bsn monitoring fabric lte wp v2 - big switch...

9
©2014 Big Switch Networks 1 WHITE PAPER NextGeneration Monitoring Fabrics for Mobile Networks SDN Enabled, Ultra Low Cost Network Visibility

Upload: phungdat

Post on 17-May-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BSN Monitoring Fabric LTE WP v2 - Big Switch Networksgo.bigswitch.com/rs/974-WXR-561/images/BSN... · • The&eNodeB,&onreceiving&the&user&data&IP&packet,&encapsulates&this&payload&in&aGTP&tunnel&header&andforwards&

©2014  Big  Switch  Networks   1  

  WHITE  PAPER  

Next-­‐Generation  Monitoring  Fabrics  for  Mobile  Networks  SDN  Enabled,  Ultra  Low  Cost  Network  Visibility  

Page 2: BSN Monitoring Fabric LTE WP v2 - Big Switch Networksgo.bigswitch.com/rs/974-WXR-561/images/BSN... · • The&eNodeB,&onreceiving&the&user&data&IP&packet,&encapsulates&this&payload&in&aGTP&tunnel&header&andforwards&

2   ©2014  Big  Switch  Networks  

WHITE  PAPER     |     Next-­‐Generation  Monitoring  Fabrics  for  Mobile  Networks  

Table  of  Contents  Overview  ..........................................................................................................................................................................................................................................................................  3  

Monitoring  Fabrics  in  Mobile  Networks:  Illustrative  Example  ................................................................................................................................................................  4  

Big  Tap  Monitoring  Fabric:  SDN-­‐Based  Next-­‐Gen  Solution  for  Mobile  Core  ...........................................................................................................................................  5  

Conclusion  ................................................................................................................................................................................................................................................................  7  

Addendum  A:  Industry  Terminology  and  Acronyms  ....................................................................................................................................................................................  8  

About  Big  Switch  Networks  .....................................................................................................................................................................................................................................  9  

Page 3: BSN Monitoring Fabric LTE WP v2 - Big Switch Networksgo.bigswitch.com/rs/974-WXR-561/images/BSN... · • The&eNodeB,&onreceiving&the&user&data&IP&packet,&encapsulates&this&payload&in&aGTP&tunnel&header&andforwards&

©2014  Big  Switch  Networks   3  

WHITE  PAPER     |     Next-­‐Generation  Monitoring  Fabrics  for  Mobile  Networks  

Overview   Over  the  last  few  years  as  demand  from  new  and  ever  evolving  mobile  applications  has  exploded,  network  operators  have  invested  heavily  in  infrastructure  upgrades  to  meet  that  demand.  The  transition  towards  the  Long  Term  Evolution  (LTE)  architecture  represents  a  significant  technical  advancement  in  that  direction.  Yet  today,  despite  these  massive  investments,  operators  are  still  struggling  to  keep  up  with  customer  demands  and  service  expectations.     There  are  various  contributing  factors  for  the  current  situation,  including:  

• Coexistence  of  2G,  3G,  and  4G  Technologies:  It  is  expected  that  the  evolution  to  high  data  rate,  low  latency   LTE  networks  will  continue  for  years.  During  this  time,  operators  will  need  to  expand  their  LTE  footprint  while  ensuring  transparent  roaming  between  existing  2G/3G  (e.g.,  HSPA/HSPA+/HRPD)  and  4G  technologies.  

• Need  for  Differentiated  Services:  In  addition  to  the  traditional  voice  and  SMS  services,  operators  have  increasingly  focused  on  new  and  differentiated  revenue  generating  data  services.  These  services  not  only  put  additional  requirements  on  the  control  traffic  but  also  require  tighter  audit  and  monitoring  of  user  data  traffic.  

• Unpredictable  Data  Network  Traffic  Patterns:  Unlike  voice  traffic,  data  traffic  from  the  ever-­‐growing  list  of  applications  is  highly  unpredictable.  

• Security  and  Compliance  Challenges:  Bring-­‐your-­‐own-­‐device  (BYOD)  trends  in  the  enterprise  have  firmly  taken  root  and  (corporate)  consumers  have  become  more  demanding  in  their  quest  to  access  time-­‐sensitive  and  critical  information  over  public  mobile  networks.  

To  deliver  the  expected  service  quality  in  LTE  networks,  operators  need  to  adopt  an  advanced  service  assurance  solution  for  the  entire  LTE  deployment  lifecycle.  

One  of  the  ways  mobile  operators  have  tried  to  address  these  challenges  is  through  significant  investments  in  network  operations  management.  Among  other  things,  this  includes  extensive  network  health  checks,  automated  traffic  monitoring,  fault  detection  and  correction,  and  advanced  capacity  planning  exercises.  As  a  result,  the   critical  network-­‐monitoring  infrastructure  within  the  LTE  core  networks  has  expanded  at  an  enormous  rate.  This  infrastructure  consists  of  farms  of  network  packet  brokers,  packet  and  flow  analyzers,  security,  audit  and   compliance  tools,  in  addition  to  the  already  complex  operational  structure  of  the  business.  

In  this  paper,  we  describe  a  highly  scalable,  centrally  managed,  agile  and  cost-­‐effective,  SDN-­‐based  solution  to   address  those  challenges:  Big  Switch  Networks  Big  Tap™  Monitoring  Fabric.  

 

Page 4: BSN Monitoring Fabric LTE WP v2 - Big Switch Networksgo.bigswitch.com/rs/974-WXR-561/images/BSN... · • The&eNodeB,&onreceiving&the&user&data&IP&packet,&encapsulates&this&payload&in&aGTP&tunnel&header&andforwards&

4   ©2014  Big  Switch  Networks  

WHITE  PAPER     |     Next-­‐Generation  Monitoring  Fabrics  for  Mobile  Networks  

 Monitoring  Fabrics  in  Mobile  Networks:  Illustrative  Example  

With   today’s  deployments  of  LTE  hitting  peak  data   speeds  of  100Mbps,   it   is   already  clear   that   current  monitoring  infrastructure   is   at   a   breaking   point.   The   upcoming   LTE  Advanced   specification   –  with   10x   speed   improvement   –  makes  the  need  for  a  new  approach  even  more  urgent.  

The  leading  mobile  network  operators  are  now  looking  for  an  evolution  of  their  monitoring  fabric  simply  to  keep  pace  as  they  evolve  their  core  networks.  In  discussions  with  some  of  the  largest  global  mobile  operators,  they   have  highlighted  an  array  of  use  cases  and  deployment  architectures  that  require  extensive  dedicated  optical  taps   or  Switched  Port  Analyzer  (SPAN)  ports  to  monitor  traffic  at  a  scale  that  is  well  beyond  the  limits  of  traditional  monitoring  solutions.  

The  figure  below  provides  an  example  of  one  such  network  topology,  outlining  key  nodes  and  associated  control   and  data  plane  interfaces.  The  Big  Tap  Monitoring  Fabric  solution  as  shown  scales  with  the  overall  mobile  core  architecture.  

Figure  2:  Scalable  Big  Tap  Monitoring  Fabric  solution  for  LTE  Evolved  Packet  Core  (EPC)1    

1      This  diagram  highlights  only  a  small  subset  of  nodes  that  might  actually  exist  in  an  evolving  LTE  EPC.  Additionally,  the  geographical  and  operational  scale  of  such  networks  typically  covers  large  metro  areas  with  tens  of  data  centers  handling  traffic  from  thousands  of  cell  routers  and  millions  of  end  user  device  

As  shown  above,  bearer  traffic  may  originate  from  2G,  3G,  or  4G  capable  user  devices  and  will  traverse  the  core  network  over  a  different  set  of  nodes  (SGSN/GGSN,  MME,  S-­‐GW,  P-­‐GW,  etc.).  It  can  also  use  a  range  of  control  and   data  plane  tunneling  protocols  (TCP,  UDP,  GRE,  GTPv1,  GTPv2,  SCTP,  PMIP,  etc.).    Additionally,  the  Layer  3  networks   within  the  core  are  typically  a  mix  of  IPv4  (core)  or  IPv6  (end  node)  traffic.    A  sample  user  data  flow  would  be  as  follows:  

• An  end  User  Equipment  (UE)  device  sends  an  IP  packet  to  an  eNodeB  through  a  radio  link  with  its  destination  IP  address  set.    

• The  eNodeB,  on  receiving  the  user  data  IP  packet,  encapsulates  this  payload  in  a  GTP  tunnel  header  and  forwards  it  to  the  Service  Gateway  (S-­‐GW).    The  GTP  tunnel  header  includes  an  outer  IP  and  a  UDP  encapsulation  as  well  as  the  GTP  specific  header  fields  which  include  the  Tunnel  Endpoint  Identifier  (TEID).  

• The  S-­‐GW,  upon  receiving  the  IP  packet  from  the  eNodeB,  modifies  the  IP  information  in  its  GTP  tunnel  header  and  sends  the  packet  to  Packet  Data  Network  Gateway  (P-­‐GW).  

• The  P-­‐GW  then  removes  GTP  tunnel  header  from  the  packet  and  delivers  the  original  packet  sent  by  the  UE  device  to  the  IP-­‐based  Packet  Data  Network.    

Page 5: BSN Monitoring Fabric LTE WP v2 - Big Switch Networksgo.bigswitch.com/rs/974-WXR-561/images/BSN... · • The&eNodeB,&onreceiving&the&user&data&IP&packet,&encapsulates&this&payload&in&aGTP&tunnel&header&andforwards&

©2014  Big  Switch  Networks   5  

WHITE  PAPER     |     Next-­‐Generation  Monitoring  Fabrics  for  Mobile  Networks  

The  TEID  for  the  GTP  tunnel  created  for  a  user  data  connection  is  unique.  The  TEID/tunnel  is  also  unidirectional.  It  can  only  serve  for  one  direction,  either  uplink  or  downlink.  So,  the  traffic  from  the  Internet  to  the  UE  would  use  a  different  tunnel  (and  TEID).  Thus,  from  a  TEID,  an  operator  would  not  only  identify  the  UE,  but  also  the  tunnel  as  well  as  the  direction  of  the  packet  flow.    A  sample  set  of  data  traffic  taps  in  such  an   environment  would  include:  

• Tap  on  Serving  Gateway  (S-­‐GW)  and  Cell  Router  optical  links  for  monitoring  traffic  load  spread  over  2G/3G/4G  spectrums  or  usage  density  in  specific  geographical  locations  or  cell  towers  

• SPAN  ports  on  S-­‐GW  and  Packet  Data  Network  Gateway  (P-­‐GW)  for  easier  point  troubleshooting  without  impacting  production  traffic  as  long  as  monitored  traffic  levels  are  not  service  impacting  

• Tap  S-­‐GW  to  P-­‐GW  Interface  for  monitoring,  auditing,  or  troubleshooting  the  signaling  interface  for  establishing  bearers  between  the  serving  gateway  and  the  PDN  gateway,  or  for  user  plane  for  bearer  traffic  

• Monitor  SGi  Interface  traffic  towards  PDN  to  allow  for  bearer-­‐level  compliance,  lawful  intercept,  etc.,  as  SGi   is  where  visibility  into  UE  IP  address(es)  is  exposed  in  an  LTE  environment  

 

Similarly  (not  shown),  various  other  data  and  control  plane  interfaces  require  monitoring  and  audits  to  ensure  voice  over  LTE  (VoLTE)  quality,  data-­‐  and  application-­‐level  policy  enforcement,  and  so  forth.  

If  we  extrapolate  the  above  requirements  to  a  large-­‐scale  mobile  network,  it  becomes  quite  obvious  why  existing  monitoring  architectures  using  network  packet  brokers  (NPBs)  fall  well  short  of  expectations.  Expanding  the  monitoring  infrastructure  in  lock  step  with  the  exponential  increase  in  mobile  data  traffic  is  not  only  cost  prohibitive,  it  also  presents  an  operational  nightmare.  

 

Big  Tap  Monitoring  Fabric:  SDN-­‐Based  Next-­‐Gen  Solution  for  Mobile  Core  The  Big  Tap  Monitoring  Fabric  solution  (outlined  with  dotted  box  in  Figure  3)  is  designed  from  its  inception  to  address  some  of  these  challenges.    

   

Page 6: BSN Monitoring Fabric LTE WP v2 - Big Switch Networksgo.bigswitch.com/rs/974-WXR-561/images/BSN... · • The&eNodeB,&onreceiving&the&user&data&IP&packet,&encapsulates&this&payload&in&aGTP&tunnel&header&andforwards&

6   ©2014  Big  Switch  Networks  

WHITE  PAPER     |     Next-­‐Generation  Monitoring  Fabrics  for  Mobile  Networks  

Big  Tap  Monitoring  Fabric’s  Deeper  Packet  Matching  (DPM)  feature  enables  advanced  troubleshooting  solutions  for  analyzing  services  quality  and  user  experience  for  LTE  networks.  With  the  ability  to  match  up  to  128  bytes  into  the  packet  using  DPM,  the  operator  can:  

• Filter  GTP  traffic  and  send  it  to  an  analysis  tool  or,  o Match  on  TEID,  GTP  version  (v1/v2),  UDP/TCP,  or  GTP  message  types      o Match  on  SCTP  port  numbers  (SCTP  is  used  between  eNodeB  and  MME)  

• Replicate  GTP  traffic  across  multiple  analysis  tools  or,  

• Balance  GTP  packets  based  on  TEIDs    (in  part  or  whole)  across  multiple  tools  or  tool  instances.  

Based  on  an  advanced  third-­‐generation  architecture,  it  leverages  software-­‐defined   networking  (SDN)  principles  to  provide  a  cost-­‐effective  monitoring  capability.  At  its  heart,  it  consists  of  the  Big  Switch   Networks  Big  Tap  Controller  Software  that  manages  a  highly  scalable  Ethernet  fabric  (1/10/40Gbps)  built  using  bare   metal  switches.  These  switches  utilize  powerful  forwarding  ASICs  and  run  a  very  lightweight  Big  Switch  Networks   Switch  Light™  Operating  System.  

Some  of  the  key  benefits  of  this  approach  in  LTE/EPC  environments  include:  • Architected  for  Scale-­‐out  Deployments:  The  choice  of  where  to  tap  is  fully  decoupled  from  the  size  or  location  of  the  tools.  Ideally  tap  everywhere  and  deliver  the  relevant  data  as  needed.  

• Big  Tap  Monitoring  Fabric  can  be  designed  and  configured  to  cater  to  the  requirements  of  any  large  network.  It  supports  1-­‐Tier,  2-­‐Tier,  or  3-­‐Tier  fabric  architectures  to  support  various  traffic  loads  and  range  of  tools.  

• Adding  more  taps,  tools,  or  service  nodes  (NPBs)  simply  requires  extending  the  monitoring  fabric      with  Ethernet  switches  with  the  requisite  capabilities  (1/10/40Gbps)  and  desired  port  density  or  switch  form  factors.  Unlike  single  box  designs,  the  Big  Tap  Monitoring  Fabric  does  not  require  all  capacity  needs  to  be  purchased  and  provisioned  on  day  one,  nor  does  it  put  any  restrictions  on  how  different  fabric  ports  are  provisioned.    

In  scale-­‐out  designs,    

• A  3-­‐layer  topology  is  recommended  in  which  the  3rd  “core”  layer  of  switches  may  be  used  between  the  “filter”  and  the  “delivery”  switch  layers.  These  switches  aggregate  traffic  from  the  filter  switches  and  send  them  to  requisite  delivery  switches  to  forward  to  the  necessary  tools.  

• “Service  interfaces”  may  be  configured  where  packets  can  be  sent  to  one  or  multiple  NPBs  for  specific  packet  modification  services,  like  de-­‐duplication  or  data  obfuscation,  in  a  chain  prior  to  delivery  to  the  security  or  performance  monitoring  tool.    As  the  deployments  shift  from  NPBs  to  next  generation  Big  Tap  architecture,  customers  can  re-­‐purpose  their  existing  high-­‐priced  NPBs  in  an  even  more  efficient  manner,  by  using  them  as  services  nodes  attached  to  the  Big  Tap  Monitoring  Fabric.  

 Big  Tap  Monitoring  Fabric  also  has  some  advanced  features  requested  by  customers:  

• Tap  (Monitor)  Every  Location:  Big  Tap  Monitoring  Fabric  can  be  extended  across  L3  WAN  to  enable  monitoring  of  remote  DCs/POPs,  colo  facilities,  campus/branch  locations,  as  well  as  retail  sites.    This  allows  centralization  of  monitoring  tools  and  staff  in  few  data  centers,  thus  dramatically  reducing  CapEx  and  OpEx  cost  while  allowing  operations  teams  to  monitor  networks  across  the  entire  organization.    

• Application  Protocol  Recognition:  Big  Tap  Monitoring  Fabric  enables  HW-­‐based  deeper  packet  matching  capability  to  recognize  application  protocols  and  their  attributes.    With  ability  to  match  up  to  128  bytes  of  each  packet  at  line  rate,  Big  Tap  allows  more  sophisticated  monitoring  policies  to  be  written  that  can  match  on  inner  header  fields  for  encapsulated  packets  such  as  MPLS,  VXLAN  and  GRE  and/or  mobile  4G/LTE  protocols  such  as  GTP  and  SCTP.  

• Designed  for  Multitenant  Operation:  Network  infrastructure  teams  can  provision  physical  assets  (taps,  tool  farms,  NPB  service  nodes)  as  shared  resources  and  then  offer  On-­‐Demand  Monitoring-­‐as-­‐a-­‐Service  to  their  internal  customers  (e.g.,  security  team,  network  ops  team,  and  so  forth).    

o With  Big  Tap  Monitoring  Fabric  solution,  operators  can  use  the  advanced  filtering  capability  of  Big   Tap  Controller  Software  to  dynamically  filter  and  route  desired  traffic  to  specific  tools.  The  software   also  provides  advanced  capabilities  to  handle  overlapping  policies,  packet  replication,  and  a  range  of  protocols/packet  formats.  

o Fine-­‐grain  role-­‐based  access  control  (RBAC)  capabilities  of  Big  Tap  ensure  that  only  authenticated  users  get  access  to  certain  tools.  A  management  GUI  can  be  used  as  a  tenant  self-­‐service  portal.  

Page 7: BSN Monitoring Fabric LTE WP v2 - Big Switch Networksgo.bigswitch.com/rs/974-WXR-561/images/BSN... · • The&eNodeB,&onreceiving&the&user&data&IP&packet,&encapsulates&this&payload&in&aGTP&tunnel&header&andforwards&

©2014  Big  Switch  Networks   7  

WHITE  PAPER     |     Next-­‐Generation  Monitoring  Fabrics  for  Mobile  Networks  

• Massive  Operational  Simplification:  One  of  the  core  tenets  of  SDN  is  to  simplify  network  management  through  a  centralized  and  programmable  interface.  

o All  switches  in  the  Big  Tap  Monitoring  Fabric  solution  are  managed  from  a  central  place  –  the  Big  Tap  Controller  (via  CLI  or  GUI).  This  centralized  deployment,  configuration,  and  troubleshooting,  as  well  as  single  place  for  policy  authoring  and  provisioning  provides  a  true  single  pane  of  glass  fabric  management.  

o Open  REST  APIs  and  interactive  REST<>CLI  mode  in  the  Big  Tap  software  enables  rapid  integration  with  existing  operations/business  support  systems  (OSS/BSS)  for  automated  operation.  Because  CLIs  and    GUI  are  built  on  top  of  REST  APIs,  the  entire  solution  is  fully  programmable  (unlike  traditional  NPBs  where  APIs  are  an  afterthought).  Using  these  comprehensive  REST  APIs,  operators  can  quickly  develop  innovative  solutions  to  address  their  operational  requirements  (e.g.,  program  the  fabric  policies  based  on  external  triggers  such  as  traffic  thresholds,  flow  patterns,  etc.)  

• Dramatic  Cost  Savings:  Costs  for  monitoring  systems  stem  from  the  ever  expanding  and  costly  NPB  infrastructure  as  well  as  the  underutilization  (or  over-­‐procurement  due  to  organizational  silos)  of  the  expensive  monitoring  tools.  With  Big  Tap  Monitoring  Fabric  running  on  bare  metal  (white-­‐box)  switches,  the  Big  Switch  solution  allows  for  a  multi-­‐fold  reduction  in  total  costs.  

o Economics  associated  with  the  production  of  bare  metal  switches  at  some  of  the  largest  original  design  manufacturers  (ODMs)  ensure  that  the  costs-­‐per-­‐switch-­‐port  are  significantly  lower  than  traditional  vendors.  Build  a  sophisticated  and  high-­‐performance  (10/40Gbps)  monitoring  fabric  at  commodity  switching  cost  points.  

o Reduce  NPB  and  tool  costs  by  optimally  sharing  these  devices  when  attached  to  the  Big  Tap  monitoring  fabric.  Additionally,  service  node  chaining  can  be  used  to  leverage  the  long  tail  of  important  but  less  frequently  used  features  found  in  today’s  network  packet  brokers  (NPBs),  effectively  extending  their  useful  life  by  a  few  more  years.  

o Significantly  reduce  the  operational  cost  of  fabric  provisioning  and  management  through  centralized  controller  and  programmatic  APIs,  thus  eliminating  the  high  cost  associated  with  box-­‐by-­‐box  management  of  traditional  NPBs.  

Conclusion  With  the  advent  of  SDN  on  bare  metal  Ethernet  switches,  ubiquitous  network  visibility  is  now  a  viable  and  attractive  option  from  a  CapEx,  OpEx,  and  design  transition  perspective.  Big  Switch  Networks  Big  Tap  Monitoring  Fabric  solution  focuses  on  sophisticated  algorithms  for  overlapping  policies  and  multi-­‐tenant  use  cases,  making  the  operational  workflows  around  a  shared-­‐tap  infrastructure  practical  in  a  way  that  was  once  out  of  reach.  With  the  pay-­‐as-­‐you-­‐grow  economics  for  both  hardware  and  software  involved  in  the  monitoring  fabric,  starting  small  scale  and  growing  the  fabric  gradually  is  a  low-­‐risk  approach  for  mobile  operators  to  migrate  to  their  next-­‐generation  network  monitoring  architecture.  

To  learn  more  about  how  Big  Tap  Monitoring  Fabric  solution  can  enhance  your  mobile  core  network,  please  contact      [email protected]

Page 8: BSN Monitoring Fabric LTE WP v2 - Big Switch Networksgo.bigswitch.com/rs/974-WXR-561/images/BSN... · • The&eNodeB,&onreceiving&the&user&data&IP&packet,&encapsulates&this&payload&in&aGTP&tunnel&header&andforwards&

8   ©2014  Big  Switch  Networks  

WHITE  PAPER     |     Next-­‐Generation  Monitoring  Fabrics  for  Mobile  Networks  

Addendum  A:  Industry  Terminology  and  Acronyms  

APIs Application  Programming  Interface ODMs Original  Design  Manufacturers BYOD Bring-­‐your-­‐own-­‐device OSS/BSS Operations/Business  Support  Systems CLIs Command-­‐Line  Interface OpEx Operating  Expenses/Expenditures eNodeB Evolved  Node  B P+V Physical  +  Virtual EPC Evolved  Packet  Core PCRF Policy  and  Charging  Rules  Function GGSN Gateway  GPRS  Support  Node PDN Packet  Data  Network 2G,  3G,  4G Mobile  Communication  Technology  Standards P-­‐GW Packet  Data  Network  Gateway Gb Gigabyte PMIP Proxy  Mobile  IP GPRS General  Packet  Radio  Service RAN Radio  Access  Network GRE Generic  Route  Encapsulation RBAC Role-­‐Based  Access  Control GTPv1,  2 GPRS  Tunneling  Protocol  (version  1  and  2) SCTP Stream  Control  Transmission  Protocol GUI Graphical  User  Interface SDN Software  Defined  networking HLR Home  Location  Register SGSN Serving  GPRS  Support  Node HRPD High  Rate  Packet  Data S-­‐GW Serving  Gateway HSPA High  Speed  Packet  Access SMS Short  Message  Service HSS Home  Subscriber  System SPAN Switched  Port  Analyzer IMS IP  Multimedia  Subsystem TEID Tunnel  Endpoint  Identifier IoT   Internet  of  Things   TCP   Transmission  Control  Protocol  

IPv4,  IPv6 Internet  Protocol  version  4,  6 UDP User  Datagram  Protocol LTE Long  Term  Evolution UE User  Equipment MME Mobility  Management  Entity VoLTE Voice  over  LTE NPB Network  Packet  Broker

 

Page 9: BSN Monitoring Fabric LTE WP v2 - Big Switch Networksgo.bigswitch.com/rs/974-WXR-561/images/BSN... · • The&eNodeB,&onreceiving&the&user&data&IP&packet,&encapsulates&this&payload&in&aGTP&tunnel&header&andforwards&

About  Big  Switch  Networks  Big  Switch  Networks  is  the  Bare  Metal  SDN  company.  The  company’s  SDN  Fabric  solutions  embrace  industry  standards,  open  APIs,  open  source  and  vendor-­‐neutral  support  for  both  physical  and  virtual  networking  infrastructure.  Big  Switch  Networks  SDN  Fabric  solutions  support  a  broad  range  of  networking  applications,   including  Unified  Physical  +  Virtual  (P+V)  Cloud  Switching  and  Monitoring.  

For  more  information,  follow  us  @bigswitch  or  visit  www.bigswitch.com.  

Headquarters  100  West  Evelyn  Street,  Suite  110  Mountain  View,  CA  94041,  USA  Phone:  +1.650.322.6510  or:  +1.800.653.0565  bigswitch.com  

9  

Copyright  2014  Big  Switch  Networks,  Inc.  All  rights  reserved.  Big  Switch  Networks,  Big  Network  Controller,  Big  Tap,  Big  Virtual  Switch,  Switch  Light,  Floodlight  and  Open  SDN  are  trademarks  or  registered  trademarks  of  Big  Switch  Networks,  Inc.  All  other  trademarks,  service  marks,  regis-­‐  tered  marks  or  registered  service  marks  are  the  property  of  their  respective  owners.  Big  Switch  Networks  assumes  no  responsibility  for  any  inaccuracies  in  this  document.  Big  Switch  Networks  reserves  the  right  to  change,  modify,  transfer  or  otherwise  revise  this  publication  without  notice.  MF  Mobile  LTE  WP-­‐V2-­‐EN  DEC  2014