the proposed stop at first increase-method in the BC and the coordi-nate descent method in the CRS are even more preferred.

Another thing that has to be looked in, is what happens when the utilization increases.The results suggest that the CRS will not be an improvement anymore when the singlerepair shops have a higher utilization, since the factor α might be greater than 2 when theutilization factor for the single repair shops increase.

References

Liang, W. K., Balcıoglu, B., and Svaluto, R. (2013). Scheduling policies for a repair shopproblem. Annals of Operations Research, 211(1):273–288.

Sahba, P., Balcıoglu, B., and Banjevic, D. (2013). Spare parts provisioning for multiplek-out-of-n: G systems. IIE transactions, 45(9):953–963.

Taylor, J. and Jackson, R. (1954). An application of the birth and death process to theprovision of spare machines. OR, 5(4):95–108.

Page 20: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

REFERENCES 18

Page 21: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

7 APPENDIX 19

7 Appendix

Tabl

e5:

The

para

met

ers

and

corr

espo

ndin

gm

inim

alco

sts

for

the

BCan

dth

eM

yopi

c(R

)pol

icy

wit

hth

eco

mpu

tati

onti

mes

ofth

ese

vera

lsea

rch

met

hods

and

the

equi

libri

umfa

ctor

α.

PAR

AM

ETER

SBa

seC

ase

Myo

pic(

R)

Myo

pic(

R)

Equi

libri

um

N1

N2

λ1

λ2

µ1

µ2

h 1h 2

b 1b 2

Cos

tsS 1

S 2T C

ET S

T FC

osts

S 1S 2

T CE

T SC

osts

S 1S 2

T CD

α

105

0.09

0.09

21

10.

920

1827

.314

96

0.03

30.

008

0.00

515

.317

37

21.9

73.

564

15.3

173

70.

962

1.73

410

50.

070.

072

11

0.9

2018

14.9

296

50.

025

0.00

50.

003

8.26

24

21.0

372.

323

8.26

24

0.59

11.

568

105

0.05

0.05

21

10.

920

188.

774

33

0.02

40.

002

0.00

25.

071

22

20.7

392.

218

5.07

12

20.

197

1.38

410

50.

090.

182

21

0.9

2018

27.3

149

60.

022

0.00

40.

003

16.2

64

620

.674

3.62

316

.305

55

0.65

51.

751

105

0.07

0.14

22

10.

920

1814

.929

65

0.02

40.

001

0.00

28.

528

33

20.6

622.

519

8.52

83

30.

378

1.59

710

50.

050.

12

21

0.9

2018

8.77

43

30.

022

0.00

10.

002

5.14

22

220

.75

2.33

85.

142

22

0.18

81.

409

105

0.09

0.27

23

10.

920

1827

.314

96

0.02

30.

002

0.00

216

.144

73

20.6

934.

144

16.1

447

30.

398

1.74

510

50.

070.

212

31

0.9

2018

14.9

296

50.

016

0.00

10.

003

8.66

34

220

.71

2.63

68.

663

42

0.26

31.

593

105

0.05

0.15

23

10.

920

188.

774

33

0.02

70.

001

0.00

35.

242

220

.803

2.32

25.

242

20.

203

1.41

910

50.

090.

092

11

0.9

8072

47.3

1718

140.

021

0.00

40.

003

24.4

685

1420

.674

8.15

324

.468

514

2.90

51.

813

105

0.07

0.07

21

10.

980

7222

.122

98

0.01

80.

002

0.00

311

.743

46

20.9

884.

066

11.7

434

60.

979

1.59

210

50.

050.

052

11

0.9

8072

12.5

485

50.

021

0.00

20.

003

7.19

43

320

.757

3.03

57.

194

33

0.36

71.

385

105

0.09

0.18

22

10.

980

7247

.317

1814

0.01

50.

004

0.00

426

.807

713

20.7

239.

174

26.8

668

122.

793

1.82

710

50.

070.

142

21

0.9

8072

22.1

229

80.

016

0.00

10.

003

12.2

675

520

.696

4.01

612

.44

64

0.62

91.

625

105

0.05

0.1

22

10.

980

7212

.548

55

0.01

60.

001

0.00

37.

264

33

20.7

582.

948

7.26

43

30.

354

1.41

410

50.

090.

272

31

0.9

8072

47.3

1718

140.

016

0.00

30.

004

26.2

7914

520

.729

10.4

26.3

3113

60.

957

1.82

105

0.07

0.21

23

10.

980

7222

.122

98

0.01

60.

001

0.00

212

.292

64

20.7

724.

1812

.292

64

0.55

91.

619

105

0.05

0.15

23

10.

980

7212

.548

55

0.02

30.

001

0.00

27.

404

33

20.8

052.

946

7.40

43

30.

366

1.41

510

50.

090.

092

11

0.7

2014

24.8

119

60.

019

0.00

10.

003

13.1

513

721

.267

3.11

413

.151

37

0.87

1.71

105

0.07

0.07

21

10.

720

1413

.463

65

0.01

70.

001

0.00

27.

199

24

20.7

22.

433

7.19

92

40.

468

1.54

510

50.

050.

052

11

0.7

2014

7.88

63

30.

016

0.00

10.

002

4.51

22

20.6

172.

224

4.51

22

0.19

41.

364

105

0.09

0.18

22

10.

720

1424

.811

96

0.01

60.

001

0.00

214

.025

37

20.6

463.

305

14.0

664

60.

674

1.72

510

50.

070.

142

21

0.7

2014

13.4

636

50.

015

0.00

10.

003

7.52

53

320

.71

2.40

47.

525

33

0.37

61.

575

105

0.05

0.1

22

10.

720

147.

886

33

0.01

60.

001

0.00

24.

563

22

20.6

52.

209

4.56

32

20.

198

1.39

310

50.

090.

272

31

0.7

2014

24.8

119

60.

023

0.00

10.

002

14.4

15

420

.622

3.52

114

.426

63

0.36

51.

731

105

0.07

0.21

23

10.

720

1413

.463

65

0.01

80.

001

0.00

27.

671

33

20.7

272.

439

7.79

84

20.

256

1.58

810

50.

050.

152

31

0.7

2014

7.88

63

30.

017

0.00

10.

003

4.64

22

20.5

982.

205

4.64

22

0.21

1.40

910

50.

090.

092

11

0.7

8056

42.8

3518

140.

017

0.00

30.

003

20.7

835

1520

.978

7.23

420

.783

515

3.01

91.

801

105

0.07

0.07

21

10.

780

5619

.903

98

0.01

60.

001

0.00

210

.272

46

20.8

784.

027

10.2

724

60.

846

1.57

110

50.

050.

052

11

0.7

8056

11.2

645

50.

019

0.00

10.

002

6.40

53

320

.683

2.96

26.

405

33

0.38

31.

362

105

0.09

0.18

22

10.

780

5642

.835

1814

0.01

60.

003

0.00

322

.826

615

20.5

518.

314

22.8

266

152.

735

1.81

410

50.

070.

142

21

0.7

8056

19.9

039

80.

022

0.00

20.

002

10.7

44

620

.789

3.98

710

.871

55

0.69

61.

605

105

0.05

0.1

22

10.

780

5611

.264

55

0.01

80.

001

0.00

26.

454

33

20.6

612.

949

6.45

43

30.

357

1.39

810

50.

090.

272

31

0.7

8056

42.8

3518

140.

017

0.00

30.

003

23.8

7912

720

.689

9.05

623

.879

127

0.88

31.

818

105

0.07

0.21

23

10.

780

5619

.903

98

0.01

60.

001

0.00

311

.049

55

20.7

594.

072

11.0

716

40.

442

1.62

210

50.

050.

152

31

0.7

8056

11.2

645

50.

019

0.00

10.

002

6.56

43

320

.688

2.93

16.

564

33

0.37

91.

416

105

0.09

0.09

21

10.

520

1022

.309

96

0.01

60.

001

0.00

210

.413

37

20.7

132.

942

10.4

133

70.

693

1.63

310

50.

070.

072

11

0.5

2010

11.9

966

50.

019

0.00

10.

002

6.01

32

420

.756

2.24

86.

013

24

0.37

41.

489

105

0.05

0.05

21

10.

520

106.

999

33

0.02

40.

001

0.00

33.

949

22

20.7

092.

208

3.94

92

20.

198

1.31

910

50.

090.

182

21

0.5

2010

22.3

099

60.

015

0.00

10.

003

11.1

983

720

.675

3.10

311

.198

37

0.69

31.

645

105

0.07

0.14

22

10.

520

1011

.996

65

0.01

70.

001

0.00

36.

434

24

20.8

052.

344

6.43

42

40.

512

1.52

210

50.

050.

12

21

0.5

2010

6.99

93

30.

016

00.

003

3.98

42

220

.651

2.20

53.

984

22

0.17

21.

363

105

0.09

0.27

23

10.

520

1022

.309

96

0.01

60.

001

0.00

411

.854

37

20.6

173.

242

11.8

554

60.

629

1.65

610

50.

070.

212

31

0.5

2010

11.9

966

50.

017

0.00

10.

003

6.76

63

421

.303

2.37

86.

766

34

0.43

1.54

910

50.

050.

152

31

0.5

2010

6.99

93

30.

021

0.00

10.

003

4.04

22

21.0

022.

233

4.04

22

0.2

1.39

910

50.

090.

092

11

0.5

8040

38.3

5418

140.

017

0.00

30.

003

16.3

895

1420

.608

5.88

16.3

895

142.

309

1.75

810

50.

070.

072

11

0.5

8040

17.6

859

80.

018

0.00

20.

002

8.61

84

620

.847

3.83

58.

618

46

0.78

1.52

910

50.

050.

052

11

0.5

8040

9.97

95

50.

020.

001

0.00

25.

616

33

20.9

22.

952

5.61

63

30.

365

1.31

910

50.

090.

182

21

0.5

8040

38.3

5418

140.

016

0.00

30.

003

18.0

465

1521

.152

6.73

418

.039

516

2.35

91.

771

105

0.07

0.14

22

10.

580

4017

.685

98

0.01

60.

001

0.00

39.

157

47

20.8

133.

898

9.15

74

70.

758

1.56

310

50.

050.

12

21

0.5

8040

9.97

95

50.

020.

001

0.00

25.

644

33

20.6

652.

929

5.64

43

30.

379

1.36

610

50.

090.

272

31

0.5

8040

38.3

5418

140.

017

0.00

30.

003

19.4

676

1520

.818

7.70

319

.467

615

2.44

11.

781

105

0.07

0.21

23

10.

580

4017

.685

98

0.01

80.

002

0.00

59.

688

47

20.6

883.

959

9.68

84

70.

903

1.59

310

50.

050.

152

31

0.5

8040

9.97

95

50.

016

0.00

10.

003

5.72

53

320

.707

2.92

15.

725

33

0.36

21.

408

1010

0.09

0.04

52

11

0.9

2018

30.5

99

0.01

80.

002

0.00

317

.296

39

46.5

427.

111

17.2

963

91.

708

1.78

710

100.

070.

035

21

10.

920

1815

.826

66

0.01

90.

001

0.00

38.

628

24

47.5

814.

878.

628

24

0.88

81.

591

1010

0.05

0.02

52

11

0.9

2018

9.08

23

30.

023

0.00

10.

003

5.16

72

246

.642

5.77

45.

167

22

0.46

1.39

610

100.

090.

092

21

0.9

2018

30.5

99

0.01

90.

002

0.00

218

.832

48

46.4

098.

059

19.0

557

51.

223

1.81

1010

0.07

0.07

22

10.

920

1815

.826

66

0.01

60.

001

0.00

29.

033

446

.462

5.13

9.03

34

0.76

91.

627

1010

0.05

0.05

22

10.

920

189.

082

33

0.01

90.

001

0.00

35.

252

246

.438

4.64

85.

252

20.

455

1.42

410

100.

090.

135

23

10.

920

1830

.59

90.

018

0.00

20.

003

18.7

888

446

.503

8.98

18.8

129

30.

762

1.80

810

100.

070.

105

23

10.

920

1815

.826

66

0.01

80.

001

0.00

29.

156

43

46.3

625.

218

9.15

64

30.

693

1.62

810

100.

050.

075

23

10.

920

189.

082

33

0.02

40.

001

0.00

25.

368

22

46.9

744.

725.

368

22

0.45

11.

435

Page 22: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

7 APPENDIX 20Ta

ble

6:Th

epa

ram

eter

san

dco

rres

pond

ing

min

imal

cost

sfo

rth

eBC

and

the

Myo

pic(

R)p

olic

yw

ith

the

com

puta

tion

tim

esof

the

seve

rals

earc

hm

etho

dsan

dth

eeq

uilib

rium

fact

orα

.

PAR

AM

ETER

SBa

seC

ase

Myo

pic(

R)

Myo

pic(

R)

Equi

libri

um

N1

N2

λ1

λ2

µ1

µ2

h 1h 2

b 1b 2

Cos

tsS 1

S 2T C

ET S

T FC

osts

S 1S 2

T CE

T SC

osts

S 1S 2

T CD

α

1010

0.09

0.04

52

11

0.9

8072

51.5

8518

180.

034

0.00

40.

004

26.7

295

1646

.577

14.8

0326

.729

516

5.91

91.

836

1010

0.07

0.03

52

11

0.9

8072

23.0

659

90.

017

0.00

20.

003

12.1

294

646

.593

8.41

112

.129

46

1.40

41.

604

1010

0.05

0.02

52

11

0.9

8072

12.8

595

50.

018

0.00

10.

002

7.30

53

346

.477

6.14

67.

305

33

0.69

31.

388

1010

0.09

0.09

22

10.

980

7251

.585

1818

0.01

70.

005

0.00

329

.889

716

46.3

4620

.668

30.0

269

146.

271.

853

1010

0.07

0.07

22

10.

980

7223

.065

99

0.01

60.

002

0.00

312

.764

56

46.5

398.

605

12.7

645

61.

386

1.64

310

100.

050.

052

21

0.9

8072

12.8

595

50.

023

0.00

10.

002

7.38

63

347

.187

6.17

67.

386

33

0.60

11.

423

1010

0.09

0.13

52

31

0.9

8072

51.5

8518

180.

018

0.00

40.

003

29.3

4916

646

.801

25.1

3329

.349

166

1.70

51.

8510

100.

070.

105

23

10.

980

7223

.065

99

0.01

80.

002

0.00

312

.884

74

46.6

098.

5412

.884

74

0.69

21.

638

1010

0.05

0.07

52

31

0.9

8072

12.8

595

50.

018

0.00

10.

002

7.54

93

346

.746

6.13

17.

549

33

0.58

11.

4310

100.

090.

045

21

10.

720

1427

.289

99

0.01

70.

002

0.00

214

.641

39

46.5

596.

776

14.6

413

91.

652

1.76

810

100.

070.

035

21

10.

720

1414

.16

66

0.02

0.00

10.

002

7.49

32

446

.537

4.87

17.

493

24

0.68

1.56

910

100.

050.

025

21

10.

720

148.

126

33

0.02

60.

001

0.00

34.

586

22

46.4

084.

713

4.58

62

20.

306

1.37

410

100.

090.

092

21

0.7

2014

27.2

899

90.

017

0.00

20.

002

16.0

043

946

.813

7.38

216

.004

39

1.89

91.

788

1010

0.07

0.07

22

10.

720

1414

.16

66

0.01

70.

001

0.00

27.

883

446

.467

4.90

87.

883

40.

699

1.60

610

100.

050.

052

21

0.7

2014

8.12

63

30.

016

0.00

10.

002

4.64

92

246

.492

4.60

44.

649

22

0.29

1.40

710

100.

090.

135

23

10.

720

1427

.289

99

0.01

80.

002

0.00

316

.715

74

46.3

978.

095

16.7

157

40.

963

1.80

110

100.

070.

105

23

10.

720

1414

.16

66

0.02

0.00

10.

003

8.15

94

346

.446

5.66

78.

159

43

0.45

31.

626

1010

0.05

0.07

52

31

0.7

2014

8.12

63

30.

024

0.00

10.

003

4.74

12

246

.493

4.64

24.

741

22

0.30

31.

432

1010

0.09

0.04

52

11

0.7

8056

46.1

5518

180.

018

0.00

40.

005

22.4

575

1747

.375

14.6

4122

.457

517

5.70

21.

824

1010

0.07

0.03

52

11

0.7

8056

20.6

379

90.

018

0.00

20.

003

10.5

754

746

.608

8.47

610

.575

47

1.52

1.58

310

100.

050.

025

21

10.

780

5611

.506

55

0.01

70.

001

0.00

26.

493

33

46.3

916.

113

6.49

33

30.

581.

369

1010

0.09

0.09

22

10.

780

5646

.155

1818

0.01

70.

005

0.00

425

.137

618

46.5

3419

.395

25.1

376

185.

804

1.84

210

100.

070.

072

21

0.7

8056

20.6

379

90.

020.

004

0.00

311

.125

47

47.1

38.

397

11.1

254

71.

584

1.62

210

100.

050.

052

21

0.7

8056

11.5

065

50.

024

0.00

20.

002

6.55

13

346

.415

6.08

96.

551

33

0.58

41.

407

1010

0.09

0.13

52

31

0.7

8056

46.1

5518

180.

018

0.00

50.

003

26.6

8214

746

.361

21.9

7126

.682

147

3.71

1.84

910

100.

070.

105

23

10.

780

5620

.637

99

0.01

70.

004

0.00

311

.524

65

46.6

689.

839

11.5

246

50.

994

1.64

310

100.

050.

075

23

10.

780

5611

.506

55

0.01

80.

002

0.00

26.

683

346

.795

6.33

36.

683

30.

595

1.43

1010

0.09

0.04

52

11

0.5

2010

24.0

799

90.

018

0.00

20.

003

11.9

83

1046

.456

6.45

211

.98

310

1.60

91.

7410

100.

070.

035

21

10.

520

1012

.494

66

0.01

80.

002

0.00

36.

358

24

46.4

184.

767

6.35

82

40.

668

1.53

810

100.

050.

025

21

10.

520

107.

173

30.

024

0.00

10.

002

4.00

62

246

.645

4.64

4.00

62

20.

297

1.34

410

100.

090.

092

21

0.5

2010

24.0

799

90.

017

0.00

20.

002

12.9

953

1051

.212

6.89

712

.995

310

1.56

1.75

710

100.

070.

072

21

0.5

2010

12.4

946

60.

016

0.00

10.

002

6.72

25

46.5

114.

898

6.72

93

40.

672

1.57

210

100.

050.

052

21

0.5

2010

7.17

33

0.01

70.

001

0.00

34.

048

22

46.4

954.

622

4.04

82

20.

365

1.38

210

100.

090.

135

23

10.

520

1024

.079

99

0.01

80.

002

0.00

313

.859

49

46.9

087.

235

13.8

594

91.

618

1.77

110

100.

070.

105

23

10.

520

1012

.494

66

0.01

70.

001

0.00

26.

946

34

46.3

085.

086

6.94

63

40.

715

1.60

110

100.

050.

075

23

10.

520

107.

173

30.

024

0.00

10.

002

4.11

42

246

.369

4.62

94.

114

22

0.31

11.

406

1010

0.09

0.04

52

11

0.5

8040

40.7

2518

180.

026

0.00

40.

004

18.1

545

1846

.479

14.7

1818

.154

518

5.26

11.

809

1010

0.07

0.03

52

11

0.5

8040

18.2

19

90.

018

0.00

20.

003

8.96

24

746

.508

8.38

48.

962

47

1.37

41.

555

1010

0.05

0.02

52

11

0.5

8040

10.1

525

50.

018

0.00

10.

002

5.68

23

346

.438

6.10

35.

682

33

0.59

21.

338

1010

0.09

0.09

22

10.

580

4040

.725

1818

0.01

60.

004

0.00

320

.184

520

46.7

4116

.596

20.1

845

205.

668

1.82

610

100.

070.

072

21

0.5

8040

18.2

19

90.

017

0.00

20.

002

9.39

14

746

.501

8.46

69.

391

47

1.36

31.

5910

100.

050.

052

21

0.5

8040

10.1

525

50.

018

0.00

10.

002

5.71

63

346

.521

6.10

45.

716

33

0.55

51.

376

1010

0.09

0.13

52

31

0.5

8040

40.7

2518

180.

025

0.00

40.

003

21.9

916

2046

.412

18.7

0621

.991

620

6.04

41.

836

1010

0.07

0.10

52

31

0.5

8040

18.2

19

90.

018

0.00

20.

004

9.88

84

756

.175

8.28

49.

925

61.

284

1.62

110

100.

050.

075

23

10.

580

4010

.152

55

0.01

90.

001

0.00

25.

813

346

.807

6.08

85.

813

30.

588

1.41

210

150.

090.

032

11

0.9

2018

32.5

159

110.

019

0.00

20.

003

18.5

833

1071

.409

11.5

5718

.583

310

3.42

21.

796

1015

0.07

0.02

32

11

0.9

2018

16.2

426

60.

018

0.00

20.

003

9.24

92

591

.299

7.53

29.

249

25

1.45

1.61

110

150.

050.

017

21

10.

920

189.

235

33

0.01

90.

001

0.00

35.

593

22

82.6

336.

832

5.59

32

20.

631.

4310

150.

090.

062

21

0.9

2018

32.5

159

110.

026

0.00

20.

003

19.6

74

971

.362

12.2

5119

.691

58

3.17

81.

813

1015

0.07

0.04

72

21

0.9

2018

16.2

426

60.

022

0.00

10.

002

9.21

83

471

.234

7.41

99.

314

43

0.89

31.

632

1015

0.05

0.03

32

21

0.9

2018

9.23

53

30.

018

0.00

10.

004

5.32

22

71.3

896.

793

5.32

22

0.63

21.

427

1015

0.09

0.09

23

10.

920

1832

.515

911

0.02

10.

002

0.00

419

.144

84

70.9

8712

.973

19.1

448

41.

464

1.80

610

150.

070.

072

31

0.9

2018

16.2

426

60.

028

0.00

10.

004

9.04

24

371

.718

7.41

59.

042

43

0.63

11.

621

1015

0.05

0.05

23

10.

920

189.

235

33

0.02

40.

001

0.00

45.

247

22

71.0

176.

814

5.24

72

20.

424

1.41

410

150.

090.

032

11

0.9

8072

54.0

6218

210.

025

0.00

50.

005

28.0

85

1871

.562

22.3

6828

.08

518

11.1

431.

839

1015

0.07

0.02

32

11

0.9

8072

23.5

149

100.

019

0.00

20.

004

12.7

224

771

.475

13.1

4312

.722

47

2.76

21.

615

1015

0.05

0.01

72

11

0.9

8072

13.0

155

50.

019

0.00

10.

005

7.66

93

471

.767

9.09

37.

669

34

1.02

91.

413

1015

0.09

0.06

22

10.

980

7254

.062

1821

0.01

80.

005

0.00

530

.839

717

71.3

4629

.868

30.9

759

159.

831

1.85

410

150.

070.

047

22

10.

980

7223

.514

910

0.01

90.

002

0.00

712

.952

56

71.0

8812

.49

13.0

56

51.

594

1.64

510

150.

050.

033

22

10.

980

7213

.015

55

0.02

30.

001

0.00

37.

468

33

77.9

768.

986

7.46

83

30.

824

1.42

510

150.

090.

092

31

0.9

8072

54.0

6218

210.

026

0.00

50.

003

29.8

1516

610

3.10

336

.873

29.8

1516

62.

586

1.85

110

150.

070.

072

31

0.9

8072

23.5

149

100.

019

0.00

20.

003

12.7

376

484

.735

12.2

8712

.737

64

1.20

41.

633

1015

0.05

0.05

23

10.

980

7213

.015

55

0.01

90.

001

0.00

37.

383

33

70.9

348.

966

7.38

33

30.

803

1.41

6

Page 23: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

7 APPENDIX 21Ta

ble

7:Th

epa

ram

eter

san

dco

rres

pond

ing

min

imal

cost

sfo

rth

eBC

and

the

Myo

pic(

R)p

olic

yw

ith

the

com

puta

tion

tim

esof

the

seve

rals

earc

hm

etho

dsan

dth

eeq

uilib

rium

fact

orα

.

PAR

AM

ETER

SBa

seC

ase

Myo

pic(

R)

Myo

pic(

R)

Equi

libri

um

N1

N2

λ1

λ2

µ1

µ2

h 1h 2

b 1b 2

Cos

tsS 1

S 2T C

ET S

T FC

osts

S 1S 2

T CE

T SC

osts

S 1S 2

T CD

α

1015

0.09

0.03

21

10.

720

1428

.857

911

0.01

90.

002

0.00

316

.237

311

71.5

2311

.332

16.2

373

113.

376

1.79

810

150.

070.

023

21

10.

720

1414

.484

66

0.01

90.

001

0.00

38.

151

25

71.2

197.

393

8.15

12

51.

525

1.60

210

150.

050.

017

21

10.

720

148.

245

33

0.02

70.

001

0.00

34.

982

23

71.1

136.

839

4.98

22

30.

735

1.42

110

150.

090.

062

21

0.7

2014

28.8

579

110.

021

0.00

30.

003

17.4

043

1170

.98

12.0

4317

.408

410

3.01

61.

815

1015

0.07

0.04

72

21

0.7

2014

14.4

846

60.

018

0.00

20.

002

8.26

73

471

.052

7.42

68.

267

34

1.21

61.

629

1015

0.05

0.03

32

21

0.7

2014

8.24

53

30.

017

0.00

10.

002

4.80

82

272

.317

6.77

74.

808

22

0.62

31.

4310

150.

090.

092

31

0.7

2014

28.8

579

110.

019

0.00

20.

004

17.8

717

570

.986

12.6

8417

.871

75

1.90

51.

825

1015

0.07

0.07

23

10.

720

1414

.484

66

0.01

90.

001

0.00

38.

267

43

70.8

877.

409

8.26

74

30.

655

1.63

810

150.

050.

052

31

0.7

2014

8.24

53

30.

029

0.00

10.

003

4.73

32

270

.906

6.69

94.

733

22

0.43

81.

4310

150.

090.

032

11

0.7

8056

48.0

8118

210.

021

0.00

50.

004

24.1

235

1971

.57

23.2

7224

.123

519

11.0

251.

8410

150.

070.

023

21

10.

780

5620

.986

910

0.01

90.

002

0.00

311

.219

47

71.5

4413

.103

11.2

194

72.

71.

602

1015

0.05

0.01

72

11

0.7

8056

11.6

275

50.

019

0.00

10.

003

6.81

83

471

.208

9.07

86.

818

34

1.08

91.

401

1015

0.09

0.06

22

10.

780

5648

.081

1821

0.01

80.

006

0.00

326

.676

620

70.9

6129

.379

26.6

766

209.

885

1.85

610

150.

070.

047

22

10.

780

5620

.986

910

0.01

90.

003

0.00

311

.498

47

71.9

3912

.395

11.6

015

61.

856

1.63

510

150.

050.

033

22

10.

780

5611

.627

55

0.02

20.

001

0.00

26.

738

33

71.0

888.

952

6.73

83

30.

833

1.42

210

150.

090.

092

31

0.7

8056

48.0

8118

210.

026

0.00

70.

003

28.0

415

870

.933

35.5

6228

.04

158

3.46

41.

8610

150.

070.

072

31

0.7

8056

20.9

869

100.

026

0.00

20.

003

11.6

116

571

.592

13.8

8711

.611

65

1.36

1.65

1015

0.05

0.05

23

10.

780

5611

.627

55

0.02

20.

001

0.00

36.

652

33

70.8

779.

016

6.65

23

30.

832

1.42

810

150.

090.

032

11

0.5

2010

25.1

989

110.

020.

002

0.00

312

.558

311

71.4

329.

762

12.5

583

112.

558

1.76

710

150.

070.

023

21

10.

520

1012

.725

66

0.01

90.

002

0.00

36.

442

25

71.4

127.

014

6.44

22

51.

038

1.55

1015

0.05

0.01

72

11

0.5

2010

7.25

53

30.

019

0.00

10.

003

4.03

22

71.1

946.

732

4.03

22

0.55

81.

349

1015

0.09

0.06

22

10.

520

1025

.198

911

0.01

70.

002

0.00

313

.786

311

71.1

1110

.664

13.7

863

112.

627

1.78

610

150.

070.

047

22

10.

520

1012

.725

66

0.02

80.

001

0.00

36.

835

25

78.6

927.

16.

856

34

0.91

31.

587

1015

0.05

0.03

32

21

0.5

2010

7.25

53

30.

018

0.00

10.

003

4.07

52

271

.14

6.71

64.

075

22

0.42

41.

387

1015

0.09

0.09

23

10.

520

1025

.198

911

0.01

90.

002

0.00

314

.861

411

71.3

2711

.447

14.8

614

112.

921.

803

1015

0.07

0.07

23

10.

520

1012

.725

66

0.01

90.

001

0.00

37.

107

34

71.2

47.

246

7.10

73

40.

948

1.61

810

150.

050.

052

31

0.5

2010

7.25

53

30.

019

0.00

10.

003

4.14

72

271

.344

6.73

64.

147

22

0.71

41.

415

1015

0.09

0.03

21

10.

580

4042

.101

1821

0.01

90.

005

0.00

318

.777

519

71.0

1520

.551

18.7

775

198.

493

1.82

210

150.

070.

023

21

10.

580

4018

.459

910

0.02

70.

002

0.00

39.

037

47

70.9

4212

.086

9.03

74

72.

074

1.56

110

150.

050.

017

21

10.

580

4010

.239

55

0.02

0.00

10.

003

5.70

13

471

.326

8.96

75.

701

34

0.97

31.

341

1015

0.09

0.06

22

10.

580

4042

.101

1821

0.01

80.

005

0.00

321

.065

521

72.2

0527

.626

21.0

655

218.

681.

841

1015

0.07

0.04

72

21

0.5

8040

18.4

599

100.

018

0.00

20.

003

9.51

44

771

.344

12.0

999.

514

47

1.89

31.

598

1015

0.05

0.03

32

21

0.5

8040

10.2

395

50.

018

0.00

10.

003

5.74

63

372

.843

9.21

75.

746

33

0.83

21.

3810

150.

090.

092

31

0.5

8040

42.1

0118

210.

021

0.00

60.

003

23.1

476

2270

.918

30.6

2723

.147

622

9.26

61.

851

1015

0.07

0.07

23

10.

580

4018

.459

910

0.02

50.

002

0.00

310

.063

48

71.0

1812

.139

10.0

855

61.

791

1.63

110

150.

050.

052

31

0.5

8040

10.2

395

50.

019

0.00

10.

003

5.84

73

371

.178

9.01

95.

847

33

0.81

91.

417

5025

0.00

90.

009

10.

51

0.9

2018

43.9

7316

130.

048

0.00

80.

006

21.3

534

1214

53.1

0423

4.25

21.3

534

1251

.142

1.81

450

250.

007

0.00

71

0.5

10.

920

1818

.27

77

0.04

50.

004

0.00

59.

274

34

1451

.782

145.

621

9.27

43

418

.71

1.60

550

250.

005

0.00

51

0.5

10.

920

189.

697

44

0.05

40.

002

0.00

55.

304

22

1459

.374

137.

172

5.30

42

28.

348

1.39

850

250.

009

0.01

81

11

0.9

2018

43.9

7316

130.

037

0.00

80.

006

23.8

795

1214

57.4

0428

0.98

523

.907

611

62.8

681.

834

5025

0.00

70.

014

11

10.

920

1818

.27

77

0.03

30.

004

0.00

59.

83

414

53.6

1814

8.78

69.

83

417

.843

1.64

350

250.

005

0.01

11

10.

920

189.

697

44

0.03

50.

004

0.00

55.

408

22

1516

.766

137.

988

5.40

82

28.

321.

434

5025

0.00

90.

027

11.

51

0.9

2018

43.9

7316

130.

044

0.00

80.

006

23.6

6212

414

60.2

5732

6.78

323

.662

124

22.0

541.

8350

250.

007

0.02

11

1.5

10.

920

1818

.27

77

0.03

50.

004

0.00

69.

941

53

1456

.937

154.

573

9.94

15

39.

119

1.64

250

250.

005

0.01

51

1.5

10.

920

189.

697

44

0.03

50.

002

0.00

65.

556

22

1431

.981

138.

098

5.55

62

28.

297

1.44

550

250.

009

0.00

91

0.5

10.

980

7267

.511

2824

0.03

70.

022

0.00

631

.08

521

1433

.031

443.

566

31.0

986

2014

5.90

51.

855

5025

0.00

70.

007

10.

51

0.9

8072

25.6

111

100.

042

0.00

60.

006

12.6

854

714

32.6

5423

6.73

212

.685

47

33.6

781.

6150

250.

005

0.00

51

0.5

10.

980

7213

.495

66

0.03

40.

004

0.00

57.

463

33

1436

.603

176.

888

7.46

33

312

.694

1.39

350

250.

009

0.01

81

11

0.9

8072

67.5

1128

240.

034

0.01

60.

009

35.5

37

2214

40.8

7858

7.46

435

.602

920

186.

174

1.86

450

250.

007

0.01

41

11

0.9

8072

25.6

111

100.

044

0.00

60.

008

13.5

185

614

84.5

3923

4.55

13.5

185

628

.734

1.65

150

250.

005

0.01

11

10.

980

7213

.495

66

0.03

40.

003

0.00

97.

562

33

1431

.683

176.

895

7.56

23

310

.892

1.42

950

250.

009

0.02

71

1.5

10.

980

7267

.511

2824

0.03

40.

015

0.00

734

.727

216

1437

.15

797.

076

34.7

2721

639

.777

1.86

450

250.

007

0.02

11

1.5

10.

980

7225

.61

1110

0.03

90.

006

0.00

513

.61

74

1430

.218

238.

872

13.6

17

416

.122

1.64

650

250.

005

0.01

51

1.5

10.

980

7213

.495

66

0.04

20.

003

0.00

67.

764

314

40.0

9417

8.85

17.

764

38.

258

1.43

350

250.

009

0.00

91

0.5

10.

720

1439

.744

1613

0.03

60.

009

0.00

617

.866

313

1430

.713

223.

365

17.8

663

1352

.834

1.79

750

250.

007

0.00

71

0.5

10.

720

1416

.47

70.

034

0.00

40.

005

8.05

52

514

38.7

8814

3.31

68.

055

25

18.1

991.

583

5025

0.00

50.

005

10.

51

0.7

2014

8.68

54

40.

045

0.00

30.

005

4.70

42

214

36.6

1613

7.49

24.

704

22

8.29

11.

377

5025

0.00

90.

018

11

10.

720

1439

.744

1613

0.04

10.

008

0.00

620

413

1433

.632

255.

476

204

1357

.264

1.81

450

250.

007

0.01

41

11

0.7

2014

16.4

77

0.03

60.

004

0.00

58.

505

35

1454

.179

147.

309

8.50

53

518

.089

1.62

150

250.

005

0.01

11

10.

720

148.

685

44

0.03

40.

002

0.00

64.

782

22

1454

.054

137.

578

4.78

22

28.

381

1.41

450

250.

009

0.02

71

1.5

10.

720

1439

.744

1613

0.04

60.

009

0.00

621

.267

105

1458

.475

298.

332

21.2

6710

526

.851

1.82

550

250.

007

0.02

11

1.5

10.

720

1416

.47

70.

066

0.00

50.

006

8.84

43

1514

.793

151.

639

8.84

43

11.6

551.

642

5025

0.00

50.

015

11.

51

0.7

2014

8.68

54

40.

034

0.00

40.

006

4.89

82

215

04.9

0613

6.92

84.

898

22

8.24

61.

439

Page 24: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

7 APPENDIX 22Ta

ble

8:Th

epa

ram

eter

san

dco

rres

pond

ing

min

imal

cost

sfo

rth

eBC

and

the

Myo

pic(

R)p

olic

yw

ith

the

com

puta

tion

tim

esof

the

seve

rals

earc

hm

etho

dsan

dth

eeq

uilib

rium

fact

orα

.

PAR

AM

ETER

SBa

seC

ase

Myo

pic(

R)

Myo

pic(

R)

Equi

libri

um

N1

N2

λ1

λ2

µ1

µ2

h 1h 2

b 1b 2

Cos

tsS 1

S 2T C

ET S

T FC

osts

S 1S 2

T CE

T SC

osts

S 1S 2

T CD

α

5025

0.00

90.

009

10.

51

0.7

8056

60.8

5428

240.

048

0.01

90.

007

25.8

45

2114

56.3

4942

3.09

525

.84

521

142.

71.

845

5025

0.00

70.

007

10.

51

0.7

8056

22.9

6911

100.

095

0.00

60.

006

10.9

994

714

59.6

6523

2.71

710

.999

47

30.4

861.

589

5025

0.00

50.

005

10.

51

0.7

8056

12.0

836

60.

061

0.00

40.

005

6.62

93

314

57.0

9317

6.10

76.

629

33

12.3

121.

3750

250.

009

0.01

81

11

0.7

8056

60.8

5428

240.

033

0.01

70.

009

29.5

496

2414

52.6

2261

3.52

629

.549

624

153.

571.

857

5025

0.00

70.

014

11

10.

780

5622

.969

1110

0.03

50.

009

0.00

811

.785

47

1452

.176

231.

964

11.7

854

734

.537

1.62

950

250.

005

0.01

11

10.

780

5612

.083

66

0.04

0.00

50.

009

6.7

33

1459

.618

177.

934

6.7

33

10.6

151.

413

5025

0.00

90.

027

11.

51

0.7

8056

60.8

5428

240.

033

0.01

60.

0131

.833

197

1453

.468

682.

569

31.8

3319

738

.698

1.85

950

250.

007

0.02

11

1.5

10.

780

5622

.969

1110

0.03

60.

006

0.00

512

.201

65

1452

.33

234.

554

12.2

016

521

.374

1.65

150

250.

005

0.01

51

1.5

10.

780

5612

.083

66

0.04

0.00

30.

007

6.85

83

314

81.3

3517

6.51

36.

858

33

10.5

361.

434

5025

0.00

90.

009

10.

51

0.5

2010

35.5

1616

130.

041

0.00

80.

006

13.9

283

1214

51.7

3619

8.01

813

.928

312

40.6

651.

761

5025

0.00

70.

007

10.

51

0.5

2010

14.5

37

70.

033

0.00

40.

005

6.68

92

514

59.1

5814

1.21

26.

689

25

16.3

231.

542

5025

0.00

50.

005

10.

51

0.5

2010

7.67

34

40.

034

0.00

30.

005

4.10

42

214

53.8

213

8.07

34.

104

22

5.44

11.

338

5025

0.00

90.

018

11

10.

520

1035

.516

1613

0.04

20.

010.

006

15.7

464

1314

59.3

6323

0.17

615

.746

413

42.9

161.

776

5025

0.00

70.

014

11

10.

520

1014

.53

77

0.04

50.

006

0.00

57.

233

514

50.8

216

6.33

37.

233

515

.353

1.58

350

250.

005

0.01

11

10.

520

107.

673

44

0.03

30.

004

0.00

64.

157

22

1457

.846

156.

306

4.15

72

25.

446

1.38

950

250.

009

0.02

71

1.5

10.

520

1035

.516

1613

0.03

30.

013

0.00

617

.29

414

1508

.839

271.

811

17.3

345

1347

.306

1.78

950

250.

007

0.02

11

1.5

10.

520

1014

.53

77

0.04

60.

004

0.00

57.

755

35

1452

.977

153.

147.

755

35

18.1

041.

617

5025

0.00

50.

015

11.

51

0.5

2010

7.67

34

40.

034

0.00

30.

005

4.24

12

214

53.5

8413

7.08

14.

241

22

5.44

41.

435

5025

0.00

90.

009

10.

51

0.5

8040

54.1

9628

240.

038

0.01

50.

007

20.1

465

2114

52.2

2141

4.99

120

.146

521

122.

768

1.82

450

250.

007

0.00

71

0.5

10.

580

4020

.329

1110

0.03

90.

006

0.00

69.

185

47

1461

.705

227.

969

9.18

54

730

.936

1.55

350

250.

005

0.00

51

0.5

10.

580

4010

.671

66

0.03

40.

004

0.00

55.

752

34

1459

.107

175.

424

5.75

23

412

.632

1.33

150

250.

009

0.01

81

11

0.5

8040

54.1

9628

240.

040.

016

0.00

723

.116

624

1451

.773

519.

428

23.1

166

2412

2.75

91.

839

5025

0.00

70.

014

11

10.

580

4020

.329

1110

0.05

0.00

60.

008

9.92

84

814

76.3

8522

9.93

9.92

84

828

.347

1.59

350

250.

005

0.01

11

10.

580

4010

.671

66

0.06

50.

004

0.00

85.

837

34

1452

.765

175.

887

5.83

73

412

.548

1.38

450

250.

009

0.02

71

1.5

10.

580

4054

.196

2824

0.03

80.

018

0.00

925

.83

725

1455

.059

586.

312

25.8

37

2514

4.19

21.

845

5025

0.00

70.

021

11.

51

0.5

8040

20.3

2911

100.

033

0.01

60.

006

10.7

485

814

58.2

0723

4.75

410

.91

66

23.8

141.

629

5025

0.00

50.

015

11.

51

0.5

8040

10.6

716

60.

045

0.00

40.

006

5.95

43

314

50.7

6117

5.87

35.

954

33

10.5

511.

433

5050

0.00

90.

005

10.

51

0.9

2018

47.3

9316

160.

040.

017

0.00

723

.176

414

7484

.042

1288

.705

23.1

764

1429

2.17

7N

A50

500.

007

0.00

41

0.5

10.

920

1818

.723

77

0.04

10.

005

0.00

79.

436

35

7437

.687

685.

794

9.43

63

561

.413

NA

5050

0.00

50.

003

10.

51

0.9

2018

9.77

24

40.

050.

003

0.00

65.

335

22

7408

.392

661.

706

5.33

52

231

.786

NA

5050

0.00

90.

009

11

10.

920

1847

.393

1616

0.04

0.01

10.

007

26.4

855

1474

07.7

1511

.692

26.4

855

1440

8.32

5N

A50

500.

007

0.00

71

11

0.9

2018

18.7

237

70.

044

0.00

90.

007

10.0

294

474

07.1

0271

9.24

210

.029

44

56.8

09N

A50

500.

005

0.00

51

11

0.9

2018

9.77

24

40.

046

0.00

40.

006

5.44

62

274

10.2

6665

3.53

35.

446

22

31.9

66N

A50

500.

009

0.01

41

1.5

10.

920

1847

.393

1616

0.04

0.01

40.

007

26.3

0815

474

78.1

9217

90.0

5226

.308

154

116.

756

NA

5050

0.00

70.

011

11.

51

0.9

2018

18.7

237

70.

049

0.00

50.

007

10.1

735

373

95.9

7173

0.22

910

.173

53

48.3

69N

A50

500.

005

0.00

81

1.5

10.

920

189.

772

44

0.04

10.

003

0.00

75.

604

22

7474

.047

656.

406

5.60

42

232

.081

NA

5050

0.00

90.

005

10.

51

0.9

8072

71.3

4928

280.

042

0.02

10.

012

32.9

925

2374

53.7

8821

85.0

6233

.007

622

845.

849

NA

5050

0.00

70.

004

10.

51

0.9

8072

26.0

8211

110.

048

0.00

80.

007

12.8

394

771

03.6

9911

33.6

3412

.839

47

152.

886

NA

5050

0.00

50.

003

10.

51

0.9

8072

13.5

76

60.

039

0.00

40.

006

7.49

93

371

59.2

7584

6.44

7.49

93

344

.434

NA

5050

0.00

90.

009

11

10.

980

7271

.349

2828

0.04

60.

024

0.01

138

.299

725

7133

.128

3003

.015

38.3

649

2310

12.5

68N

A50

500.

007

0.00

71

11

0.9

8072

26.0

8211

110.

047

0.01

70.

011

13.7

295

771

98.3

111

30.4

8513

.778

66

117.

487

NA

5050

0.00

50.

005

11

10.

980

7213

.57

66

0.04

10.

008

0.00

87.

604

33

7127

.738

842.

757

7.60

43

338

.929

NA

5050

0.00

90.

014

11.

51

0.9

8072

71.3

4928

280.

051

0.04

80.

011

37.4

9624

672

18.5

236

65.4

1237

.496

246

226.

236

NA

5050

0.00

70.

011

11.

51

0.9

8072

26.0

8211

110.

040.

010.

007

13.8

767

571

63.1

4111

44.7

1813

.876

75

97.0

67N

A50

500.

005

0.00

81

1.5

10.

980

7213

.57

66

0.04

10.

004

0.00

77.

787

43

7123

.998

846.

887

7.78

74

336

.177

NA

5050

0.00

90.

005

10.

51

0.7

2014

42.4

0516

160.

062

0.01

10.

007

19.2

613

1471

96.8

7311

71.8

9619

.261

314

267.

105

NA

5050

0.00

70.

004

10.

51

0.7

2014

16.7

527

70.

052

0.00

50.

006

8.17

32

571

26.7

8669

7.16

88.

173

25

72.1

43N

A50

500.

005

0.00

31

0.5

10.

720

148.

743

44

0.04

0.00

30.

007

4.72

92

271

50.8

3767

0.58

44.

729

22

32.4

41N

A50

500.

009

0.00

91

11

0.7

2014

42.4

0516

160.

047

0.01

50.

009

21.9

854

1671

80.5

4513

96.2

2221

.985

416

293.

744

NA

5050

0.00

70.

007

11

10.

720

1416

.752

77

0.04

30.

009

0.00

78.

663

35

7235

.986

714.

165

8.66

33

571

.253

NA

5050

0.00

50.

005

11

10.

720

148.

743

44

0.04

30.

005

0.00

64.

812

22

7151

.04

669.

145

4.81

22

232

.054

NA

5050

0.00

90.

014

11.

51

0.7

2014

42.4

0516

160.

051

0.01

80.

007

23.7

1412

671

63.7

1116

59.9

823

.739

135

110.

147

NA

5050

0.00

70.

011

11.

51

0.7

2014

16.7

527

70.

040.

007

0.00

79.

076

44

7151

.416

728.

684

9.07

64

448

.279

NA

5050

0.00

50.

008

11.

51

0.7

2014

8.74

34

40.

043

0.00

50.

006

4.93

62

271

47.8

2467

2.65

74.

936

22

32.0

3N

A50

500.

009

0.00

51

0.5

10.

520

1037

.416

1616

0.04

0.01

30.

007

15.2

753

1573

94.8

7310

42.3

4415

.275

315

228.

07N

A50

500.

007

0.00

41

0.5

10.

520

1014

.781

77

0.04

50.

005

0.00

76.

865

25

7432

.689

691.

068

6.86

52

564

.997

NA

5050

0.00

50.

003

10.

51

0.5

2010

7.71

54

40.

040.

004

0.00

74.

123

22

7435

.399

692.

175

4.12

32

221

.595

NA

5050

0.00

90.

009

11

10.

520

1037

.416

1616

0.05

20.

012

0.00

717

.364

416

7412

.284

1217

.044

17.3

644

1623

5.59

1N

A50

500.

007

0.00

71

11

0.5

2010

14.7

817

70.

061

0.00

50.

006

7.28

93

574

42.2

370

1.55

87.

289

35

57.6

58N

A50

500.

005

0.00

51

11

0.5

2010

7.71

54

40.

042

0.00

40.

007

4.17

92

274

03.9

6966

6.06

74.

179

22

21.5

9N

A50

500.

009

0.01

41

1.5

10.

520

1037

.416

1616

0.06

10.

013

0.00

719

.213

418

7229

.082

1396

.555

19.2

445

1627

2.76

2N

A50

500.

007

0.01

11

1.5

10.

520

1014

.781

77

0.05

10.

010.

006

7.69

53

573

45.3

571

6.75

47.

695

35

63.0

33N

A50

500.

005

0.00

81

1.5

10.

520

107.

715

44

0.04

70.

005

0.00

94.

269

22

7587

.133

686.

645

4.26

92

221

.596

NA

Page 25: BSc Thesis: Scheduling policies for a repair shop problem · BSc Thesis: Scheduling policies for a repair shop problem Dopheide, J.J. Student Number: 371175 July 3, 2016 Econometrics

7 APPENDIX 23Ta

ble

9:Th

epa

ram

eter

san

dco

rres

pond

ing

min

imal

cost

sfo

rth

eBC

and

the

Myo

pic(

R)p

olic

yw

ith

the

com

puta

tion

tim

esof

the

seve

rals

earc

hm

etho

dsan

dth

eeq

uilib

rium

fact

orα

.

PAR

AM

ETER

SBa

seC

ase

Myo

pic(

R)

Myo

pic(

R)

Equi

libri

um

N1

N2

λ1

λ2

µ1

µ2

h 1h 2

b 1b 2

Cos

tsS 1

S 2T C

ET S

T FC

osts

S 1S 2

T CE

T SC

osts

S 1S 2

T CD

α

5050

0.00

90.

005

10.

51

0.5

8040

56.3

2928

280.

044

0.03

0.01

121

.547

524

7543

.511

2121

.188

21.5

475

2465

7.39

5N

A50

500.

007

0.00

41

0.5

10.

580

4020

.591

1111

0.04

0.01

10.

019.

404

47

7542

.011

1124

.063

9.40

44

711

3.56

9N

A50

500.

005

0.00

31

0.5

10.

580

4010

.713

66

0.04

80.

005

0.01

5.76

34

7563

.225

871.

006

5.76

34

50.9

62N

A50

500.

009

0.00

91

11

0.5

8040

56.3

2928

280.

042

0.02

20.

012

24.8

356

2775

63.0

5426

72.5

7824

.835

627

665.

137

NA

5050

0.00

70.

007

11

10.

580

4020

.591

1111

0.04

0.00

90.

007

9.98

34

875

74.3

9711

25.4

089.

983

48

139.

936

NA

5050

0.00

50.

005

11

10.

580

4010

.713

66

0.05

10.

005

0.00

75.

848

34

7543

.598

860.

553

5.84

83

448

.977

NA

5050

0.00

90.

014

11.

51

0.5

8040

56.3

2928

280.

040.

024

0.00

827

.885

631

7626

.718

3280

.902

27.9

017

2974

8.54

NA

5050

0.00

70.

011

11.

51

0.5

8040

20.5

9111

110.

041

0.00

90.

007

10.6

455

775

55.3

4311

34.4

2310

.645

57

118.

534

NA

5050

0.00

50.

008

11.

51

0.5

8040

10.7

136

60.

050.

004

0.00

65.

983

475

63.5

6886

8.14

55.

983

444

.84

NA

100

500.

009

0.00

92

11

0.9

2018

50.8

519

160.

050.

021

0.00

923

.463

414

3413

9.73

672

89.7

5823

.463

414

1406

.957

NA

100

500.

007

0.00

72

11

0.9

2018

19.1

117

70.

062

0.01

0.00

99.

467

35

3413

1.01

242

85.6

799.

467

35

384.

294

NA

100

500.

005

0.00

52

11

0.9

2018

9.82

24

40.

050.

006

0.00

85.

344

22

3431

8.43

740

45.3

475.

344

22

206.

195

NA

100

500.

009

0.01

82

21

0.9

2018

50.8

519

160.

056

0.01

80.

008

26.8

255

1534

655.

968

8650

.188

26.8

296

1419

05.3

23N

A10

050

0.00

70.

014

22

10.

920

1819

.111

77

0.05

20.

008

0.00

910

.068

44

3344

0.68

443

22.5

4510

.068

44

346.

776

NA

100

500.

005

0.01

22

10.

920

189.

822

44

0.04

80.

005

0.01

5.45

62

233

427.

998

4001

.083

5.45

62

220

6.64

8N

A10

050

0.00

90.

027

23

10.

920

1850

.85

1916

0.08

60.

021

0.01

226

.597

154

3387

6.96

410

024.

321

26.5

9715

456

0.75

4N

A10

050

0.00

70.

021

23

10.

920

1819

.111

77

0.05

0.00

90.

0110

.212

53

3377

7.68

344

29.7

8210

.212

53

293.

285

NA

100

500.

005

0.01

52

31

0.9

2018

9.82

24

40.

065

0.00

50.

012

5.61

62

233

861.

641

4049

.498

5.61

62

220

5.68

2N

A10

050

0.00

90.

009

21

10.

980

7275

.062

3228

0.05

10.

039

0.01

133

.291

623

3389

4.04

211

625.

762

33.2

916

2336

11.3

45N

A10

050

0.00

70.

007

21

10.

980

7226

.46

1111

0.05

90.

011

0.01

12.8

814

734

509.

803

6792

.306

12.8

814

776

9.06

7N

A10

050

0.00

50.

005

21

10.

980

7213

.62

66

0.05

30.

007

0.00

87.

513

333

926.

595

5170

.887

7.51

33

284.

681

NA

100

500.

009

0.01

82

21

0.9

8072

75.0

6232

280.

048

0.03

50.

011

38.6

678

2533

807.

278

1584

8.56

438

.667

825

5117

.674

NA

100

500.

007

0.01

42

21

0.9

8072

26.4

611

110.

060.

013

0.00

913

.77

57

3396

0.57

467

04.6

9613

.816

66

600.

709

NA

100

500.

005

0.01

22

10.

980

7213

.62

66

0.04

80.

010.

009

7.61

53

3N

A51

29.1

437.

615

33

250.

007

NA

100

500.

009

0.02

72

31

0.9

8072

75.0

6232

280.

060.

037

0.01

37.8

124

6N

A18

458.

255

37.8

124

692

3.97

9N

A10

050

0.00

70.

021

23

10.

980

7226

.46

1111

0.06

0.01

10.

0113

.915

75

NA

6473

.239

13.9

157

547

4.94

8N

A10

050

0.00

50.

015

23

10.

980

7213

.62

66

0.05

20.

006

0.01

7.79

34

3N

A48

94.4

657.

793

43

201.

787

NA

100

500.

009

0.00

92

11

0.7

2014

45.8

6119

160.

069

0.01

90.

014

19.5

33

15N

A63

35.8

9819

.533

414

1151

.379

NA

100

500.

007

0.00

72

11

0.7

2014

17.1

47

70.

054

0.00

80.

012

8.20

83

5N

A40

02.0

478.

208

35

383.

28N

A10

050

0.00

50.

005

21

10.

720

148.

793

44

0.05

60.

005

0.01

34.

737

22

NA

3830

.791

4.73

72

219

6.61

NA

100

500.

009

0.01

82

21

0.7

2014

45.8

6119

160.

052

0.01

60.

009

22.2

834

16N

A74

56.5

3622

.283

416

1515

.413

NA

100

500.

007

0.01

42

21

0.7

2014

17.1

47

70.

056

0.00

80.

009

8.70

23

5N

A40

92.1

098.

702

35

423.

573

NA

100

500.

005

0.01

22

10.

720

148.

793

44

0.06

80.

004

0.00

84.

822

22

NA

3912

.275

4.82

22

219

8.11

1N

A10

050

0.00

90.

027

23

10.

720

1445

.861

1916

0.06

60.

027

0.00

924

.01

126

NA

8744

.257

24.0

2113

551

5.74

9N

A10

050

0.00

70.

021

23

10.

720

1417

.14

77

0.05

50.

022

0.00

99.

116

44

NA

4207

.436

9.11

64

429

9.55

5N

A10

050

0.00

50.

015

23

10.

720

148.

793

44

0.05

30.

005

0.00

94.

947

22

NA

3816

.172

4.94

72

219

6.48

3N

A10

050

0.00

90.

009

21

10.

780

5667

.552

3228

0.06

50.

030.

011

27.5

515

24N

A11

000.

213

27.5

515

2433

28.3

69N

A10

050

0.00

70.

007

21

10.

780

5623

.714

1111

0.05

0.01

10.

011

11.1

594

7N

A63

26.5

1911

.159

47

664.

514

NA

100

500.

005

0.00

52

11

0.7

8056

12.1

926

60.

058

0.00

60.

009

6.65

93

4N

A48

79.2

846.

659

34

309.

986

NA

100

500.

009

0.01

82

21

0.7

8056

67.5

5232

280.

047

0.03

20.

012

31.9

436

27N

A14

181.

968

31.9

436

2736

26.5

NA

100

500.

007

0.01

42

21

0.7

8056

23.7

1411

110.

051

0.01

40.

012

11.9

885

7N

A63

30.8

9611

.988

57

635.

589

NA

100

500.

005

0.01

22

10.

780

5612

.192

66

0.06

20.

006

0.01

26.

744

33

NA

4865

.622

6.74

43

323

8.86

1N

A10

050

0.00

90.

027

23

10.

780

5667

.552

3228

0.05

0.03

30.

012

34.7

7621

8N

A17

243.

773

34.7

922

710

16.4

54N

A10

050

0.00

70.

021

23

10.

780

5623

.714

1111

0.06

30.

011

0.01

12.4

976

6N

A63

81.6

812

.501

75

389.

848

NA

100

500.

005

0.01

52

31

0.7

8056

12.1

926

60.

052

0.00

60.

009

6.91

23

3N

A49

14.7

576.

912

33

236.

097

NA

100

500.

009

0.00

92

11

0.5

2010

40.8

7219

160.

052

0.01

80.

009

15.1

633

15N

A57

90.1

9815

.163

315

1109

.568

NA

100

500.

007

0.00

72

11

0.5

2010

15.1

77

70.

059

0.00

70.

012

6.82

25

NA

3934

.552

6.82

25

388.

14N

A10

050

0.00

50.

005

21

10.

520

107.

764

44

0.05

0.00

40.

009

4.13

12

2N

A38

10.1

014.

131

22

134.

207

NA

100

500.

009

0.01

82

21

0.5

2010

40.8

7219

160.

065

0.02

40.

0117

.419

416

NA

6644

.105

17.4

194

1611

91.9

78N

A10

050

0.00

70.

014

22

10.

520

1015

.17

77

0.04

90.

008

0.01

7.40

43

5N

A40

60.7

367.

404

35

339.

79N

A10

050

0.00

50.

012

21

0.5

2010

7.76

44

40.

082

0.00

40.

014

4.18

82

2N

A38

06.0

694.

188

22

134.

052

NA

100

500.

009

0.02

72

31

0.5

2010

40.8

7219

160.

068

0.01

70.

013

19.4

824

18N

A77

53.1

7619

.486

517

1389

.161

NA

100

500.

007

0.02

12

31

0.5

2010

15.1

77

70.

068

0.00

70.

012

8.00

13

6N

A42

04.1

138.

001

36

410.

312

NA

100

500.

005

0.01

52

31

0.5

2010

7.76

44

40.

051

0.00

50.

012

4.27

82

2N

A38

25.5

214.

278

22

134.

171

NA

100

500.

009

0.00

92

11

0.5

8040

60.0

4132

280.

062

0.02

90.

012

21.4

075

23N

A10

130.

069

21.4

075

2327

71.8

42N

A10

050

0.00

70.

007

21

10.

580

4020

.969

1111

0.05

0.01

0.01

49.

314

7N

A62

11.0

389.

314

757

7.06

7N

A10

050

0.00

50.

005

21

10.

580

4010

.763

66

0.06

0.00

60.

012

5.76

63

4N

A49

31.1

835.

766

34

309.

913

NA

100

500.

009

0.01

82

21

0.5

8040

60.0

4132

280.

048

0.03

80.

0124

.874

627

NA

1310

9.55

124

.874

627

2898

.722

NA

100

500.

007

0.01

42

21

0.5

8040

20.9

6911

110.

049

0.01

0.00

810

.105

48

NA

6261

.44

10.1

054

861

7.32

4N

A10

050

0.00

50.

012

21

0.5

8040

10.7

636

60.

058

0.00

60.

008

5.85

53

4N

A48

90.5

085.

855

34

274.

42N

A10

050

0.00

90.

027

23

10.

580

4060

.041

3228

0.04

90.

028

0.01

128

.14

730

NA

1633

0.89

828

.14

730

3547

.839

NA

100

500.

007

0.02

12

31

0.5

8040

20.9

6911

110.

063

0.01

10.

009

10.9

645

8N

A63

39.3

2110

.964

58

624.

86N

A10

050

0.00

50.

015

23

10.

580

4010

.763

66

0.05

50.

006

0.00

95.

988

34

NA

4928

.95

5.98

83

427

4.35

1N

A