buffer options for the bay: exploring the trends, the

52
University of New Hampshire University of New Hampshire University of New Hampshire Scholars' University of New Hampshire Scholars' Repository Repository PREP Reports & Publications Institute for the Study of Earth, Oceans, and Space (EOS) 2017 Buffer Options for the Bay: Exploring the Trends, the Science, and Buffer Options for the Bay: Exploring the Trends, the Science, and the Options of Buffer Management in the Great Bay Watershed the Options of Buffer Management in the Great Bay Watershed Key Findings from Available Literature Key Findings from Available Literature Shea E. Flanagan Nature Conservancy, New Hampshire Chapter David A. Patrick Nature Conservancy, New Hampshire Chapter Dolores J. Leonard Roca Communications Paul Stacey Great Bay National Estuarine Research Reserve, New Hampshire Fish & Game Department Follow this and additional works at: https://scholars.unh.edu/prep Recommended Citation Recommended Citation Flanagan, Shea E.; Patrick, David A.; Leonard, Dolores J.; and Stacey, Paul, "Buffer Options for the Bay: Exploring the Trends, the Science, and the Options of Buffer Management in the Great Bay Watershed Key Findings from Available Literature" (2017). PREP Reports & Publications. 380. https://scholars.unh.edu/prep/380 This Report is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Reports & Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected].

Upload: others

Post on 14-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Buffer Options for the Bay: Exploring the Trends, the

University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' University of New Hampshire Scholars'

Repository Repository

PREP Reports & Publications Institute for the Study of Earth, Oceans, and Space (EOS)

2017

Buffer Options for the Bay: Exploring the Trends, the Science, and Buffer Options for the Bay: Exploring the Trends, the Science, and

the Options of Buffer Management in the Great Bay Watershed the Options of Buffer Management in the Great Bay Watershed

Key Findings from Available Literature Key Findings from Available Literature

Shea E. Flanagan Nature Conservancy, New Hampshire Chapter

David A. Patrick Nature Conservancy, New Hampshire Chapter

Dolores J. Leonard Roca Communications

Paul Stacey Great Bay National Estuarine Research Reserve, New Hampshire Fish & Game Department

Follow this and additional works at: https://scholars.unh.edu/prep

Recommended Citation Recommended Citation Flanagan, Shea E.; Patrick, David A.; Leonard, Dolores J.; and Stacey, Paul, "Buffer Options for the Bay: Exploring the Trends, the Science, and the Options of Buffer Management in the Great Bay Watershed Key Findings from Available Literature" (2017). PREP Reports & Publications. 380. https://scholars.unh.edu/prep/380

This Report is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Reports & Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected].

Page 2: Buffer Options for the Bay: Exploring the Trends, the

1

BUFFEROPTIONSFORTHEBAY:EXPLORINGTHETRENDS,THESCIENCE,ANDTHEOPTIONSOF

BUFFERMANAGEMENTINTHEGREATBAYWATERSHED

KEYFINDINGSFROMAVAILABLELITERATURE

SHEAE.FLANAGAN1,DAVIDA.PATRICK1,DOLORESJ.LEONARD2,ANDPAULSTACEY3

1THENATURECONSERVANCY,NEWHAMPSHIRECHAPTER,22BRIDGESTREET,CONCORD,NH,[email protected]@TNC.ORG

2ROCACOMMUNICATIONS+,2OLDFIELDSROAD,SOUTHBERWICK,ME,[email protected]

3GREATBAYNATIONALESTUARINERESEARCHRESERVE,NEWHAMPSHIREFISH&GAMEDEPARTMENT,69DEPOTROAD,GREENLAND,NH,[email protected]

Page 3: Buffer Options for the Bay: Exploring the Trends, the

2

TABLEOFCONTENTS

I. Acknowledgements…………………………………………………….…………………………………………………………………..4A. ExecutiveSummary…………………………………………………….…………………………………………………………………..5B. Whatisabuffer?.…………………………………………………….………………………………………………………………………7C. WhichenvironmentalissuesdowehopetoaddressthroughtheuseofbuffersintheGreatBay

Estuary(GBE)?.…………………………………………………….………………………………………………………………………..10D. Howmightbuffersaddresstheseissues?.………………………………………….………………………………………….13 I.WaterQuality…………………………………………………….…………………………………………………………………………17

i. Reducinginputsofexcessnutrientsandcontaminants......................................18ii. Mediatingsediment.............................................................................................19iii. Influencingwatertemperature............................................................................20iv. Providingorganicinputsintoaquaticsystems....................................................20

II.HydrologicEffects.............................................................................................................................20i. Providingfloodstoragecapacity..........................................................................21ii. Reducingrun-offandstabilizingthechannelbank..............................................21iii. Infiltratingsurfacewater.....................................................................................21

III.HabitatforBiodiversity...................................................................................................................22i. Aquaticmacroinvertebratesandfish...................................................................23ii. Amphibians……………………………………………………………………………………………………..23iii. Reptiles……………………………………………………………………………………………………………24iv. Birds………………………………………………………………………………………………………………..24v. Mammals…………………………………………………………………………………………………………25Table2…………………………………………………….……………………………………………………………………26Table3…………………………………………………….……………………………………………………………………27Table4…………………………………………………….……………………………………………………………………27

E.Whatpreviousandongoingattemptshavebeenmadetoaddressecologicalstressorsandmaintainecosystemservicesusingbuffers,andwhattechnicalbarriershavebeenencountered?.........................28

I. Whatsuccesseshavearisenfrombufferrestorationandprotectionattempts?...........................28i. NorthHampton,NewHampshire.………………………………………….………………………..28ii. ConnecticutRiverWatershed………………………….…………………………………….………..29iii. ChesapeakeBayWatershed…………………………………………………………………………….29iv. ColumbiaRiverWatershed………………………………………………………………………………30v. FoxCreekCanyon,Oregon……………………………………………………………………..……….30vi. BogBrook,NewHampshire…………………………………………………………………..…………30vii. MousamLake,Maine………………………………………………………………………………………30viii. HighlandLake,Maine………………………………………………………………………………………31ix. GilaRiverWatershed……………………………………………………………………………….………31

II. Whatobstacleshavebeenencounteredinbufferrestorationandprotectionattempts?.............32i. ChesapeakeBayWatershed…………………………………………………………………….………32

Page 4: Buffer Options for the Bay: Exploring the Trends, the

3

ii. ConnecticutRiverWatershed………………………………………………………………………….32iii. Maidstone,Vermont……………………………………………………………………………………….32

III. Whataretheoverarchinglessonslearnedfrombufferrestorationandprotectionattempts?.....34Appendix1…………………………………………………….………………………………………………………………………………………36Appendix2…………………………………………………….………………………………………………………………………………………38Appendix3…………………………………………………….………………………………………………………………………………………40Appendix4…………………………………………………….………………………………………………………………………………………42LiteratureCited…………………………………………………….……………………………………………………………………………….43

Page 5: Buffer Options for the Bay: Exploring the Trends, the

4

ACKNOWLEDGEMENTS

WewouldliketorecognizetheinvaluablesupportofferedbytheNewHampshireAssociationofNaturalResourceScientists,particularlyRickVandePollandMaryAnnTiltonattheNewHampshireDepartmentofEnvironmentalServices,inassemblingthisliteraturereview.The data provided by NHANRS played a foundational role in crafting this review. WewouldalsoliketothankthemembersoftheBufferOptionsfortheBayprojectteamandadvisorycommitteefortheirkeyfeedbackinguidingtheframeworkanddevelopmentofthisreview.

Page 6: Buffer Options for the Bay: Exploring the Trends, the

5

A. EXECUTIVESUMMARYInNewHampshire,theneedfortrusted,relevantscienceisexperiencedateveryscaleofbuffermanagement,fromdecisionsmadebypropertyownersatthewater’sedgetothoseofstateagenciessettingpolicyforwhatispermissibleonthatland.Underpinningeachdecisionareaseriesoftradeoffsthatreflectassumptionsheldabouttheimpactofthatchoiceontheenvironment,theeconomy,andthewell-beingofthecommunity.ThisliteraturereviewseekstosupportthesedecisionsandgroundtruththoseassumptionsbypresentingasynthesisofavailablescienceonthesubjectofbuffermanagementfortheGreatBayEstuary(GBE)anditstributariesinsoutheastNewHampshire.

ThereviewwascommissionedbytheBufferOptionsfortheBay(“BOB”)technicalteam,whichisacomponentofthelargerintegratedassessmentBOBprojectentitled“ExploringtheTrends,theScience,andtheOptionsofBufferManagementintheGreatBayWatershed.”BufferOptionsfortheBayisagrant-sponsoredcollaborationofpublic,academic,andnonprofitorganizationsdedicatedtoenhancingthecapacityofNewHampshirestakeholderstomakeinformeddecisionsthatmakebestuseofbufferstoprotectwaterquality,guardagainststormsurgeandsealevelrise,andsustainfishandwildlifeintheGreatBayregion.Inkeepingwiththisgoal,thisreviewhasbeeninspiredbytypicalquestionsthatariseinthecourseoflocalbuffermanagement.Forexample,whatroledobuffersplayinprotectingwaterquality?Inmitigatingtheimpactsoffloodingandsealevelrise?Providinghabitatforprotectedorcommerciallyimportantwildlife?Enhancingpropertyvalues?Whatdoesthesciencesuggestwedotoensurethatbufferscancontinuetosupporttheseservices?Howmucharepeople“willingtopay”tomaintainoravoidlossofthesefunctions?

Tohelpaddressthesequestions,thisreviewconsideredbothprimaryliteratureandpreviousliteraturereviews.ThelatterincludesrecentworkundertakenbytheNewHampshireAssociationofNaturalResourceScientists,aswellasstudiesbySweeneyandNewbold(2014),WashingtonStateDepartmentofEcology(Sheldonetal.2005),RhodeIslandDivisionofPlanning(MetzandWeigel2013),NewHampshireAudubon(Chaseetal.1995),UniversityofGeorgia(KirwanandMegonigal2013;Wenger1999),EnvironmentalLawInstitute(EnvironmentalLawInstitute2008),andGoodForestryintheGraniteStateSteeringCommittee(Bennett2010).Thereisanincrediblevolumeofscientificliteraturerelevanttothetopicofbuffers,andourintentionwasnottobeexhaustiveinthisreview;insteadwefocusonthemostlocallyrelevantsciencethatcanbeusedtoaddresstheaforementionedquestionsinNewHampshire.

Fromthisreview,wefoundthatwhilethebestavailablescienceprovidesclearguidancetoinformdecision-makingrelatedtobuffermanagementinNewHampshire,researchquestionsremain.Forexample,itisclearthatbufferscanhelpprotectmanyofthebenefitsthattheGBEanditstributariesprovidetosurroundingcommunitiessuchasrecreationalopportunitiesandhealthyfisheries.Thiscapacity,however,dependsonabuffer’sparticularattributes,includingitswidth,acharacteristicofcriticalimportancetoallstakeholdersandatopicthathasreceivedconsiderableattentioninthepeer-reviewedliterature.Whilemanypapersmakerecommendationsforbufferwidth,thesestudiesoftenseektoaddresshowwideabufferwouldneedtobetomaintainthetypesofecologicalfeaturesor

Page 7: Buffer Options for the Bay: Exploring the Trends, the

6

functionsfoundinentirelynaturallandscapes,suchasanassemblageofforest-associatedbirds.Consequently,theytendtofocusonrelativelywidemarginsoflandthatmaynotbepractical,orevenfeasible,insomesettings.Whileitiscriticallyimportantthatweunderstandtheseminimumwidthsandhencewhataspectsoftheenvironmentwillbedegradedwithnarrowerbuffers,itisalsoimportantthatweunderstandwhatfunctionsmightbeprovidedbythenarrowerbuffersthatmaybetheonlyfeasibleoptionincertainsettings.Relativelyfewstudieshavefocusedonthetopicofnarrowerbuffers,withtheexceptionofresearchonnutrientremoval.Asaresultofthelimiteddataonnarrowerbuffers,thisreviewputsforwardminimumbufferwidthrecommendationsbasedonwhatisnecessarytomaintainbufferfunctions,withthecaveatthatwedonotalwaysfullyunderstandhowwellnarrowerbuffersmayfunction.Theserecommendationsaresupportedbypertinentexamplesofspecificanalysesfromtheliterature.

Inadditiontothelimiteddataavailabletohelpinunderstandingtheroleofnarrowbuffers,achallengealsoexistsinquantifyingadirectrelationshipbetweentherestoration,maintenance,orlossofbuffersinreal-worldscenariosandacorrespondingchangeinthefocalecosystemservice.Mostprimaryresearchonbufferefficacyisconductedundercontrolledconditionswithintheconfinesofaresearchproject.Underthisapproach,unwantedvariabilityintheenvironmentisminimizedinordertotestspecifichypotheses.However,whenbuffersareutilizedinpractice,thereistypicallyconsiderablevariabilityintheenvironment,accompaniedbyalackofreplication–forexample,oftenasinglewatershedisevaluated.Thismakesthetypeofstatisticalanalysesdeployedinexperimentalresearchdifficult.Understandingthischallengeisimportant,asitcanleadtoaconclusionthat,inpractice,buffersarenotaseffectiveasindicatedbymostprimaryresearch.However,therealityisthatthefindingsofprimaryresearchholdtrue,i.e.bufferscanbeaneffectivetool,butthevariabilityofcomplicatingfactorsinthenaturalenvironmentcaneithermaskoroverridetherolethatbuffersplayininfluencingecosystemservices.ThesciencesynthesizedinthisdocumentisintendedtobeusedbytheBOBprojectteam,althoughtheexplicitintentistothencreateanumberofinformationalproductsthattranslatethisscienceintoamoreaccessibleformforendusers.Ultimately,theproductsthatareshapedfromthisreviewwillbeofservicetoallbuffermanagementstakeholdersintheGreatBayregion,includinglandownersandtheconsultantswhoworkwiththem,regulatoryagenciesandmunicipalities,conservationorganizationsandfoundations,andscientistsinterestedinconductingresearchthatwillleadtomoreeffectivebuffermanagement.

Science,however,isonlyonepieceofthebuffermanagementpuzzle.Toaugmentthisreview,theBOBcollaborativehasconductedananalysisofregulatoryandnon-regulatorypolicyoptionsforNewHampshire,aneconomicanalysisofthevaluesplacedonthewaterqualitybenefitsprovidedbybuffers,abuffer-focusedGISanalysisoftheGBEregion,andanassessmentofthebarriersandopportunitiesrelatedtobuffermanagementatthecommunitylevelintheExeter/Squamscottsubwatershed.

Page 8: Buffer Options for the Bay: Exploring the Trends, the

7

Theresultsoftheseanalyseshavebeencapturedinindividualreports.They’vealsobeenintegratedintoaframeworkintendedtoinformdiscussionsaroundbuffermanagement,restoration,andprotectionintheGBEregion.Weanticipatethatthisframeworkwillopenthedoortonewandneededresearch;strategicandcomplementaryinvestmentsbystateagencies,nonprofits,andfoundations;andacollectivestrategyforoutreachprofessionalstoworkwithtownsonadvancingeffectivebufferpolicyandpracticeatthecommunitylevel.

B. WHATISABUFFER?Beforeembarkingonareviewofscientificinformationrelatingtobuffers,itisimportanttounderstandwhatismeantbythisconcept.Suchunderstandingisconfoundedbytherangeofterminologyusedinrelationtobuffers.Twoormoretermsmaybeusedtorefertowhatisessentiallythesameconcept,orthesametermmaybeusedindifferentcontextswithdifferentunderlyingmeanings.Thiscanleadtoconfusionthathinderseffectivebuffermanagement.

Forthepurposeofthisreview,bufferisdefinedasanuplandareaadjacenttowetlands(Sheldonetal.2005),andwetlandisdefinedasatransitionalzonebetweenterrestrialandaquatichabitatsthatincludeslandscapefeaturesthatcontainorconveywaterandsupportuniqueplantsandwildlife(EnvironmentalLawInstitute2008)1.Usingthesedefinitions,examplesofwetlandscouldincludestreams,rivers,ponds,lakes,bogs,andvernalpools.ThisreviewisfocusedontheGreatBayEstuary(GBE)region,andisthereforeconcernedprimarilywithcoastalbuffers(i.e.theboundaryadjacenttotidalwatersoftheestuary),buffersadjacenttostreamsandriversthatflowintothebay,andbuffersadjacenttowetlandsthatarehydrologicallyconnectedtothewatersofthebay.Thetermslistedbelowareoftenused,sometimesinterchangeably,whenreferringtoareasthatfittheaforementioneddescriptionofbuffers.

● Buffer● Vegetatedfilterstrip● Bufferstrip● Riparianarea● Riparianzone● Ripariancorridor

Whileeachofthesetermsmaybemorecommonlyemployedindifferentarenas(e.g.regulation/policyversusecologicalconditionorlocation),ormoretypicallyassociatedwithacertaindefinition,thereisconsiderablemixingofusage.GiventhattheBOBprojectisnotfocusedonanysinglespecificfunctionofbuffers,weuse‘buffer’throughoutthisdocumentinreferencetotherangeoffunctionsthatmaybeencompassedbyallofthetermslistedabove.

1One’sunderstandingoftheterm‘buffer’isofteninformedbyone’sbackgroundorexperience.Aplannerordevelopermayconsiderbufferstobedefinedregulatoryareasinwhichdevelopmentmaybeconstrained.Ascientistorecologistmayhaveamuchbroaderandlessrigidunderstanding,characterizedmorebytheecologicalsetting,form,andfunctionthanbyasimpleregulatoryboundary.

Page 9: Buffer Options for the Bay: Exploring the Trends, the

8

Inadditiontothevariationinterminology,aconsiderablerangeofdefinitionsareusedinreferencetobuffers.Perhapsthesimplestis“theuplandsadjacenttowetlands”(EnvironmentalLawInstitute2008),i.e.astrictlyspatialdefinition.However,theconceptofabufferismoretypicallyappliedtodescribearangeoflandmanagementpracticesintheseuplandareas.Thesepracticescanrangefromrestrictingactivitiesfromwithinaspecifieddistancefromawaterbody(alsocommonlytermeda‘setback’)tocomplexrecommendationsforhabitatmanagementdesignedtoprotectspecificgroupsoforganismsorfunctionalroles.Forexample,Reed(2013)definedbuffersas“vegetatedstripsoflandseparatingrunoff-andpollutant-contributingareasfromsurfacewaters.”Similarly,Chaseetal.(1995),definedabufferas“anaturallyvegetateduplandareaadjacenttoawetlandorsurfacewater.”Conversely,SemlitschandJensen(2001)recommendedthefollowingnuanceddescriptionforamphibiansandreptiles:“Weproposetheuseofstratifiedcriteriathatwouldincludeatleastthreeterrestrialzonesadjacenttocoreaquaticandwetlandshabitats:(1)startingfromthewetlandedge,afirstterrestrialzonewouldbufferthecoreaquatichabitatandprotectwaterresources;(2)startingagainfromthewetlandedgeandoverlappingwiththefirstzone,asecondterrestrialzonewouldcomprisethecoreterrestrialhabitatdefinedbysemi-aquaticfocalspeciesorspecies-groupuse;and(3)startingfromtheoutwardedgeofthesecondzone,athirdterrestrialzonewouldbufferthecoreterrestrialhabitatfromedgeeffectsandsurroundingland-usepractices.”

Bearinginmindthisrangeofdefinitions,ingeneral,theterm‘buffer’isusedtodenoteaspecifiedareaofuplandhabitatadjacenttostreams,rivers,ponds,lakes,and/orotherwetlandtypes,typicallyassociatedwithmaintainingorpromotingoneormoreecologicalorsocio-economicfunctions,andwithspecificlanduseregulationsimplementedwithinthisareatomeettheseobjectives.Theselandusepracticescaneitherbeactivitiesthatareprohibited,suchasconstruction,orencouraged,suchasmaintenanceofnaturalvegetation.Intheecologicalliterature,theterm‘buffer’generallyrelatestothenaturallyvegetatedzoneadjacenttowetlandsandprecludesconsiderationofgrayinfrastructure(i.e.stormsewers,culverts,pipes,otherhuman-engineeredsystems)thatmightservesomeofthesamefunctionsasgreenornaturalinfrastructure(i.e.forests,wetlands,othernaturalecosystems).

‘Setback’and‘jurisdictionalzone’aretwotermsthatareoftenusedinsimilarcontextsasbuffers–specifically,regardingtheregulatorycapacityforwaterbodyprotection.However,setbacksandjurisdictionalzonesaredistinctfrombuffers.Thesetermswillnotbecoveredindepthinthisreview,butthefollowingbackgroundinformationisprovidedtohelpdifferentiatesetbacksandjurisdictionalzonesfrombuffers.

Muchlike‘buffer,’theterm‘setback’hasarangeofdefinitions.Asetbackisgenerallyaspecifieddistancefromthewaterbodywithinwhichcertainactivitiesarerestricted,suchasbuildingconstructionorestablishmentofasepticsystem.Wetlandsetbacksarenotnecessarilynaturallyvegetated,assetbacksaretypicallyaimedspecificallyatmaintainingwaterqualityratherthanthebroadergoalsoftentargetedbybuffers.However,theterm‘setback’issometimesusedinterchangeablywith’buffer.’An

Page 10: Buffer Options for the Bay: Exploring the Trends, the

9

exampleofonedefinitionis“adistancerequirementfromcertainactivities,”fromNewHampshireDepartmentofEnvironmentalServices(NHDES).Asanotherexample,theNationalOceanicandAtmosphericAdministrationdefinesasetbackas“adistancelandwardofsomecoastalfeature(e.g.theordinaryhighwatermarkwithinwhichcertaintypesofstructuresoractivitiesareprohibited”(Lemieuxetal.2004).

Ajurisdictionalzoneisanotherareainwhichrestrictionsmaybesettoprotectawaterbody.Ajurisdictionalzoneisgenerallytheboundaryextendingoutfromawaterbodytowhichagoverningagency(i.e.stateand/ormunicipality)hasregulatorycapacity.Withrespecttobuffers,ajurisdictionalzonetypicallyincludesandextendsbeyondbufferandsetbackwidths.TheNHDESWetlandsBureaudefinesajurisdictionalzoneas“anareathatissubjecttoregulationunderRSA482-A[FillandDredgeinWetlands],asdescribedtherein.”Anillustrationofthetypicalspatialarrangementofbuffers,setbacks,andjurisdictionalzonesisprovidedinFigure1below.

Figure1.Conceptualillustrationofbuffer,setback,andjurisdictionalzoneextentsinrelationtothewaterbody(nottoscale).

Page 11: Buffer Options for the Bay: Exploring the Trends, the

10

C. WHICHENVIRONMENTALISSUESDOWEHOPETOADDRESSTHROUGHTHEUSEOFBUFFERS

INTHEGREATBAYESTUARY(GBE)?TheprincipalthreatstotheGreatBayEstuary(GBE)arewellsummarizedinthePiscataquaRegionEstuariesPartnership’s(PREP)2013StateofOurEstuariesReport(PREP2013)andtheGreatBayNon-PointSourceStudy(Trowbridgeetal.2014).Thesedocumentsandtheresourcestheydrawupondescribeacomplexrangeofinterrelatedstressorsthathaveledtoecologicaldegradationandassociatedsocio-economiccosts,includingterrestrialpollutantsfromsettlementsandagriculture,changesinsedimentation,changesinwatertemperatureandlevelsofdissolvedoxygen,lossofnaturalhabitatduetolandconversion(Fig.2a,Fig.2b),declinesinoysterreefsandeelgrassbeds,increasesininvasiveaquaticspeciesandnuisancenativemacroalgae,alteredflowregimesandbarrierstothepassageofaquaticorganismsbetweenmarineandfreshwaterenvironments,increasedfloodinganderosion,andsealevelrise.Buffershavethepotentialtohelpinamelioratingalloftheseissueswiththeexceptionofinvasivespecies,aquaticorganismpassageforstrictlyaquaticspecies,sealevelrise,andchangesinestuarinewatertemperatureasaresultofoceanwarming.

Figure2a.ImpervioussurfacecovertrendsintheGreatBayEstuaryregion.ProvidedbyPiscataquaRegionEstuariesPartnership(PREP2013).

Page 12: Buffer Options for the Bay: Exploring the Trends, the

11

Figure2b.ImpervioussurfacecovertrendsintheGreatBayEstuaryregion.ProvidedbyPiscataquaRegionEstuariesPartnership(PREP2013).

Nitrogen/nutrientloadingandsedimentinputstotheGBEremainsignificantdriversofecologicaldegradation,withhighinputsfacilitatedbytheincreasingamountofimperviouscoverandlossofnaturalcoverwithinthewatershed(Trowbridgeetal.2014).Excessnutrientinputstoaquaticsystemsreducewaterqualityanddecreasespeciesrichness.Sixty-eightpercentofthenitrogenintheGBEsystemcomesfromnonpointsourcesspreadacrossthewatershed,withtheremaindercomingfrommunicipalwastewatertreatmentdischarge.Nonpointsourcesincludeatmosphericdeposition,fertilizers,humanwastefromsepticsystems,andanimalwaste.Humanwastefromsepticsystemscontributes29percent(~240tons/year)ofnitrogeninputstotheGBEandisthelargestnonpointloadafteratmosphericdeposition(42percent).Thirty-fourpercentofnonpointsourceloadsweredeliveredthroughstormwater(surfacewaterofabnormalquantityresultingfromheavyrainsorsnowfall).

Thelossofbuffersisparticularlyimportantinthecontextofnutrientandsedimentinputs.Nitrogeninputsarecloselylinkedtolevelsofdissolvedoxygen(DO):Ingeneral,thetidalmixingintheGBEmeansthatlevelsofDOareaboveminimumwaterqualitystandardsof5mg/L.However,tidalriversflowingintotheGBEregularlyfallbelowthisthreshold,posingarisktoaquaticorganisms(PREP2013).SuspendedsedimentscontinuetoincreaseintheGBE,havingrisenby12percentfrom1976to2011.Thesesuspendedsedimentsresultfrombothwave/tidaldisturbancestoestuarinesilts,andrun-offdeliveryofterrestrialsedimentsintothebay(i.e.acombinationofresuspensionofexistingsedimentsinthebay,andincreasedterrestrialinputs).Thesethreatsfromnutrientandsedimentinputscanbeamelioratedbytheuseofbuffers.

Increasednutrientlevels,coupledwithsedimentationanddiseaseoutbreaks,arelikelytobeimportantcontributorstodeclinesofeelgrassandoysterreefareaswithinthebay(Fig.3).Historically,therewere

Page 13: Buffer Options for the Bay: Exploring the Trends, the

12

approximately1,000acresofoysterreefsintheGBE,withonly~10percentofthisareanowremaining(PREP2013).Similarly,eelgrassbedsoncedominatednearshorehabitatinthebay,buttheirdistributionhasdeclinedby44percentsince1996,andtheirbiomasshasdecreasedby79percent(Short2016).Thelossofthesehabitatsisparticularlynotablegiventheimportantecologicalfunctionstheyprovide.Theseincludewaterfiltrationbyoysters,importanthabitatforjuvenilefishandaquaticinvertebrates,andestuarinesedimenttrapping.Asthesehabitatshavedeclined,thereisthepotentialforafeedbackmechanismwhereintheincreasedsedimentationanddecreasedwaterqualitypartiallyresultingfromoysterandeelgrassdeclinescreatesconditionsinwhichitishardertorestorethesesamehabitats.Inadditiontothisecologicalfunctionality,oystersandseagrassmeadowsarecommerciallyvaluable.Forexample,astudyofMediterraneanseagrassmeadowsestimatedtheywereannuallyworth$119millionforcommercialfishing(Jacksonetal.2015).

Figure3.EelgrasscovertrendsintheGreatBayEstuaryregion.ProvidedbyPiscataquaRegionEstuariesPartnership(PREP2013).

Widespreadconversionofnaturalhabitatshasbeendeemedtheleadingcauseofbiodiversitylossworldwide.Riparianhabitatisatparticularriskfromconversionastheseareasareoftenhighlysuitable

Page 14: Buffer Options for the Bay: Exploring the Trends, the

13

foragricultureanddesirablelocationsforhumandevelopment.IntheUnitedStates,~1percentofriparianareaswerelostfrom1972to2003(PuseyandArthington2003).Whilethisfiguremaynotseemhigh,itisimportanttorecognizethatthisrepresentsacontinuedlossofhabitatontopofhistoricallossinmanyplaces.IncoastalNewHampshire,muchofthislandconversioncanbeattributedtoagrowinghumanpopulationasaresultofproximitytotheexpandinggreaterBostonarea.From1990to2010,thepopulationintheregiongrewby19percentwithaconcomitant120percentincreaseinimperviouscover(representing9.6percentofthelandarea).Thelossofbuffersisofparticularconcerngiventhattheysupportawiderangeoforganismsassociatedwithbothterrestrialandaquatichabitats(Naimanetal.1993)andarethoughttoprovideconnectivity,i.e.allowmovementoforganismsacrossthelandscape,particularlyinsituationswhereuplandhabitatadjacenttothebufferhasbeenlost(Machtansetal.2002,BeierandNoss2008).

Inadditiontohabitatloss,conversionofriparianhabitatincreasestheloadofstressorssuchasnutrientsandsedimentwithlittleopportunityforamelioratingthesethreatsbeforetheyenterwetlands.Areasclosetowaterwayscontributeasignificantproportionofinputs(~10percentofnitrogenloadingcomesfromwithin~650ft.ofwaterways)(PREP2013).Asanexampleoftheconsequencesofconversion,researchintheNHSeacoastregionfoundthatwaterqualityandbiologicalconditionsin-streamdeclinedasthepercentageofurbanlandincreasedwithinan~80ft.buffer(Deaconetal.2005).

Sealevelrise(SLR)isalsoasignificantthreattotheGBE.Whilesealevelsarerisinginmanyareasoftheworldasaresultofmeltingpolaricecausedbyglobalclimatechange,thenortheasternUnitedStateshasbeenidentifiedasahotspotofacceleratedSLR,withrates3to4timeshigherthanglobalaverages(Sallengeretal.2012).SLRwillleadtoextensivecoastalflooding(Kirshenetal.2008),andmayleadtothelossofimportantcoastalhabitat,suchasdunesandsaltmarshes,dependingontherateofSLRandabilityofhabitatstoredistributeinresponsetothesechanges(Craftetal.2008).ThehighdensityofhumansettlementandassociatedinfrastructureinlowlandareasadjacenttotheGBEalsoputsmanycommunitiesatsignificantriskofcoastalfloodingasaresultofSLR(Hamiltonetal.2010).

D. HOWMIGHTBUFFERSADDRESSTHESEISSUES?Bufferscanprovidearangeofecologicalbenefitstohelpinamelioratingthethreatslistedabove(summarizedinTable2withamoredetailednarrativedescriptionprovidedinthefollowingsections).However,beforedescribingtheroleofbuffers,itisimportanttorecognizethattheprovisionoftheseservicesishighlydependentonboththewiderlandscapewithinwhichthebufferisfoundandthelocalizedcontextofthebufferitself(Wenger1999,Franzenetal.2006,Bardgettetal.2013,Raneyetal.2014).Landscapecontextisparticularlyimportantasitwillinfluencethenutrientloadingthatthebufferwillintercept.Forexample,ifabufferissituatedincloseproximitytoalargeareaofcommercialdevelopment,thereislikelytobeahigherloadingofcontaminantscomparedtoalargelyforestedwatershed.Similarly,thefunctioningofthebufferwillbeinfluencedbyarangeofcharacteristicsincludingvegetation,widthofthebuffer,slope,andunderlyingsoils.Wehaveattemptedtodiscussthesetopicsthroughoutthisliteraturereview,butanin-depthdiscussionoftopicssuchasthelinkage

Page 15: Buffer Options for the Bay: Exploring the Trends, the

14

betweenwatershedmanagement,land-usechange,andnonpointsourcepollutionisbeyondthescopeofouranalyses.Researchhasshownthattheeffectivenessofpollutionreductionby‘green’infrastructure,ornaturalareasthatprovideecosystemservices(inthiscase,buffers),isnotonlycomparabletothatachievedby‘gray’infrastructure(constructedstormwaterinterventions),butthatgreeninfrastructuretypicallycostsmarkedlyless(Talberthetal.2012).Aswatershedshavedegradedovertime,costsfortraditionalwatertreatmenthavedoubledforaboutoneinthreelargecitiesglobally(McDonaldetal.2016).Specifically,from1900to2005,90percentofurbansourcewatershedsexperiencedsomewatersheddegradation,withtheaveragepollutantyieldofurbansourcewatershedsincreasingby40percentforsediment,47percentforphosphorus,and119percentfornitrogen(McDonaldetal.2016).Byelectingtousenatural/greeninfrastructuresuchasbuffersandwetlands,stakeholdersavoidwatersheddegradation.Thisavoidanceinturnhelpsmaintainwaterqualityandreducestreatmentcosts,asthenaturalcapitalofnaturallandcoverfunctionsasanalternativetoinvestmentingrayinfrastructure(McDonaldetal.2016).Asanexampleofthecomparisonbetweengreenandgrayinfrastructure,buildingawastewatertreatmentsystemusingconstructedwetlandscostsaround$5pergallonofcapacitycomparedtoapproximately$10pergallonofcapacityforaconventionaladvancedtreatmentfacility(Fosteretal.2011).Additionally,greeninfrastructureisestimatedtobethreetosixtimesmoreeffectiveinmanagingstormwaterper$1,000investedthanconventionalmethods.Forexample,thelargelyintactfloodplainsandwetlandswithinVermont’sOtterCreekwatershedwereestimatedtohavereduceddamageby54to78percentacrosstenfloodeventstothetownofMiddlebury,andby84to95percentforTropicalStormIrene(Watsonetal.2016).Theannualvalueofthesefloodmitigationservicesexceeded$126,000andmaybeashighas$450,000.Greeninfrastructurealsofunctionsbetterthangrayinfrastructureinclimateadaptationandresiliencebyprovidingasuiteofco-benefits,suchasimprovingairquality,reducingurbanheateffects,loweringenergydemand,andevenincreasinglandvaluesbyupto30percent(Fosteretal.2011).Beforeconsideringtheextenttowhichbufferscanhelpsupportspecificecosystemservices,itisimportanttoaddresstheoverarchingtopicofbufferwidth.Thisthemehasreceivedconsiderableresearchattention,withanumberofreviewpapersofferingrecommendationsfordifferentobjectives(e.g.Leeetal.2004;KirwanandMegonigal2013).Itisworthnoting,however,thatstudieshavetendedtofocusonrelativelywidebuffersthatmaynotbefeasibleinsomesettings,suchasareaswherehighdevelopmentpressureimpedestheabilitytoestablishbuffersoftherecommendedwidth.Asaconsequence,thereissomeconcernthattheefficacyofnarrowerbuffersmaynotbewellunderstood(HickeyandDoran2004).Thisreviewprovidesfixedwidthbufferrecommendations,butwerecognizetheutilityofvariablebufferwidthrecommendationsaswell.Variablewidthbuffersarebuffersthatdonotmaintainauniformwidththroughouttheirextent(Fig.4,Table1).Variablewidthbufferscanprovideanimportanttoolformeetinganecosystemservicetarget(forexample,removalofnutrients),butwhereitisinfeasibleto

Page 16: Buffer Options for the Bay: Exploring the Trends, the

15

maintainorrestoreafixedwidthbuffer.Examplesoffactorsthatprecludetheuseofafixedwidthbuffercanincludeadjacentlanduse,siteandstreamconditions(i.e.topography,soil,hydrology)andplaceswherebuffershavebeenlostandrestorationisnotfeasible(EnvironmentalLawInstitute2003;Aunanetal.2005).Forexample,inplaceswherehabitatlosshasalreadyledtoafragmentedorasymmetricalbuffer,greaterwidthswillbeneededinremaininghabitattomaintainbufferintegrity(i.e.forthebuffertoprovidethesamelevelofecosystemservices)(Bartonetal.1985).Variablewidthbuffers,specificallylargerwidths,mayalsobeemployedtoprotectpristineorhighly-valuedriparianareas;areasclosetohigh-impactlanduseactivities;orareaswithsteepbanks,sparsevegetation,orhighlyerodiblesoils(EnvironmentalLawInstitute2003).ArecentreviewundertakenbytheNewHampshireAssociationofNaturalResourceScientists(NHANRS)employedacomprehensiveliteraturereviewtofocusspecificallyonthetopicofbufferwidths.GiventheoverlapbetweenourreviewandtheworkofNHANRS(bothfocusingonbuffersinthestateofNewHampshire),wehavesummarizedavailablerecommendedminimumbufferwidthstoachievedifferentobjectivesattheendofeachsectionbelowandinTable3.OnecanreferencetheNHANRSreviewforacompletelistofthestudiesfromwhichtheserecommendationsweredrawn(Appendix1,Appendix2,Appendix3).

Page 17: Buffer Options for the Bay: Exploring the Trends, the

16

Figure4.Theoreticalillustrationofsamplerecommendedriparianmanagementzone(RMZ)delineationsforstreamsofvariousorders,forthepurposeofforestmanagement.ReproducedfromGoodForestryintheGraniteState(Bennett2010).Table1.SampleriparianmanagementzoneguidelinesinNewHampshireforvariouswaterbodysizes,forthepurposeofforestmanagement.ReproducedfromGoodForestryintheGraniteState(Bennett2010).

LegallyRequired RecommendedRiparian

ManagementZone(ft.)

NoHarvestZone(ft.)

RiparianManagementZone(ft.)

NoHarvestZone(ft.)

IntermittentStreams

None None 75 None

1stand2ndOrderStreams

50 None 100 25

3rdOrderStreams 50 None 300 504thOrderandHigherStreams

150 None 300 25

Pond(<10acres) 50 None 100 NoneLakeorGreatPond(>10acres)

150 None 300 25

Page 18: Buffer Options for the Bay: Exploring the Trends, the

17

Onecaveatwheninterpretingthefindingsofdifferentstudiesinregardstobufferwidthisthattherewassomevariabilityinhowthewidthofabufferwasdeterminedbasedonwhatconstitutedtheedgeofthebuffer.Giventheabundanceofstudiesfocusingonbufferwidth,oursenseisthatthisadditionalvariabilityisunlikelytohavestronglyinfluencedrecommendations,althoughtherelevanceofthisissueincreaseswhentherearerelativelyfewstudiessupportingspecificguidance.ThehistoryofdevelopmentandreforestationseenthroughoutNewEngland,andparticularlyincoastalNewHampshire,meansitisalsoimportanttonotethatinindividualsites,bufferfunctionmaybeinfluencedbyprioralteration,suchaswheresoilshavebeenheavilymodifiedbypastagriculture.Caveatsaside,theoverarchingmessageregardingtherelationshipbetweenbufferwidthandprovisionofecosystemservicesisasimpleone:ingeneral,widerandmoreforestedbuffersprovidegreaterbenefitstowaterqualityandbiodiversity.Anotherkeythemethatemergedfromresearchfindingsistheinfluenceoflandscapecontextonbufferefficacy,includingfactorssuchastopography,thelocationofstressorsources,andtheunderlyingwatertable.Furthermore,longer,continuousbuffersaremoreeffectivethanfragmentsofgreaterwidthsforhydrologicfunctions,reducinggapsinmaintainingwaterquality,andwildlifehabitat(Fischeretal.2000).Additionally,widerbuffersmaybewarrantednexttoparticularlysensitiveresources(forexample,impairedwaterbodies),andclosertotheGBE,wherethereislessopportunityforexcessnutrientsthatenterstreamsandriverstobeamelioratedbeforeenteringthebay,althoughresearchhasshownthatbuffersalongheadwaterstreamsthatfeedintoatargetwaterbodyhaveagreaterinfluenceonoverallwaterqualitythanthosedirectlysurroundingthatwaterbody(Fischeretal.2000).Thefollowingsectionsprovideamoredetailedsummaryofthestateofcurrentscientificknowledgeregardingbufferwidthandtheprovisionofspecificecosystemservices.InTable4,weofferasinglerecommendedminimumbufferwidthforeachspecificecosystemservicedrawnfromourliteraturereview.Inadditiontotheserecommendations,wehavealsocompiledgapsinthebestavailablescienceinAppendix4that,ifaddressedthroughfurtherresearch,wouldimprovetherecommendationsweareabletoofferpractitionersregardingtheuseofbuffers.Itisimportanttokeepinmindthatbufferwidthisoneofseveralfactorsthatdetermineabuffer’sabilitytoprovideavarietyofservices–consideringbufferwidthalongsidelinearextent,vegetationcomposition,andlevelofpermanentprotectionfacilitatesmoreholisticandeffectivebuffermanagement.Whilebufferwidthisanimportantindicatorofhowwellabuffermayprovideecosystemservices,thecompositionofthebufferisalsoakeyfactorindetermininghowwellabufferfunctions.Buffersthatarenaturallyvegetatedgenerallyprovideecosystemservicestoagreaterextentthanbuffersthataresparselyvegetatedorhavebeenclearedoraltered,suchasaforestedbufferthathasbeenconvertedtograss(Bentrup2008,Castelleetal.1992,FischerandFischenich2000).Tocompare,nitrogenuptakeandretentionweresignificantlyhigherinforestedbuffersitescomparedtoherbaceoussites–aretentiondifferencebetween99percentand84percent,respectively,inonestudy(HaycockandPinay1993,Heftingetal.2005).Buffersconsistingofnativevegetationperformbetterwhenthevegetationiswell-adaptedtositeconditionsanddiverse,sothebuffer’svegetationcapturesawidearrayof

Page 19: Buffer Options for the Bay: Exploring the Trends, the

18

environmentaltolerancesthatsupportanumberoffunctions(FischerandFischenich2000).Thebufferisthereforebetterabletoberesilientinthefaceoffluctuatingenvironmentalvariables.Whenrestoringbuffers,thisdiversitycanbeachievedthroughutilizinganarrayofspecies,growthforms,andlifehistories.Overall,naturallyvegetated,diversebuffersaremoreeffectiveatreducingpollutionintothewaterbodythansparselyvegetated,homogenousbuffers.Insummary,bufferscanbeemployedtoprovideavarietyofecosystemservicesandmitigateahostofenvironmentalissues,buttheextenttowhichbuffersdeliverthesefunctionsdependsgreatlyonthecharacteristicsofthebufferitselfaswellasthelargerlandscapecharacteristicssurroundingthebuffer.Acentralmetricinassessingtheextenttowhichabufferisprovidingcertainfunctionsisthewidthofthebuffer.Inthefollowingsections,threeoverarchingthemesofecosystemservicesthatbuffersprovide–waterquality,hydrologiceffects,andhabitatforbiodiversity–aredissected.Thisanalysisservesasanassessmentofhowbuffersspecificallydeliverthesefunctionsandofwhatwidthsaregenerallyadequatetoprovidetheseservices.I. WaterQualityBufferscontributetothemaintenanceofwaterqualityinavarietyofoftensynergisticways.Forinstance,sedimentremovalbybuffersmayalsoremovephosphorusboundtosedimentparticles.Anumberofstudieshavemadegeneralrecommendationsforthewidthofbuffersneededtomaintainoverallwaterquality.Thelowestrecommendationis16-foot.(FischerandFischenich2000),althoughthemajorityofstudiesprovideaminimumwidthof100-foot(Appendix1).Mostofthepublishedresearchontheefficacyofbuffersforpromotingwaterqualityhasfocusedonnaturallyvegetatedhabitat,anditisfromthisbodyofworkthatourrecommendationsaredrawn.However,setbacksthatpreventcertainlandusesorstructures,suchastheinstallationofasepticsystemorconstructionofabuilding,withinacertaindistancefromawaterbodycanhelptomaintainwaterqualitybyreducingerosion,pollutantrunoff,andrunoffflowvolumeandvelocity.Thefollowingsectionprovidesadetailedcommentaryregardingtheroleofbuffersinhelpingtoaddressspecificcomponentsofwaterquality.i. ReducinginputsofexcessnutrientsandcontaminantsImplementingbuffershasbeenshowntobeaneffectiveapproachinreducingthetransportofnitrateandphosphatefromagricultureanddevelopment(PeterjohnandCorrell1984,EnvironmentalLawInstitute2008).Nutrientsareabsorbedintothebuffersediment,takenupbyplantbiomass,andimmobilizedbymicroorganismsthroughdenitrification(Hruby2013).Asphosphorusprimarilyentersbuffersattachedtosedimentsorasorganicmaterial(Wenger1999),theroleofthebufferinreducinginputstowetlandsconformstothesamemechanismsasthatofreducingsedimentinputsingeneral.Experimentalresearchhasdemonstratedthatevennarrowgrassbuffershavethecapacitytoreducephosphorusinputs.Forexample,a15-foot(4.6m)grassbufferstripremoved18to71.5percentoftotal

Page 20: Buffer Options for the Bay: Exploring the Trends, the

19

phosphorus(Wenger1999).Whenincreasedto31-foot(9.6m),grassbuffersremoved46to79percentofphosphorus.Insomecases,removalofphosphorusandnitrogenbybuffersapproached90to100percent(HickeyandDoran2004).Oneimportantcaveattotheseexperimentalfindingsisthattheeffectivenessofthebuffersdecreasedovertime,presumablyduetopreviously-trappedphosphorusbeingre-mobilized(Wenger1999)andsoilsbecomingsaturatedbynitrogen(WoodsHoleGroup,Inc.2007).Itisalsoimportanttonotethatbuffereffectivenessmayvaryinsitu,sincepercentremovalsaredependentuponinputload.Furthermore,thedepthofthewatertableinrelationtorootbiomasswithinthebufferlikelyplaysanimportantroleininfluencingratesofnutrientandcontaminantuptake(Marczaketal.2010).Lastly,whilegrassbuffersmayeffectivelyreducenutrientinputsincertainsettings,forestedbuffersmaybemoreeffectiveinprovidingabroadersuiteofecosystemservices.Bearinginmindthesecaveats,bufferswithmorehydricsoil,flattertopography,andahigherwatertablearetypicallybetterabletoremovepollutants.BasedonmodelsdevelopedfortheGBE,watershedconservationefforts(i.e.protectionofwetlandsandforests)couldreducenitrogeninputstothebayfromthreeto28metrictonsperyear(Bergetal.2016).Buffersarealsocapableofstabilizingotherpollutants,althoughthebufferwidthsnecessaryforeffectiveremovalhavenotbeenaswell-studied.Bufferscanrenderpathogensharmlessastheyarecarriedinsubsurfaceflowthroughthesoil,neutralizeaciddepositedbyacidrainthroughuptakeintotheforestcanopy,andstabilizesomemetalsthroughadsorptiontosoilparticles(Chaseetal.1995).Furthermore,buffersprovidefiltrationsufficienttotrapfuelandlubricantsfromupslopelanduses(Bennett2010).Thefollowingisasummaryoftheminimumrecommendedbufferwidthsnecessarytoprovidereductionofexcessnutrientandcontaminantinputs.Muchofthepollutantremovalmayoccurwithinthefirst15to30feetofabuffer,butbuffersrangingfrom30to100feetormorewillremovepollutantsmoreconsistently(EnvironmentalLawInstitute2008).Basedonavailableliterature,theminimumbufferwidthneededforeffectivereductionofnitrogenis60feet.(CorrellandWeller1989),andthemajorityofsourcesrecommendawidthofatleast98feet(Appendix1).Theminimumbufferwidthforeffectivereductionofphosphorusis30feet.(FischerandFischenich2000),andthemajorityofsourcesrecommendawidthofatleast98feet.(Appendix1).ii. MediatingsedimentBufferscanhelptoreduceissuesassociatedwithsedimentsinthreeways:(1)preventingtheoccurrenceormediatingtheseverityofsediment-producingactivities,suchasconstructionoragricultureclosetothewetlandedge;(2)trappingterrestrialsedimentscarriedinrun-offbeforetheyenterthewetland;and(3)supportingin-streamconditionsthatincreasesedimentdepositionand/orreduceerosion,suchasreducingtheseverityofhighflow/velocityeventsfromstormflows,stabilizing

Page 21: Buffer Options for the Bay: Exploring the Trends, the

20

banks,andcontributingwoodydebris,whichtrapssedimentsinthewater(Mayeretal.2007,Liuetal.2008,Zhangetal.2010,KirwanandMegonigal2013).Sincenutrientsareoftenboundtosedimentparticles,thereductionofsedimenttransportmayalsoservetoreducenutrientexportfromriparianzones(HickeyandDoran2004).Forinstance,sedimentationmayaccountforphosphorusretentionratesofupto115lb/acre/year(Hoffmanetal.2009).Sedimentretentionisalsoanimportantfactorinmaintainingviableforagingandspawningsitesforfishandotheraquaticorganisms(Chaseetal.1995,HickeyandDoran2004).Theroleofbuffersinreducingsedimentinputscanbeprofound(Youngetal.1980,Dillahaetal.1988,Dillahaetal.1989,Magetteetal.1989).Forexample,experimentalresearchdemonstratedthata54-footbufferconsistingofswitchgrassandwoodyvegetation(shrubsandtrees)removed97percentofthesedimentfromanadjacentfield(Polyakovetal.2005).Similarly,researchersfoundthat~65percentofsedimentsweretrappedbya33-footstreamsideforestbufferand~85percentfora66-footbuffer(SweeneyandNewbold2014).Itisalsoworthnotingthatlandscapemodelsindicatedahighpercentage(47percent)ofthetotalvariationinsedimentloadingtostreamscouldbeexplainedbyriparianforestcover,highlightingtheimportanceofbuffersinmediatingsedimenttransfer(Jonesetal.2001).Whileonestudyfoundthatnarrowbuffers(16to66-foot)areabletoremovecoarsesediments,widerbuffers(66to328-foot)arebetterabletoremovefinersediments(Hruby2013).Theminimumbufferwidthforeffectivesedimentremovalis30feet(EnvironmentalLawInstitute2008),andthemajorityofsourcesrecommendawidthofatleast98feet(Appendix1).iii. Influencingwatertemperature

Infreshwatersystems,vegetatedbuffershelptoregulatestreamtemperaturesbyprovidingshade(Hruby2013).Thisisparticularlyimportantforcold-waterfish,asincreasesinwatertemperaturealsohavepotentiallyundesirableeffectsonstreamchemistry,aquaticinsects,streamflora,andfishbehavioranddevelopment(HaganandWhitman2000).Forexample,averagestreamtemperaturesincreasedby7.9°Faftertheremovalofriparianforest,andtherewasan18°Fincreaseinmaximumtemperaturebetweenaclear-cutstreamandabufferedstream(Risheletal.1982).Furthermore,streamswithvegetationremovedtendtoexperiencesummertemperatureincreasesof9°to19.8°Fabovestreamswherenaturalvegetationwasmaintained(Bentrup2008).Basedonthesefindings,bufferwidthsrangingfrom25to100feethavebeenproposedforadequatewatertemperaturemodification(Bartonetal.1985,Bentrup2008,OsborneandKovacic1993),witharecommendedminimumof30feetbasedonasynthesisofavailableliterature(Wenger1999).

iv. Providingorganicinputsintoaquaticsystems

Page 22: Buffer Options for the Bay: Exploring the Trends, the

21

Bufferscontributeleaflitter,detritus,smallwoodydebris,andinsectstoadjacentaquaticecosystems.Theseimportantenergyinputsdriveaquaticecosystemfoodwebs(Naimanetal.2002,FisherandLikens1972,Golladayetal.1992,Wallaceetal.1997).Largercoarsewoodydebrisinputsintostreamsandriversareimportantforcreatingtherangeofdifferentenvironmentsrequiredbyorganismsforshelter,foraging,hibernation,andreproduction,includingpools,riffles,debrisjams,andrelatedstructuralaquatichabitat(Chaseetal.1995,FischerandFischenich2000).Theyalsohelptoretainsedimentsandnutrients,andinfluencechannelmorphology(Naimanetal.2002).ReidandHiltonexaminedhowwidebufferswouldneedtobetomaintaintree-fallratessimilartothoseinundisturbedforestandtoprovidecoarsewoodydebristotheriparianarea.Theyrecommendedabufferwidthof4to5treeheights,withatreeheightbeingdefinedastheaveragemaximumheightofthetallestdominanttrees(200yearsorolder)foragivensiteclass(ReidandHilton1998).Similarly,Bentrup(2008)recommendedabufferwidthfrom100to400feetforadequatewoodydebrisandlitterinput.Basedonasummaryoftheavailableliterature,Wenger(1999)recommendedaminimumbufferwidthof50feettoprovidesufficientwoodydebristostreams.II. HydrologicEffectsBuffersprovidearangeofhydrologicecosystemservicesthatmaybeparticularlyimportantgivenevidenceoftheincreasingfrequencyof“extreme”weatherevents.TotalannualprecipitationinthenortheastUnitedStateshasincreasedoverthepastcentury,withintensestormeventsoccurringwithmorefrequency(Smithetal.2008b).Asof2008,thecostofrepairingdamagesfromfloodingandfluvialerosionwas$6billionperyearintheUnitedStates;thishaslikelyincreasedsincethen(Smithetal.2008b).Vegetatedbuffersreducetheseverityoffloodeventsbyinterceptingoverlandflowfromprecipitationandmeltwaterandbyallowingforgreaterinfiltration.Themajorityofstudiesfocusinggenerallyonthehydrologicecosystemservicesprovidedbybuffershaverecommendedawidthof98feettomaintaintheseservices(Appendix2),withaminimumrecommendationof33feet(Wenger1999,FischerandFischenich2000).Specificdiscussionoftheroleofbuffersinfloodstorage,run-offreduction,andbankstabilizationisprovidedbelow.i. Providingfloodstoragecapacity

Bufferspromotefloodplainwaterstorageandminimizedownstreamfloodingpotentialinavarietyofways.Theyinterceptoverlandflowandincreasewaterretentiontime,whichresultinreducedfloodpeaks(FischerandFischenich2000).Theyalsoregulatestreamflowandfacilitateinfiltrationofsurfacewater,whichleadtolessseverewaterlevelfluctuationsduringstormevents(Bennett2010,Chaseetal.1995).Thisregulationofwaterlevelfluctuationisimportantsincesudden,highmagnitudefluctuationsoftendestroywetlandvegetation,particularlyalongthewetlandedge.Thislossofnativewetlandvegetationcanthenleadtoanincreasedabundanceofinvasiveplantspeciesandalterationofinvertebratecommunities(Castelleetal.1992).Theminimumbufferwidthrecommendedforeffectivefloodstoragewas66feet(FischerandFischenich2000),withrecommendationsofminimumwidthsup

Page 23: Buffer Options for the Bay: Exploring the Trends, the

22

to492feet(FischerandFischenich2000)or25feetbeyondtheextentofthe100-yearfloodplain(Bennett2010).ii. Reducingrun-offandstabilizingthechannelbankVegetationwithinbufferareasstabilizesriparianshorelinesthroughcomplexrootsystemsthatareoftenabletowithstandcyclicflooding,icescour,andnaturalerosion(Chaseetal.1995).Theroleofrootsystemsinstabilizingshorelinesdependsontheplanttaxa:herbaceousplantswithfibrousrootsystemsprotectbanksfromsurfaceerosion,andwoodyspecieswithdeeperrootsincreasesoilcohesionandreducemassslopefailure(Bentrup2008).Buffersalsoimpedetheflowofwaterrunoffbyallowingittopercolateintotheground,whichpreservessoilcompositioninperiodsofintenserainfall(Castelleetal.1992).Likewise,foliageandbranchesreducewindenergybyphysicallyinterruptingflowpaths(Bentrup2008).Infact,avegetativewindbreakprotectsadownwindareathatistento15timestheheightofthetrees–aservicethatreducessoilerosionandstabilizesthesoil(Bentrup2008).Theminimumbufferwidthreportedforeffectivebankstabilityandrun-offreductionwas164feet(EnvironmentalLawInstitute2008).iii. InfiltratingsurfacewaterInfiltrationisdefinedastheprocessbywhichsurfacewaterentersthesoil.Whilewewereunabletofindspecificbufferwidthrecommendationsforinfiltrationintheliterature,itisimportanttorecognizethebenefitthatbuffersprovidebyinfiltratingsurfacewater.Infiltrationallowspollutantsandsedimenttobeinterceptedandremovedfromthewatercolumnbeforereachingthewaterbody(SweeneyandNewbold2014).Infiltrationalsoreducestheseverityoffloodevents,asmentionedpreviously.Coarser-texturedsoils,suchassandysoils,typicallyhavehigherinfiltrationthanfiner-texturedsoils(Bentrup2008).III. HabitatforBiodiversityBuffersprovidevitalhabitatforadiversityofaquatic,semi-aquatic,andterrestrialfauna.Specifically,buffersserveasimportantsitesforforaging,hibernation,breeding,nesting,connectivityandescapefromflooding(Groffmanetal.1991,Naimanetal.1993).Buffersalsoprovidevisualseparationbetweenwetlandsanddevelopedenvironments,therebyreducingnoiseandlightpollutiontosensitivewildlife(Castelleetal.1992).Nearly80vertebrates(bird,mammal,reptileandamphibian)speciesinthenortheasternUShaveastrongpreferenceforriparianhabitats(DeGraafandYamasaki2000).Similarly,ofthe~450speciesofreptiles,amphibians,mammals,andbirdsthatoccurinNewHampshire,~90dependonwetlandsduringsomephaseoftheirbreedingcycle,and50moreusewetlandsforbreedingorforaginghabitat(Chaseetal.1995).Thisamountstoaboutone-thirdofNewHampshire’snativewildlifedependingonaquaticandwetlandhabitat.Therearealsoahostofrareplantsandnaturalcommunitiesassociatedwithriparianareas.

Page 24: Buffer Options for the Bay: Exploring the Trends, the

23

Itisimportanttonotethatwhilemanyspeciespreferbufferscomparedtoterrestrialhabitatfartherfromthewetlandedge,thisdoesnotnecessarilymeanthatmaintainingbuffersaloneissufficienttoensuretheirneedsaremet.Aseminalmeta-analysisundertakenbyMarczaketal.(2010)assessedwhetherforestedriparianbuffersmaintainedriparianfaunaatdensitiesclosetothosefoundinunharvestedforest.Theyfoundthatwhetherforestedbuffersaloneweresufficienttomaintainlargelyunalteredpatternsofabundancedependedonthetaxa:Amphibianswerelessabundantinforestedbufferscomparedwithcontrolsitesinunharvestedforest.Smallmammalsdemonstratedamarginallydecreasedabundanceinbufferscomparedwithcontrolsites.Birdswereslightlymoreabundant,however,thespeciescompositionofavifaunaswitchedtomoreedge-associatedspecies.Arthropodsweretheonlytaxaassessedinwhichanincreaseinabundancewasfoundinbufferscomparedtocontrolsites.Furthermore,thereviewfoundnorelationshipbetweenbufferwidthandthemagnitudeofdifference(effectsize)betweenbuffersandcontrolsites.Thisreviewclearlydemonstratesthatthemaintenanceofbuffersaloneislikelytobeinsufficientifthemanagementgoalistoretainareasofnaturalhabitatwiththesamesuitabilityfoundinunalteredterrestriallandscapes.Whilebuffersdosupportahostofwildlifespecies,theydonotdosototheextentthatunalteredterrestriallandscapesdo.Whilethemeta-analysisundertakenbyMarczaketal.(2010)didnotfindasignificantrelationshipbetweenbufferwidthandthequalityofriparianhabitat,variationintheknownecologyofindividualspeciesandtaxaprovidescompellingevidencethatminimumbufferwidthswillvaryamongdifferentorganisms.Forexample,woodfrogs(Lithobatessylvaticus)rangeconsiderablyfartherfromthewetlandedgecomparedtospottedsalamanders(Ambystomamaculatum),thustheareaofbufferneededtoensuremostofthepopulationisdistributedwithinsuitableforestedhabitatvariesbetweenthetwospecies(Harperetal.2015).Sincethebufferwidthsrequiredforwildlifehabitataregenerallylargerthanthoserequiredforotherbufferfunctions,ensuringwildlifeprotectionwhendeterminingbufferwidthswillinturnprotecttheothervariousbufferfunctions.Generally,thewiderthebufferwidth,thegreaterthehabitatdiversity,whichcansupportagreaternumberofwildlifespecies(Chaseetal.1995).Themajorityofpublishedstudieshaverecommendedaminimumwidthof328feetforwildlifeingeneral,i.e.considerablywiderthanrecommendationsformostotherbufferfunctions(Appendix3).Discussionofspecificrecommendationsforindividualtaxaisprovidedbelow.i. AquaticmacroinvertebratesandfishAquaticmacroinvertebratesandfishareknowntobesensitivetochangesinhabitatstructureandfunction,hencetheircommonusageasindicesofbioticintegrity(LammertandAllan1999,Herlihyetal.2005).Bufferscanplayanimportantroleindeterminingthishabitatstructurebymaintaininginputsoforganicmaterialasabasisforaquaticfoodwebs,providingwoodydebrisandhencehabitatheterogeneityinthestream,maintainingwaterquality,reducinginputsofterrestrialsediments,andsupportinglowerwatertemperaturesandhigherconcentrationsofdissolvedoxygenthroughshading

Page 25: Buffer Options for the Bay: Exploring the Trends, the

24

(Jonesetal.2006).Themaintenanceofbuffersisclearlyofgreaterimportanceforthosespeciesandtaxathatareparticularlysensitivetoalterationofnaturalconditionsintheaquaticenvironment.Examplesoftheseincludecold-waterassociatedspeciessuchasbrooktrout(Salvelinusfontinalis)andothersalmonidswheresuitablespawninghabitatcanbedegradedbyincreasedsedimentationleadingtolowerreproductivesuccess(ScrivenerandBrownlee1989).Themajorityofpublishedstudieshaverecommendeda98-footbufferforadequatefishandaquaticmacroinvertebratehabitat(Appendix3),althoughrecommendationsofover300feethavebeensuggestedforthelattertaxa(EnvironmentalLawInstitute2003).ii. AmphibiansTerrestrialhabitatadjacenttowetlandsiswidelyrecognizedascriticalhabitatformanyamphibianspecies(Semlitsch1998).Juvenileandadultamphibianssuchasmolesalamanders(Ambystomasp.),woodfrogs(Lithobatessylvaticus),andAmericantoad(Anaxyrusamericanus)spendmuchoftheirtimeinuplandhabitat.Asthemajorityofanimalstendtoremainclosetosuitablewetlandbreedinghabitat(RittenhouseandSemlitsch2007)andmanyspeciesofamphibiansinthenortheasternUSareconsideredforest-associated(Gibbs1998),maintainingnaturallyvegetatedbuffersisconsideredcriticaltolocalpopulationpersistence(Harperetal.2008).Asamphibiansdifferinvagility,estimatesoftheextentofterrestrialbufferneededtoensurepopulationpersistencevaryamongspecies.Ameta-analysisundertakenbyHarperetal.(2008)estimatedthatbufferswouldneedtobe3,281feetwidetoencompass100percentofthewoodfrogsinapopulationand951feetwideforspottedsalamanders.ThereviewundertakenbyNHANRSreportedameanrecommendedminimumbufferwidthof256feet(Appendix3).Inadditiontoprovidingcriticalhabitatforlocalpopulationsofamphibians,wetlandbuffersmayalsohelptofosterconnectivitywithinmetapopulations(Baldwinetal.2006).Recentworkhashighlightedtheimportanceofthisinter-populationmovementinmaintainingthepersistenceofregionalpopulationsofamphibianspecies(Harperetal.2015).iii. Reptiles

Similarlytoamphibians,manyspeciesofreptilesarereliantonsuitableaquaticandterrestrialhabitatinordertocompletetheirlifehistorycycles(Bennett2010,SemlitschandBodie2003).Speciessuchascommonsnapping(Chelydraserpentina)andpainted(Chrysemyspicta)turtlesspendthemajorityoftheirtimeinwetlandsandrivers,emergingontolandtolayeggsortomoveinsearchofmoresuitablehabitat(Gibbsetal.2007).OtherspeciessuchasBlanding’s(Emydoideablandingii),wood(Glyptemysinsculpta),andspottedturtles(Clemmysguttata)roammorewidelyintheterrestrialenvironment,oftenaccessinganumberofdifferentwetlandsthroughouttheyear(Arvisaisetal.2004,Joyaletal.2001,RefsniderandLinck2012).Maintainingbuffersfortheseorganismsisparticularlyimportantastheirrelianceonwetlandsanduplandsmeansthatindividualsareoftenconcentratedimmediatelyadjacenttothewetlandedge.Ifhabitatalteration(particularlyroaddevelopment)occursalongthiswetlandinterface,significantmortalitycanoccur,leadingtoreducedabundancesandpopulation

Page 26: Buffer Options for the Bay: Exploring the Trends, the

25

viability(GibbsandShriver2002,Aresco2005).Forwide-rangingspecies,riparianbuffersmayalsoformimportantmovementcorridors,therebyincreasingtheprobabilityofpersistenceofbothlocalandregionalpopulations(Arvisaisetal.2002,ShoemakerandGibbs2013).Estimatesoftheminimumbufferwidthsneededtomaintainadequatereptilehabitatrangedconsiderablyfrom100feet(Bentrup2008)tomorethan3,000feet(Kiviat1997),withamedianminimumof417feet(Appendix3).iv. Birds

Manyspeciesofbirdsdemonstrateapreferenceforhabitatonthewetland/uplandinterfacefornesting,foraging,andmovementamongadjacentareas(Bennett2010,NaimanandDecamps1997).Infact,aviandensityandspeciesrichnessinriparianareashavebeenestimatedtobenearlydoubletheamountsinuplandareas(Medinaetal.2016).Maintainingbuffersinotherwisealteredlandscapescanconservethepreferredriparianhabitat(Machtansetal.2002),althoughtheextenttowhichtheneedsofbirdsaremetisdependentonboththecharacteristicsofthebuffer(habitattype,width,andlandscapecontext)andtherequirementsofindividualspecies(Saab1999,Shirley2004,Smithetal.2008a).Forexample,buffersareoftenoccupiedbymoreubiquitousedgespeciesratherthanthosetypicallyfoundintheforestinterior(WhitakerandMontevecchi1999,PearsonandManuwal2001,Marczaketal.2010),withbuffersofmorethan147feetneededtoconservethelattertaxa(PearsonandManuwal2001,ShirleyandSmith2005,Shirley2006).Givenvariationintheneedsandsensitivityofdifferentbirdtaxatohabitatalteration,recommendedminimumbufferwidthsalsovary:themeanminimumbufferwidthforadequatewaterfowlhabitatwas108feet(Appendix3),whereastheminimumwidthforadequatepasserinebirdhabitatwas200feet(Boyd2001;Bentrup2008),andthemajorityofsourceshaverecommendedaminimumwidthof328feetforadequatebirdhabitatoverall(Appendix3).v. MammalsMammalsinNewHampshirevaryintheirpreferenceforbufferhabitat.Speciessuchasriverotter(Lutracanadensis),mink(Neovisonvison),beaver(Castorcanadensis),andAmericanwatershrew(Sorexpalustris)arewetlandobligatesthatusebuffersascriticalhabitatforfeeding,cover,denning,andtravelways.Speciessuchasmoose(Alcesalces)arealsocloselyassociatedwithwetlandsandthewetland/uplandinterfaceduringsummermonthswhentheyusetheseareasforbrowsing,escapefrominsectsandpredation,andthermoregulation(Koitzsch2002).Similarly,southernboglemming(Synaptomyscooperi)andsnowshoehare(Lepusamericanus)areoftenfoundathigherabundancesinuplandhabitatadjacenttowetlands,likelyasaresultoftheavailabilityofbrowseandescapecover(D.Patrick,unpub.data).Inadditiontotheneedtoconservebufferhabitatformammalianspeciesreliantuponthisresource,maintainingbuffersinotherwisealteredlandscapescanalsosupportthecontinuedpersistenceofspeciesdistributedmorewidelyacrossuplandhabitat(CockleandRIchardson2003,Marczaketal.2010).Forexample,researchinagriculturallandscapesinsouthernQuebecreported14speciesofsmall

Page 27: Buffer Options for the Bay: Exploring the Trends, the

26

mammalsinremnantriparianbufferstrips(MaisonneuveandRioux2001).Thevalueofbuffersinalteredlandscapesformaintainingregionalconnectivityhasbeenatopicofconsiderabledebate,howeverthereiscompellingevidencetoindicatethatretainingorrestoringconnectivityamongotherwiseisolatedpatchesofsuitablehabitatislikelytoincreasethelikelihoodofpopulationpersistence(BeierandNoss2008).Despitethelikelyimportanceofbuffersformammalianspecies,relativelylittleresearchhasfocusedexplicitlyondeterminingminimumbufferwidths(Wenger1999).Similarlytoothertaxa,thisminimumisheavilyinfluencedbytheneedsofthespecies,habitatstructurewithinthebuffer,andthesurroundinglandscapecontext.Bearingthisinmind,aminimumrecommendedbufferwidthforadequatemammalhabitatof100feethasbeenproposed(Bentrup2008)withthemeanminimumbufferwidthrecommendedof245feetinthepublishedliterature(Appendix3).

Page 28: Buffer Options for the Bay: Exploring the Trends, the

27

Table2.Benefitsconveyedbybuffers.

BufferFunction

Benefit AttributesofBuffer

Reducinginputsofexcessnutrientsandcontaminants

Highlydependentonsoiltype,vegetationtype,topography,hydrology

WaterQuality

Mediatingsediment Assumesvegetatedbuffer

Influencingwatertemperature

Assumesbufferwithtallvegetationadjacent/overwaterbody,typicallyforested

Providingorganicinputsintoaquaticsystems

Assumesvegetatedbuffer

Providingfloodstoragecapacity

Assumesvegetatedbuffer

HydrologicEffects

Reducingrun-offandstabilizingthechannelbank

Typicallyassumesforestedbuffer

Infiltratingsurfacewater --

Aquaticmacroinvertebratesandfish

Bufferhabitatmustmeetspecies’needs

Amphibians

HabitatforBiodiversity Reptiles

Birds

Mammals

Page 29: Buffer Options for the Bay: Exploring the Trends, the

28

Table3.Summaryofminimumrecommendedbufferwidthsbyoverallbufferfunctionfromtheliterature.

BufferFunction MinimumWidthRecommendedbyStudyAuthors

MedianWidthRecommendedbyStudyAuthors

MaximumWidthRecommendedbyStudyAuthors

WaterQuality 16feet 100feet 400feet

HydrologicEffects 33feet 98feet 330feet

HabitatforBiodiversity 50feet 328feet 1,969feet

Table4.Summaryofminimumrecommendedbufferwidthsbyecosystemserviceprovidedbyeachbufferfunctionfromtheliterature.

BufferFunction Benefit RecommendedBufferWidth

Reducinginputsofexcessnutrientsandcontaminants 98feet

WaterQuality Mediatingsediment 98feet

Influencingwatertemperature 30feet

Providingorganicinputsintoaquaticsystems 50feet

Providingfloodstoragecapacity 66feet

HydrologicEffects Reducingrun-offandstabilizingthechannelbank 164feet

Infiltratingsurfacewater Nonefound

Aquaticmacroinvertebratesandfish 98feet

Amphibians 256feet

HabitatforBiodiversity Reptiles 417feet

Birds 328feet

Mammals 245feet

Page 30: Buffer Options for the Bay: Exploring the Trends, the

29

E. WHATPREVIOUSANDONGOINGATTEMPTSHAVEBEENMADETOADDRESSECOLOGICAL

STRESSORSANDMAINTAINECOSYSTEMSERVICESUSINGBUFFERS,ANDWHATTECHNICALBARRIERS

HAVEBEENENCOUNTERED?

Giventhelikelyefficacyofbuffersinreducingecologicalstressorsandmaintainingecosystemservices,itisnotsurprisingthatanumberofwatershedsintheUnitedStateshaveattemptedwidespreadimplementationofbufferconservationandrestoration.Whiletheintensityoftheseeffortsandthecontextwithinwhichtheyhaveoccurredvariesconsiderably,importantlessonscanbelearnedfromreviewingthefollowingcasestudies.Thesehavebeenchosenbasedontheirdescriptionoftheimplementationstrategy(quantificationofapproachesormethodsused),relevanceofwatershedscale(similartothescaleatGreatBay),inclusionofaquantificationofoutcomes(tangibleresultsforlessonslearnedfromtheimplementation),andsimilarecological/social/cultural/regulatorycontexttotheGreatBaywatershed.Primarily,thesestudieswereconductedinNorthAmerica.Presentationofthesecasestudiesisorganizedbyrelevant“frequentlyaskedquestions.”I. Whatsuccesseshavearisenfrombufferrestorationandprotectionattempts?Thefollowingcasestudiesrepresentexamplesofbufferrestorationsthathavebeen“successfully”employed,i.e.,naturalvegetationhasbeenre-established.Whereinformationisavailable,wehavealsodiscussedtheevidencethattheserestorationeffortshaveresultedinquantifiablebenefitstotargetecosystemservices.Alsoincludedarecasestudieshighlightingsuccessfulprotectioneffortsthathavemaintainedfunctionalbuffersinplaceswheretheystilloccur.Comparedtorestoration,fewercasestudieshavequantifiedtheecosystemservicebenefitsofprotectionofexistingbuffers.Morespecifically,wewereunabletofindwatershed-scalecasestudiesthathadcomparedthebenefitsofusingavailableresourcestoconserveexistingbuffersversusrestoringlostbuffers.Weflagthisasaresearchgapgiventhatrestorationisoftencostlyandnotalwayssuccessful.i. NorthHampton,NewHampshire

VariouswaterqualityandhabitatimprovementprojectsthroughouttheNortheasthavespecificallyimplementedbufferrestorationandprotectionastheirkeystosuccessinmeetingtheirobjectives.Asalocalexample,riparianbuffershavebeenrestoredattheSagamore-HamptonGolfCourseinNorthHampton,NewHampshirethroughtheNewHampshireSeaGrant’sCoastalResearchVolunteersprogram(Fig.5).Morethan100treesandshrubswereplantedinearlysummer2016,includingriverbirch(Betulanigra),sweetpepperbush(Clethraalnifolia),andfragrantsumac(Rhusaromatic,Gro-locultivar).AsofAugust2016,survivalwas100percent,despitethedrought(A.Eberhardt,pers.comm.).

Page 31: Buffer Options for the Bay: Exploring the Trends, the

30

Figure5.Pre-andpost-restorationphotosofariparianbufferareainNorthHampton,NewHampshire.PhotosprovidedbyNewHampshireSeaGrant.ii. ConnecticutRiverWatershed

FloodplainrestorationalongtheConnecticutRiverisanotherexampleofaprojectthathassuccessfullyimplementedbufferrestorationandprotectionintheNortheast.Since2009,TheNatureConservancyandpartnershavespearheadedanefforttoprotectandrestorefloodplainforestwithintheConnecticutRiverwatershed.Thisinitiativebeganwithprioritizationoftractsforprotectionandrestorationbasedoncriteriaincludingtheexistenceoflow,regularlyfloodedterracesandextensiveshoreline,thepotentialofthetracttoserveasalinkagetoprotectedareasacrosstheriver,andlocationofthetractinanactiveriverareaoftheConnecticut.Withinthesepriorityareas,theConservancyanditspartnershaveimplementedanadaptivemanagementapproachtorestorationthatwillhelpdeterminethemostcosteffectiveapproachtobringbacksilvermaple(Acersaccharinum),Americanelm(Ulmusamericana),andothernativefloodplainspeciesonfloodplainterracesthathaveahydrologicregimetosupportthishabitatintothefuture.Theseeffortshaveledtoanincreasedunderstandingofthemostappropriatemanagementtechniquesforsuccessfulrestoration(Marks2013),aswellasforestedriparianbufferrestorationonanumberofproperties,includingthe252-acrePotterFarmtractinNewHampshire.iii. ChesapeakeBayWatershed

Athirdexampleofasuccessful,targetedbufferrestorationprojectiswithintheChesapeakeBaywatershed.Forestedbuffershavebeenplantedwithinthewatershedsince1996,coveringmorethan8,152miles(ChesapeakeBayProgram2013).Theinitiativehasbeenundertakenthroughtheimplementationofriparianforestbufferincentiveprograms,mostnotablytheConservationReserveEnhancementProgram(CREP).Inthemostproductiveyears,thebaystatesaveraged830milesofbuffersalongsideriparianareasrestoredperyear.Properuseoftreetubingandherbicideapplicationwerefoundtogreatlyimproverestorationsuccess(ChesapeakeBayProgram2013).

Page 32: Buffer Options for the Bay: Exploring the Trends, the

31

iv. ColumbiaRiverWatershedInotherareasoftheUnitedStates,bufferrestorationprojectshavehadsuccessintargetingareasimpactedbyforestryandagriculture.IntheColumbiaRiverwatershedinthewesternUnitedStates,sincethe1960’sbufferareashavebeenaddedtoreducetheimpactsoflogging–inparticular,slopefailureandsoilerosion(NationalResearchCouncil2004).Additionally,WashingtonState’sConservationReserveEnhancementProgram(CREP)hasprovidedfinancialincentivesforfarmerstorestoreriparianbuffersonagriculturallandfornearly20years.Survivalofplantedvegetationrangedfrom75percentto90percentthroughoutthestate,withmostpositiveresultsseenafter5+yearsofthebufferbeingimplemented,especiallyforcanopycover,whichprovidestheserviceofshadingthebufferandadjacentwaterbody(Smith2012).v. FoxCreekCanyon,OregonInOregonin2003,theFoxCreekCanyonunderwentarestorationprojectcoordinatedbyvariouspartneringagenciestomitigatethedegradationcausedbyopen-rangecattlegrazing.Sixteenacreswereseededwithnativegrasses,4,000nativecuttingsandseedlingswereplanted,and7milesoffencewereinstalledtoexcludecattle(Machtinger2007).Resultswerenotquantified,butgrassesandforbshadregeneratedonthebanksofFoxCreekwithintwoyearsoftherestorationefforts.vi. BogBrook,NewHampshireVariousotherprojectsintheNortheastandwesternUnitedStatesthatincludedbufferrestorationasacomponentoftheirwaterqualityandhabitatimprovementtechniquesdemonstratedsuccesses,althoughthedegreetowhichbufferrestorationcontributedtothesuccessesremainsindeterminable.AbufferwasimplementedaspartofastreambankstabilizationprojectatBogBrookintheupperConnecticutRiverbasinofnorthernNewHampshire,anareadominatedbyagriculture.Riparianvegetationwasremoveddecadesago,presumablytoincreasethearablelandareaavailable,whichcausedstreambankerosionandasubsequentdeclineinwaterquality(U.S.EnvironmentalProtectionAgency2006).In2004,thestreambankwasstabilizedthroughnaturalstreamchanneldesign,includingplantingofdeep-rootedshrubstoformavegetatedbuffertosupplementtheshallow-rooted(six-inch)grassesinexistence.Theshrubsconsistedofalderandwillow,amongothers.One-yearpost-construction,thevegetationwaswell-establishedandfirmlyrooted,andthechannelhadbecomemorenarrowanddeeper,bothindicativeofchannelstability.Becauseofthisrestoration,BogBrookwasreclassifiedas“FullySupporting”from“Impaired”bytheNewHampshireDepartmentofEnvironmentalServices.vii. MousamLake,MaineAnotherprojectthatincludedbufferimplementationtoaddresswaterqualityissueswastherestorationofMousamLake’sshorelineinsouthernMaine.Thelake’swaterqualityhadbeenindeclinefordecades

Page 33: Buffer Options for the Bay: Exploring the Trends, the

32

duetoexcessivephosphorusinputsviastormwaterrunoff.However,aftertenyearsofnonpointsourcepollutioncontrolprojectsthatstartedin1997,waterclarityincreasedbythreefeet,thelakewasinastableorimprovingtrophicstate,anditattainedwaterqualitystandardssetbytheMaineDepartmentofEnvironmentalProtection,therebyallowingittoberemovedfromthelistofimpairedwaterbodies(U.S.EnvironmentalProtectionAgency2008).Bestmanagementpractices,includingvegetatedbufferplantings,wereinstalledalongthelakeshorelineat45prioritysitestostabilizeerosionandimproveroadsidedrainageandgravelroadsurfaces.Theassociatedreductioninpollutantloadingtothelakewasmorethan150tonsofsedimentand130poundsofphosphorusperyear–thisequatestoatenpercentreductioninphosphorustothelake.Consequently,thishighprofileworkinspiredprotectioneffortsonseveralneighboringlakes.viii. HighlandLake,MaineSimilarly,bufferrestorationwasonemethodusedtocombatwaterqualitydeclinesinHighlandLakeoutsideofPortland,Maine.Inthe1980’sand1990’s,thelakeshowedsignsofdecliningwaterqualitycausedbyexcessivesoilerosionthroughoutthewatershed.Restorationworkbeginningin1997addressedsignificanterosionsitesandreducedpollutedrunoffbyplantingmorethan1,000shrubs,trees,andgroundcovers,andinstallingotherbestmanagementpracticessuchaswaterbars,raingardens,andriprap.Lakewaterclaritystabilizedandmetwaterqualitystandards,therebyallowingittoberemovedfromthestate’slistofimpairedwaterbodiesin2010.Furthermore,theamountofsedimentandphosphorusexportedtothelakedeclinedsignificantly;itwasestimatedthatpollutantloadingwasreducedby278tonsofsedimentand1,070poundsofphosphorusperyear(U.S.EnvironmentalProtectionAgency2010).ix. GilaRiverWatershedAlthoughnottopographicallysimilartotheNortheast,theGilaRiverwatershedprovidesanotherexampleofbufferrestorationandprotectionbeingusedtoreviveanimpairedwatershedsuccessfully.PortionsofthewatershedwithinArizonaandNewMexicohavebeendegradedbypastfiremanagement,logging,anddomesticgrazingpractices,therebyreducingwaterquality,speciesdiversity,andfloodplainfunction(NaturalResourcesConservationService2006).Protectionandrestorationeffortsbeganinthelate1970’sandincludedprescribedfire,improvedlivestockandoff-roadvehiclemanagement,andtheuseofbioengineeringtechniques.Protectionandrestorationoftheriparianareaappearssuccessful,asanewrarespeciesofstoneflywasobservedduringbioticconditionindexmonitoring,breedingnumbersofthesouthwesternwillowflycatcherincreased,andsedimentsandashwereobservedtobetrappedonsiteratherthanlostdownstream.

Page 34: Buffer Options for the Bay: Exploring the Trends, the

33

II. Whatobstacleshavebeenencounteredinbufferrestorationandprotectionattempts?Whilenumerousbufferrestorationandprotectionprojectshavebeensuccessful,othershavefacedchallengesintheirimplementationstrategies.Thefollowingcasestudiesserveasexamplesofeffortsthatinvolvedroadblocks,bothon-the-groundandconceptually.Wealsohighlightcertainobstaclesfacedbyalandtrustinitsattempttoprotectbuffersthroughregulatoryframework.i. ChesapeakeBayWatershedTheChesapeakeBaywatershed’sbufferrestorationinitiativehassufferedvarioussetbacksinitswatershed-scaleattempttoimprovethebay’swaterquality.Basedonthenumberofmilesplanted,restorationeffortshavedecreasednotablysince2009,likelyasaresultofdeclininginterest,lackofnoticeableeffectonwaterqualityandhabitatimprovement,scarcityoffunding,andincreasedchallenge(i.e.mostaccessibleoreasiestareashavealreadybeenplanted).Thisisdespitethefactthatforestbuffersareoneofthemostcost-effectivemethodsofimprovingwaterqualityinthebay.Earlyplantingssufferedfromlackofpropersitepreparationandmaintenance(e.g.competingvegetation,lawnmowing,deerbrowse),whichcausedplantingfailureanddiscouragedstakeholdersgoingforward.AnotherobstaclewasthattheCREPprogramhasnotbeenopenforenrollmentforvariousperiodsthroughouttherestorationeffort,andtheseinterruptionsinprogramdeliveryincreasedskepticismaboutprogramviability.Furthermore,asenrollmentsintheCREPprogramexpire,itmaytakeuptothreeyearstosecurere-enrollment;theamountofeffortandfinancialinvestmentputintoinitiallysecuringthesecontractscouldeasilybecanceledoutbylandownersnotre-enrolling(ChesapeakeBayProgram2013).ii. ConnecticutRiverWatershedSimilarly,theConnecticutRiverfloodplainrestorationprojectinNewHampshirehaselucidatedsomepolicy-basedtensionsandon-the-groundhurdles.Whileanumberofbufferprotectionandrestorationprojectsareunderway,thepathtoreachingascaleatwhichtheseeffortstranslateintolarge-scalerestorationoffloodplainforestwithinthewatershedisnotyetclear.Oneparticularchallengecomesfromthefactthatproductiveagriculturallandstendtobeconcentratedinfloodplainlands,particularlyinNewHampshire,whereonlysevenpercentofthestateisconsideredtobewell-suitedforagriculture.Thusthereisatensionbetweenrestoringbuffersandmaintainingactivefarming.Furthermore,competitioncausedbyinvasiveplantspeciessuchasorientalbittersweet(Celastrusorbiculatus)canleadtohighmortalityofplantedseedlings,particularlyinthelowerportionofthewatershed.iii. Maidstone,VermontAsanexampleofaspecificprojectintheConnecticutRiverfloodplainthathasfacedhurdleson-the-ground,bufferrestorationconductedononeofTheNatureConservancy’spreservesinMaidstone,

Page 35: Buffer Options for the Bay: Exploring the Trends, the

34

Vermontfacedvariouschallengespost-restoration(Fig.6).TheConservancypartneredwiththelocalNaturalResourcesConservationDistricttoinstalla100-footbufferalongthreesectionsoferodingriverbankindifferentyears,butthebankshavecontinuedtoerodeandhavecutintotherestoredareas.Additionally,plantingshavestruggledtosurviveduetograsscompetition,lackofwateruponinstallation,anddeerherbivory.Whereverpossible,thepartnershavesinceattemptedtoplantfurtherbackfromthebankandtoplantwidthsgreaterthan100feettoallowforsomebankerosioninthisnaturallymeanderingsectionofriver.Oneyearafterplanting,meshtubingwasinstalledtoprotectagainstdeerherbivory.TheNatureConservancyemploysanadaptivemanagementapproachforallbufferrestorationprojectsintheConnecticutRiverwatershed,therebyallowingflexibilityinpost-restorationmanagementapproachesdependingontheoutcomesobservedfollowingtherestorationwork.Throughtheadaptivemanagementstrategy,thelessonslearnedfromrestorationchallengescanbeemployedinsubsequentrestorations,therebyfacilitatingmoreeffectiveapproachesinthefuture.

Figure6.Before(left)andafter(center,right)photosofbufferrestorationfromTheNatureConservancy’sMaidstoneBendsPreservealongtheConnecticutRiverinMaidstone,VT.PhotosprovidedbyTheNatureConservancyinVermont.AreviewofsixnationalcasestudiesfocusedonriparianbufferprojectshighlightedthetopchallengesthattheprojectsfacedthroughouttheUnitedStates.Thegreatestobstacleidentifiedwassecuringfunding(Frey2013).Invasivespeciesandsurvivalofplantedtreesalsorankedhighlyascommonissuesencountered.Anotherstumblingblockwasthedifficultyofworkingwithprivatelandowners,whichencompassedcoordinationofmultiplesites,willingnessofpropertyownerstoconsiderbufferimplementation,andconcernabout“givingup”landtobuffers.Otherissuesthataroseduringimplementationprojectsincludedweathereventsthataffectedthesurvivalofplantings(e.g.severewindstorms,landslides)(Bissonetal.2013)andlackoflong-termmonitoringforplantingstodeterminepersistenceofefficacy(Smith2012).Lastly,therearevariousobstaclestoenactingregulatorybufferprotections,whichthePennsylvaniaLandTrustAssociation(2014)outlined.Forinstance,landownersandothercommunitymembersmaynotappreciatethevalueofbuffersortheareasthattheyprotect.Peoplewhohaveafinancialinterestindevelopmentorthosewhoareideologicallyopposedtodevelopmentrestrictionsmaypushback

Page 36: Buffer Options for the Bay: Exploring the Trends, the

35

againstproposedregulatoryprotections.Likewise,somemaywanttoexemptcertainagriculturalorforestrypracticesfromrestriction.Lastly,findingagreementonanadequatebufferwidththatisbothecologicallysoundandpoliticallyacceptablemaybedifficult(PennsylvaniaLandTrustAssociation2014).III. Whataretheoverarchinglessonslearnedfrombufferrestorationandprotection

attempts?

Anumberofoverarchinglessonscanbedrawnfromourcasestudyreview.Whileappropriatemethodsforsuccessfullyrestoringbuffersarenowwell-understood,factorssuchasinvasivespeciesandbrowsingherbivorescanstillleadtochallenges.Additionally,therehasbeensuccessinrestoringbuffersatscaleinsomeplaces,butinotherareas,thepathtolarge-scalerestorationisnotclear,andmaintainingtheenergyrequiredtopropelrestorationeffortsovertimeisdifficult.Furthermore,thereissomeconcernthatrestorationmaytakeprecedenceoverconservationofbuffers.Thismaybetrue,giventhatnaturalbuffershavealreadylargelybeenlostthroughouttheNortheast,butitisimportanttorecognizethevalueofproactivelymaintainingwhatwealreadyhave,ratherthanreactingtorestorewhathasbeenlost.Programsthathaveimplementedrestorationprojectsalsoprovideimportant“lessonslearned”forfutureefforts.Onemajorthemeistheneedtosecureadequatefunding,includingresourcestosupportlandowneroutreachandmaintenanceofestablishedbuffersbyencouragingenrollmentaswellasre-enrollmentinrestorationprograms(ChesapeakeBayProgram2015).ConservationReserveEnhancementProgram(CREP)andEnvironmentalQualityImprovementProgram(EQIP)fundingshouldbeutilizedtotheirfullestextents–thereisnoestablishedfundinglimitforCREP,andmoststatesarewellundertheirCREPacreagecaps(ChesapeakeBayProgram2013).Anotherimportantlessonregardingbufferrestorationistheneedtoemployanadaptivemanagementapproach.Usingthisapproach,eachrestorationisconsideredanexperiment,andmonitoringisconductedpost-restorationtodeterminehowandwherecertainrestorationapproachesareeffective.Thismonitoringisvital,giventhattherewillinherentlybespatialandtemporalvariabilityamongeachrestorationprojectthatmayaffectitsoutcomerelativetootherprojects.Employingadaptivemanagementenablesmanagerstoimplementimprovedandtailoredrestorationmethodsgoingforward.Afurtherlessonlearnedforbufferprotectionandrestorationwastheimportanceofsufficientpreparatoryworkandconservationplanning.Forexample,programscouldconductlocalizedgeographicanalysestostrategicallytargetspecificlocationswherebufferswouldbemostbeneficialinnutrientloadreduction,asthisisacost-effectiveapproachthataccountsforthefactthatwaterqualitycontributionsvaryatalocalscaledependingonadjacentlanduseandotherfactors(e.g.theamountanddirectionofsubsurfaceflows)(ChesapeakeBayProgram2013).Datasetsarebeingdevelopedthatillustrateconcentratedflowpathsoverhigh-resolutionlandusedatatoprioritizeareasfortargetedrestoration

Page 37: Buffer Options for the Bay: Exploring the Trends, the

36

wherepollutantandnutrientrunoffhasthegreatesteffectonthewaterbody(AllenbyandPhelan2013),andtoprioritizeareasfortargetedprotectionwheretherearehigh-functioningnaturallandscapes(AllenbyandBurke2012).Asanadditionalplanningtool,itisimportanttorecognizethatplantedbuffersmaystillbesusceptibletoerosion,especiallyonsteepslopes;engineeredstructurespreparedfromlargewoodydebrisorgeotextilematsandrollscaneffectivelysupportplantedvegetation(Medinaetal.2016).Furthermore,post-restorationmonitoringandadaptivemanagementshouldbeimplementedtoassesssuccessandcontrolforinvasives(Medinaetal.2016).Additionally,programscouldconsiderbufferprotectioninadditiontorestoration.Protectionisconsideredbysomeorganizationsaneasier,moresuccessful,andcost-effectivemethod.Tocapitalizeonpreviousrestorationefforts,bufferprotectioncouldbetargetedtoareaswhererestorationhasbeenundertakenthroughpublicfunding.Lastly,atargetedconservationframeworkshouldbeimplementedinstateandlocallawsandordinancestoemphasizetheprotectionofbuffers(ChesapeakeBayProgram2013).Thecasestudieshighlightedinthisreviewdemonstratethattheremaybedifferencesinbufferefficacyandfunctioninenvironmentalsettingsascomparedtotheexperimentalsettingsfromwhichmuchofthereview’swidthrecommendationsaresourced.Ingeneral,thesecasestudiesraiseanimportantcautionarynotethatbuffersdonotrepresentapanaceaintermsofmitigatingenvironmentalstressorsandprovidingcriticalecosystemservices.Itisalsoclearthatquantitativelylinkingthemaintenanceorrestorationofbufferstokeyservicessuchaswaterqualityoutsideofanexperimentalarenacanbedifficult.Thelatterissueisnotsurprisinggiventhatwell-designedstudiesinvariablyinvolvecontrollingfactorsotherthanthoseofinterest,whereasreal-worldapplicationofbuffersoccurswithinahighlystochastic,multi-variate,andoftenun-replicatedenvironment(i.e.“therealworld”).Thechallengeinlinkingtheuseofbufferstoclearenvironmentalbenefitsinreal-worldapplicationsisimportanttorecognize,particularlywhencommunicatingwithrelevantstakeholders.However,itisalsovitalthatwehighlighttheimportantevidencedrawnfromcontrolledstudiesinwhichspecificcause-and-effectmechanismslinkingbufferstotheservicestheyprovidehavebeentestedandvalidated.

Page 38: Buffer Options for the Bay: Exploring the Trends, the

37

Appendix1.

Literaturereviewsummarytableofbufferwidthsforwaterquality.ReproducedwithpermissionfromRickVandePoll,Chair,NHANRSWetlandBufferScientificWorkGroup.Colorcodingcorrespondsasfollows:lightgray–wetlands,lightblue–streams,darkgray–vernalpools,yellow–pondslessthan10acres,darkblue–pondsgreaterthan10acres.

CITATIONTYPE AREAOFCONCERNRELATIVETOWETLAND/RIPARIANZONEFUNCTIONINTEGRITYBufferResearchCompendia GENERAL Sediment TDS/TSS Nitrogen Phosphorus Organics

(e.g.bacteria)

Sweeney&Newbold(2014) ≥98ft.

Chase,Deming&Latawiec(1995) ≥100ft.

Sheldonetal.(2005) ≥197ft. 66–328ft. ≥66ft.

Grangeretal.(2005) 40-75ft.

Wenger(1999)1 ≥98ft. ≥98ft. ≥98ft.

Nieber(2011) ≥100ft. ≥100ft. ≥100ft.

StraughanEnvironmentalServices,Inc.(2003)2

82-98ft.

Sweeney&Newbold(2014) ≥98ft.3 ≥131ft4

BMPGuides EnvironmentalLawInstitute(2003) ≥82ft. ≥82ft. ≥82ft. ≥82ft.

EnvironmentalLawInstitute(2008)5 30-100ft. 100-165ft.

30-100ft. 30-100ft.

Fischer&Fischenich(2000) 16-98ft.

deMaynadieretal.(2007) 50-330ft. Calhoun&Klemens(2002) ≥100ft.

deMaynadieretal.(2007) 50-400ft.

Wenger(1999)1 ≥98ft. ≥98ft. ≥98ft. Fischer&Fischenich(2000) 16-98ft.

GoodForestryintheGraniteState(2010)3 ≥100ft.

deMaynadieretal.(2007) 50-250ft. deMaynadieretal.(2007) 75-125ft. GoodForestryintheGraniteState(2010)3 100ft. deMaynadieretal.(2007) 100-330ft. GoodForestryintheGraniteState(2010)3 300ft.

JournalArticles/TechnicalReports Murphy&Golet(1998) ≥100ft.

Schwerr&Clausen(1989)6 ≥98ft. ≥98ft. ≥115ft. ≥115ft.

Murphy&Golet(1998) ≥100ft.

Murphy&Golet(1998) ≥150ft.

Ahola(1990) ≥160ft.

Correll&Weller(1989) ≥60ft.

Page 39: Buffer Options for the Bay: Exploring the Trends, the

38

Peterjohn&Correll(1984) ≥60ft.

RhodeIslandRiversCouncil(2005) ≥300ft.

AdditionalInformation

1Wengeralsosuggestsadding2ft.forevery1%ofslope2Basedon21papersrelatedtowaterqualityconcerns;alsorecommended3-zonesystem:Zone1:15ft.(natural);Zone2:60ft.(managed);Zone3:20ft.(grazed)3EachrecommendedRMZsuggestsaminimum'no-cut'zone:ponds:0ft.;greatponds:25ft.;4thorder+:25ft.;3rdorder:50ft.;1st&2ndorder:25ft.4Medianremovalratewas65%for33ft.bufferand85%for98ft.bufferfor28studiesofbothgrassandforestbuffersites5McElfish,Kihlsinger,&Nicholsaretheprincipalauthors6Forremovalof>90%ofthepollutant

Page 40: Buffer Options for the Bay: Exploring the Trends, the

39

Appendix2.

Literaturereviewsummarytableofbufferwidthsforhydrologiceffects.ReproducedwithpermissionfromRickVandePoll,Chair,NHANRSWetlandBufferScientificWorkGroup.Colorcodingcorrespondsasfollows:lightgray–wetlands,lightblue–streams,darkgray–vernalpools,yellow–pondslessthan10acres,darkblue–pondsgreaterthan10acres.

CITATIONTYPE AREAOFCONCERNRELATIVETOWETLAND/RIPARIANZONEFUNCTIONINTEGRITY

BufferResearchCompendiaGENERAL

Run-Off/BankStability FloodStorage

Grangeretal.(2005) 50-110ft. Wenger(1999)1 33-98ft. StraughanEnvironmentalServices,Inc.(2003)2 82-98ft. Sweeney&Newbold(2014) ≥82ft3 Murphy(N.D.) 100ft. VermontAgencyofNaturalResources(2005) 37-225ft. Bolton&Shellberg(2001)4 100-yrfloodplain

BMPGuides EnvironmentalLawInstitute(2003) ≥98ft. ≥164ft. deMaynadieretal.(2007) 50-330ft. Calhoun&Klemens(2002) ≥100ft. Wenger(1999)1 33-98ft. Fischer&Fischenich(2000) 33-66ft. 66-492ft.GoodForestryintheGraniteState(2010)5 100ft.

100-yrflood-plain+25ft.

deMaynadieretal.(2007) 50-250ft. deMaynadieretal.(2007) 75-125ft. GoodForestryintheGraniteState(2010)5 100ft. deMaynadieretal.(2007) 100-330ft. GoodForestryintheGraniteState(2010)5 300ft. JournalArticles/TechnicalReports

Murphy&Golet(1998) ≥100ft. Murphy&Golet(1998) ≥150ft. RhodeIslandRiversCouncil(2005) ≥300ft.

AdditionalInformation1Wengeralsosuggestsadding2ft.forevery1%ofslope2Basedon21papersrelatedtowaterqualityconcerns;alsorecommended3-zonesystem:Zone1:15ft.(natural);Zone2:60ft.(managed);Zone3:20ft.(grazed)

Page 41: Buffer Options for the Bay: Exploring the Trends, the

40

3Basedon38studiesinavarietyoflocalesandwithvariablecovertypes;medianremovalrateforthisdistancewas89%

4Applicablefor55%ofspecies;5spp.<100ft.;3spp.100-200ft.;9spp.>200ft.5EachrecommendedRMZsuggestsaminimum'no-cut'zone:ponds:0ft.;greatponds:25ft.;4thorder+:25ft.;3rdorder:50ft.;1st&2ndorder:25ft.

Page 42: Buffer Options for the Bay: Exploring the Trends, the

41

Appendix3.

Literaturereviewsummarytableofbufferwidthsforhabitatforbiodiversity.ReproducedwithpermissionfromRickVandePoll,Chair,NHANRSWetlandBufferScientificWorkGroup.Colorcodingcorrespondsasfollows:lightgray–wetlands,lightblue–streams,darkgray–vernalpools.

CITATIONTYPE AREAOFCONCERNRELATIVETOWETLAND/RIPARIANZONEFUNCTIONINTEGRITY

BufferResearchCompendia

GENERAL

AquaticMacro-

Invertebrate Amphibian Reptile Fish WaterfowlPasserine

Bird MammalChase,Deming&Latawiec(1995)

100-300ft.

Boyd(2001)1 ≥200ft2 ≥200ft3 ≥200ft4 <200ft4 ≥200ft5Desbonnetetal.(1994) 246-1,969

ft. Sheldonetal.(2005)

384-673

ft. ≥328ft. ≥328ft.Grangeretal.(2005)

≥100ft.390-1900

ft.440–

3,700ft. ≥100ft. 390–

2,000ft.250-650ft.

Wenger(1999)6 ≥328ft. Nieber(2011) 500-950

ft. Sweeney&Newbold(2014) ≥98ft.7 ≥98ft. Murphy(N.D.) 100ft. 100ft. VermontAgencyofNaturalResources(2005) 10-840ft. Lichtin(2008) 50-200ft. Bolton&Shellberg(2001)4

150-250ft.

BMPGuides Bentrup(2008)

100-200ft.100-600

ft.100-600ft.

100-330ft.

200ft.-5,280ft.

100-330ft.

EnvironmentalLawInstitute(2003) ≥328ft. ≥328ft. EnvironmentalLawInstitute(2008)8

100-950ft.

Calhoun&Klemens(2002)

100-750ft.

Bentrup(2008) 100-200ft.

100-600ft.

100-600ft.

U.S.ArmyCorpsofEngineers(2015)

100-750ft.

Wenger(1999)6 ≥328ft. Fischer&Fischenich(2000)

98-1,640ft.

GoodForestryintheGraniteState(2010)9 ≥300ft. ≥150ft.

Page 43: Buffer Options for the Bay: Exploring the Trends, the

42

JournalArticles/TechnicalReports

Groffmanetal.(1991) ≥328ft. ≥328ft. Kiviat(1997)

3,281ft10

Semlitsch&Bodie(2003)

522-951ft.

417-948ft.

Harperetal.(2008)

328-541ft.

328-541ft.

Rabeni(1991) 25-200ft.

25-200ft.

25-200ft.

Brownetal.(1990)

300-600ft.

AdditionalInformation

1Basedon9reptiles,19amphibians,14mammals,and23birdsthatwereidentifiedas"wetlanddependent"2Applicablefor58%ofspecies;1species100-200ft.;sevenspecies<100ft.3Applicablefor67%ofspecies;1species<100ft.;2species<35ft.4Applicablefor55%ofspecies;5spp.<100ft.;3spp.100-200ft.;9spp.>200ft.5Applicablefor80%ofspecies;2speciesfoundtobewithin100ft.6Wengeralsosuggestsadding2ft.forevery1%ofslope7Forthemaintenanceofstreambankandstreamchannelwidthintegrity8McElfish,Kihlsinger,&Nicholsaretheprincipalauthors9EachrecommendedRMZsuggestsaminimum'no-cut'zone:ponds:0ft.;greatponds:25ft.;4thorder+:25ft.;3rdorder:50ft.;1st&2ndorder:25ft.10ApplicableonlytoBlanding'sturtles

Page 44: Buffer Options for the Bay: Exploring the Trends, the

43

Summaryofknowledgegapsandresearchneedsidentifiedthroughthecompilationofthisliteraturereview.

• Aliteraturereviewexaminingtheextenttowhichhumanactivityhasdegradedwaterresourcespost-colonization,andwhatquantityoftheseresourcesareneededtoretainfunctioningecosystemservicesinasustainablemannerforbothhumansandbiodiversity.

• Researchthatillustratestheeffectsofhavingnobufferonawaterbody,andtheassociatedpercentofnutrientandcontaminantinputsthatenterthewaterbody.

• Calculablefunctionalrelationshipsbetweenbufferwidthandamountofpollutantreduction.1

• Controlledstudiestodeterminehowvariousbuffercharacteristics(e.g.vegetativecomposition,stemdensity,canopycover)affectbufferfunction.

• Robustmodelsestimatingfloodstoragecapacitybasedonbufferwidthandotherimportantattributes,includingbasingeomorphologyandsoiltype.

• Robustmodelsestimatingrun-offreductionandeffectivebankstabilitybasedonbufferwidthandotherimportantattributes,suchasslopeandsoiltype.

• Robustmodelsestimatinghowbufferwidthaffectstheamountofsurfacewaterinfiltrated.

Appendix4.

1Thisabilitytolinkbufferrestorationorprotectiontoaspecificamountofnutrientreductionisavitalstepinhelpingtopromotetheuseofgreeninfrastructureinmeetingwaterqualityimprovements.Despitetheresearchneed,theUniversityofNewHampshire’sStormwaterCenterismakingprogressonthisfrontthroughitsNHDESPollutantTrackingandAccountingPilotProject,whichwillidentifypotentialtoolstoenablemunicipalitiestoquantitativelyassessnonpointsourcepollutantloadreductionsintheGBE.

Page 45: Buffer Options for the Bay: Exploring the Trends, the

44

LiteratureCited

Ahola,H.1990.VegetatedbufferzoneexaminationoftheVantaariverbasin.AquaFennica20:65-69.Allenby,J.andD.Burke.2012.Theemergingroleoftechnologyinprecisionconservation.Chesapeake

Conservancy.34pp.Allenby,J.andC.Phelan.2013.ImplementingtechnologyandprecisionconservationintheChesapeake

Bay.ChesapeakeConservancy.19pp.Aresco,M.J.2005.Mitigationmeasurestoreducehighwaymortalityofturtlesandotherherpetofauna

atanorthFloridalake.JournalofWildlifeManagement69:549-560.Arvisais,M.,E.Levesque,J.Bourgeois,C.Daigle,D.Masses,andJ.Jutras.2004.Habitatselectionbythe

woodturtle(Glyptemysinsculpta)atthenorthernlimitofitsrange.CanadianJournalofZoology82:391-398.

Arvisais,M.,J.C.Bourgeois,L.E.,C.Daigle,D.Masse,andJ.Jutras.2002.Homerangeandmovementsofawoodturtle(Clemmysinsculpta)populationatthenorthernlimitsofitsrange.CanadianJournalofZoology82:402-408.

Aunan,T.,B.PalikandS.Verry.2005.AGISapproachfordelineatingvariable-widthriparianbuffersbasedonhydrologicalfunction.MinnesotaForestResourcesCouncil.FinalReport.14pp.

Baldwin,R.F.,A.J.K.Calhoun,andP.G.deMaynadier.2006.Conservationplanningforamphibianspecieswithcomplexhabitatrequirements:acasestudyusingmovementsandhabitatselectionofthewoodfrogRanasylvatica.JournalofHerpetology40:443-454.

Bardgett,R.D.,P.Manning,E.Morrien,andF.T.DeVries.2013.Hierarchicalresponsesofplant-soilinteractionstoclimatechange:consequencesfortheglobalcarboncycle.JournalofEcology101:334-343.

Barton,D.R.,W.D.Taylor,andR.M.Biette.1985.DimensionsofriparianbuffersstripsrequiredtomaintaintrouthabitatinSouthernOntariostreams.NorthAmericanJournalofFisheriesManagement5:364-378.

Beier,P.andR.F.Noss.2008.Dohabitatcorridorsprovideconnectivity?ConservationBiology12:1241-1252.

Bennett,K.,ed.2010.Goodforestryinthegranitestate:recommendedvoluntaryforestmanagementpracticesforNewHampshire.2nded.UNHCooperativeExtension,Durham,NH.224pp.

Bentrup,G.2008.Conservationbuffers:designguidelinesforbuffers,corridors,andgreenways.GeneralTechnicalReportSRS-109.Asheville,NC:DepartmentofAgriculture,ForestService,SouthernResearchStation.110pp.

Berg,C.E.,M.M.Mineau,andS.H.Rogers.2016.Examiningtheecosystemserviceofnutrientremovalinacoastalwatershed.EcosystemServices20:104-112.

Bisson,P.A.,S.M.Claeson,S.M.Wondzell,A.D.Foster,andA.Steel.2013.Evaluatingheadwaterstreambuffers:lessonslearnedfromwatershed-scaleexperimentsinsouthwestWashington.In:Anderson,PaulD.;Ronnenberg,KathrynL.,eds.Densitymanagementforthe21stcentury:westsidestory.Gen.Tech.Rep.PNW-GTR-880.Portland,OR:U.S.DepartmentofAgriculture,ForestService,PacificNorthwestResearchStation.20pp.

Bolton,S.andJ.Shellberg.2001.Ecologicalissuesinfloodplainsandripariancorridors.WashingtonDepartmentofFishandWildlife,WashingtonDepartmentofEcology,WashingtonDepartmentofTransportation.Seattle,WA.88pp.

Boyd,L.2001.Bufferzonesandbeyond:WildlifeuseofwetlandbufferzonesandtheirprotectionundertheMassachusettsWetlandProtectionAct.ProjectreporttotheDepartmentofNaturalResourcesConservation,UniversityofMassachusetts.33pp.

Page 46: Buffer Options for the Bay: Exploring the Trends, the

45

Brown,M.T.,J.Schaefer,andK.Brandt.1990.Bufferzonesforwater,wetlands,andwildlifeineastcentralFlorida.EastCentralFloridaRegionalPlanningCouncil.CenterforWetlandsPublicationNo.89-07.Gainesville,FL.71pp.

Calhoun,A.J.K.andM.W.Klemens.2002.Bestdevelopmentpractices:conservingpool-breedingamphibiansinresidentialandcommercialdevelopmentsinthenortheastUnitedStates.MCATechnicalPaperNo.5.MetropolitanConservationAlliance,WildlifeConservationSociety.Bronx,NY.57pp.

Castelle,A.J.,C.Conolly,M.Emers,E.D.Metz,S.Meyer,M.Witter,S.Mauermann,T.Erickson,andS.S.Cooke.1992.Wetlandbuffers:useandeffectiveness.AdolfsonAssociates,Inc.,ShorelandsandCoastalZoneManagementProgram,WashingtonDepartmentofEcology,Olympia,Pub.No.92-10.54pp.

Chase,V.P,L.S.Deming,andF.Latawiec.1995.Buffersforwetlandsandsurfacewaters:aguidebookforNewHampshiremunicipalities.AudubonSocietyofNewHampshire.80pp.

ChesapeakeBayProgram.2015.NewYorkriparianforestbufferinitiativestatetaskforce.FinalReport.31pp.

ChesapeakeBayProgram.2013.Bufferingthebay:areportontheprogressandchallengesofrestoringriparianforestbuffersintheChesapeakeBaywatershed.ForestryWorkgroupReport.8pp.

Cockle,K.L.andJ.S.RIchardson.2003.Doriparianbufferstripsmitigatetheimpactsofclearcuttingonsmallmammals?BiologicalConservation113:133-140.

Correll,D.L.andD.E.Weller.1989.Factorslimitingprocessesinfreshwaterwetlands:anagriculturalprimarystreamriparianforest.UnitedStatesDepartmentofEnergy.FreshwaterWetlandsandWildlifeCONF-8703101.SymposiumSeriesNo.61.13pp.

Craft,C.,J.Clough,J.Ehman,S.Joye,R.Park,S.Pennings,H.Guo,andM.Machmuller.2008.Forecastingtheeffectsofacceleratedsealevelriseontidalmarshecosystemservices.FrontiersinEcologyandtheEnvironment7:73-78.

Deacon,J.R.,S.A.Soule,andT.E.Smith.2005.EffectsofurbanizationonstreamqualityatselectedsitesintheSeacoastregionofNewHampshire.2001-03:U.S.GeologicalSurveyScientificInvestigationsReport2005-5103,18pp.

DeGraaf,R.M.andM.Yamasaki.2000.NewEnglandwildlife:habitat,naturalhistory,anddistribution.UniversityPressofNewEngland.Lebanon,NH.496pp.

deMaynadier,P.,T.HodgmanandB.Vickery.2007.ForestmanagementrecommendationsforMaine’sriparianecosystems.TechnicalReportsubmittedtoMaineDepartmentofInlandFisheriesandWildlife.Bangor,ME.4pp.

Desbonnet,A.,P.Pogue,V.Lee,andN.Wolff.1994.Vegetatedbuffersinthecoastalzone:asummaryreviewandbibliography.CoastalResourcesCenterTechnicalReportNo.2064.UniversityofRhodeIslandGraduateSchoolofOceanography.Narragansett,RI.72pp.

Dillaha,T.A.,R.B.Reneau,S.Mostaghimi,andD.Lee.1989.Vegetativefilterstripsforagriculturalnonpointsourcepollutioncontrol.TransactionsoftheAmericanSocietyofAgriculturalandBiologicalEngineers32:513-519.

Dillaha,T.A.,J.H.Sherrard,D.Lee,S.Mostaghimi,andV.O.Shanholtz.1988.Evaluationofvegetativefilterstripsasabestmanagementpracticeforfeedlots.WaterPollutionControlFederation60:1231-1238.

EnvironmentalLawInstitute.2008.Planner'sguidetowetlandbuffersforlocalgovernments.25pp.EnvironmentalLawInstitute.2003.Conservationthresholdsforlanduseplanners.Washington,D.C.40

pp.

Page 47: Buffer Options for the Bay: Exploring the Trends, the

46

Fischer,R.A.,C.O.Martin,andJ.C.Fischenich.2000.Improvingriparianbufferstripsandcorridorsforwaterqualityandwildlife.InternationalConferenceonRiparianEcologyandManagementinMulti-LandUseWatersheds.AmericanWaterResourcesAssocation.7pp.

Fischer,R.A.,andJ.C.Fischenich.2000.Designrecommendationsforripariancorridorsandvegetatedbufferstrips.EMRRPTechnicalNotesCollection(ERDCTN-EMRRP-SR-24),U.S.ArmyEngineerResearchandDevelopmentCenter,Vicksburg,MS.

Fisher,S.andG.Likens.1972.Streamecosystem:organicenergybudget.BioScience22:33-35.Foster,J.,A.Lower,andS.Winkelman.2011.Thevalueofgreeninfrastructureforurbanclimate

adaptation.TheCenterforCleanAirPolicy.35pp.Franzen,E.,S.Wenger,L.Fowler,T.Myers,andS.Glaze.2006.Protectingriparianbuffersincoastal

Georgia:managementoptions.UniversityofGeorgiaInstituteofEcologyRiverBasinCenter.44pp.

Frey,M.2013.Restoringriparianbuffers:awhatworkssnapshot.RiverNetwork.Portland,Oregon,50pp.

Gibbs,J.P.1998.Distributionofwoodlandamphibiansalongaforestfragmentationgradient.LandscapeEcology13:262-268.

Gibbs,J.P.,A.R.Breisch,P.K.Ducey,G.Johnson,J.Behler,andR.Bothner.2007.TheamphibiansandreptilesofNewYorkState:Identification,naturalhistory,andconservation.OxfordUniversityPress.

Gibbs,J.P.andW.G.Shriver.2002.Estimatingtheeffectsofroadmortalityonturtlepopulations.ConservationBiology16:1647-1652.

Golladay,S.W.,J.R.Webster,E.F.Benfield,andW.T.Swank.1992.Changesinstreamstabilityfollowingforestclearingasindicatedbystormnutrientbudgets.ArchivfuerHydrobiologie,Supplement90:1-33.

Granger,T.,T.Hruby,A.McMillan,D.Peters,J.Rubey,D.Sheldon,S.Stanley,andE.Stockdale.2005.WetlandsinWashingtonstate-volume2:guidanceforprotectingandmanagingwetlands.WashingtonStateDepartmentofEcology.Publication#05-06-008.Olympia,WA.398pp.

Groffman,P.,A.Gold,T.Husband,R.Simmons,andW.Eddleman.1991.Aninvestigationintomultipleusesofvegetatedbufferstrips.NarragansettBayEstuaryProgram.ProjectReportNo.NBP-91-63.168pp.

Hagan,J.M.,andA.A.Whitman.2000.Microclimatechangesacrossuplandandriparianclearcut-forestboundariesinMaine.MosaicScienceNotes#2000-4.ManometCenterforConservationSciences,Brunswick,ME.

Hamilton,L.C.,B.D.Keim,andC.P.Wake.2010.IsNewHampshire’sclimatewarming?CarseyInstitute.NewEnglandPolicyBriefNo.4.UniversityofNewHampshire.8pp.

Harper,E.B.,D.A.Patrick,andJ.P.Gibbs.2015.Impactofforestrypracticesatalandscapescaleonthedynamicsofamphibianpopulations.EcologicalApplications25:2271-2284.

Harper,E.B.,T.A.G.Rittenhouse,andR.D.Semlitsch.2008.Demographicconsequencesofterrestrialhabitatlossforpool-breedingamphibians:predictingextinctionrisksassociatedwithinadequatesizeofbufferzones.ConservationBiology22:1205-1215.

Haycock,N.E.andG.Pinay.1993.Groundwaternitratedynamicsingrassandpoplarvegetatedriparianbufferstripsduringthewinter.JournalofEnvironmentalQuality.22:273-278.

Hefting,M.M.,J.Clement,P.Bienkowski,D.Dowrick,C.Guenat,A.Butturini,S.Topa,G.Pinay,andJ.T.A.Verhoeven.2005.TheroleofvegetationandlitterinthenitrogendynamicsofriparianbufferzonesinEurope.EcologicalEngineering.24:465-482.

Page 48: Buffer Options for the Bay: Exploring the Trends, the

47

Herlihy,A.T.,W.J.Gerth,J.Li,andJ.L.Banks.2005.MacroinverteratecommunityresponsetonaturalandforestharvestgradientsinwesternOregonheadwaterstreams.FreshwaterBiology50:905-919.

Hickey,M.B.C.andB.Doran.2004.Areviewoftheefficacyofbufferstripsforthemaintenanceandenhancementofriparianecosystems.WaterQualityResearchJournalofCanada39:311-317.

Hoffman,C.C.,C.Kjaergaard,J.Uusi-Kampa,H.C.HansenandB.Kronvang2009.Phosphorusretentioninriparianbuffers:reviewoftheirefficiency.JournalEnvironmentalQuality38:1942-1955.

Hruby,T.2013.Updateonwetlandbuffers:thestateofthescience,finalreport,October2013.WashingtonStateDepartmentofEcologyPublication#13-06-11.41pp.

Jackson,E.L.,S.E.Rees,C.Wilding,andM.J.Attrill.2015.Useofseagrassresidencyindextoapportioncommericalfisherylandingvaluesandrecreationfisheriesexpendituretoseagrasshabitatservice.ConservationBiology29:899-909.

Jones,K.B.,A.C.Neale,M.S.Nash,R.D.VanRemortel,J.D.Wickham,K.H.Riitters,andR.V.O'Neill.2001.Predictingnutrientandsedimentloadingstostreamsfromlandscapemetrics:amultiwatershedstudyfromtheUnitedStatesMid-AtlanticRegion.LandscapeEcology16:301-312.

Jones,K.L.,G.C.Poole,J.L.Meyer,W.Bumback,andE.A.Kramer.2006.Quantifyingexpectedecologicalresponsetonaturalresourcelegislation:acasestudyofriparianbuffers,aquatichabitat,andtroutpopulations.EcologyandSociety11:15.

Joyal,L.A.,M.McCollough,andM.L.Hunter.2001.Landscapeecologyapproachestowetlandspeciesconservation:acasestudyoftwoturtlespeciesinSouthernMaine.ConservationBiology15:1755-1762.

Kirshen,P.,C.Watson,E.Douglas,A.Gontz,J.Lee,andY.Tian.2008.CoastalfloodingintheNortheasternUnitedStatesduetoclimatechange.MitigationandAdaptationStrategiesforGlobalChange13:437-451.

Kirwan,M.L.andJ.P.Megonigal.2013.Tidalwetlandstabilityinthefaceofhumanimpactsandsealevelrise.Nature504:53-60.

Kiviat,E.1997.Blanding’sturtlehabitatrequirements,andimplicationsforconservationinDutchessCounty,NewYork.Proceedings:Conservation,Restoration,andManagementofTurtlesandTortoises–anInternationalConference,J.VanAbbema,ed.6pp.

Koitzsch,K.B.2002.ApplicationofamoosehabitatsuitabilityindexmodeltoVermontwildlifemanagementunits.Alces38:89-107.

Lammert,M.andJ.D.Allan.1999.Assessingbioticintegrityofstreams:effectsofscaleinmeasuringtheinfluenceoflanduse/coverandhabitatstructureonfishandmacroinvertebrates.EnvironmentalManagement23:257-270.

Lee,P.,C.Smyth,andS.Boutin.2004.QuantitativereviewofriparianbufferwidthguideslinesfromCanadaandtheUnitedStates.JournalofEnvironmentalManagement70:165-180.

Lemieux,J.P.,J.S.Brennan,M.Farrell,C.D.Levings,andD.Myers,eds.2004.ProceedingsoftheDFO/PSATsponsoredmarineriparianexpertsworkshop,Tsawwassen,BC,February17-18,2004.CanadianManuscriptReportofFisheriesandAquaticSciences2680.84pp.

Lichtin,N.2008.Waterqualityfunctionofwetlandbuffers:abriefannotatedbibliography.UniversityofRhodeIslandCooperativeExtension.RhodeIslandNonpointEducationforMunicipalOfficials.

Liu,X.,X.Zhang,andM.Zhang.2008.Majorfactorsinfluencingtheefficacyofvegetatedbuffersonsedimenttrapping:areviewandanalysis.JournalofEnvironmentalQuality37:1667-1674.

Machtans,C.S.,M.A.Villard,andS.J.Hannon.2002.Useofriparianbufferstripsasmovementcorridorsbyforestbirds.ConservationBiology10:1366-1379.

Page 49: Buffer Options for the Bay: Exploring the Trends, the

48

Machtinger,E.T.2007.Ripariansystems.U.S.DepartmentofAgriculture.NaturalResourcesConservationService.Washington,D.C.FishandWildlifeHabitatManagementLeafletNo.45.16pp.

Magette,W.L.,R.B.Brinsfield,R.E.Palmer,andJ.D.Wood.1989.Nutrientandsedimentremovalbyvegetatedfilterstrips.TransactionsoftheAmericanSocietyofAgriculturalandBiologicalEngineers32:663-667.

Maisonneuve,C.andS.Rioux.2001.ImportanceofriparianhabitatsforsmallmammalsandherpetofaunalcommunitiesinagriculturallandscapesofsouthernQuebec.Agriculture,Ecosystems&Environment83:165-175.

Marczak,L.B.,T.Sakamaki,S.L.Turvey,I.Deguise,S.L.R.Wood,andJ.S.Richardson.2010.Areforestedbuffersaneffectiveconservationstrategyforriparianfauna?Anassessmentusingmeta-analysis.EcologicalApplications20:126-134.

Marks,C.O.2013.Floodplainrestorationtechniques:experimentalresults.TheNatureConservancy,Northampton,MA.22pp.

Mayer,P.M.,S.K.Reynolds,M.D.McCutchen,andT.J.Canfield.2007.Meta-analysisofnitrogenremovalinriparianbuffers.JournalofEnvironmentalQuality36:1172-1180.

McDonald,R.I.,K.F.Weber,J.Padowski,T.Boucher,andD.Shemie.2016.Estimatingwatersheddegradationoverthelastcenturyanditsimpactonwater-treatmentcostsfortheworld’slargecities.ProceedingsoftheNationalAcademyofSciences.EarlyEdition.doi:10.1073/pnas.1605354113

Medina,V.F.,R.Fischer,andC.Ruiz.2016.RiparianbuffersforrunoffcontrolandsensitivespecieshabitatatU.S.ArmyCorpsofEngineersdamsandwaterways.ERDCWQTN-16-1.Vicksburg,MS:U.S.ArmyEngineerResearchandDevelopmentCenter.11pp.

Metz,D.andL.Weigel.2013.Thelanguageofconservation2013:updatedrecommendationsonhowtocommunicateeffectivelytobuildsupportforconservation.PublicOpinionStrategiesandFairbank,Maslin,Maullin,Metz&Associates–FM3.Memorandum.April15.11pp.

Murphy,B.D.Positionstatement:utilizationof100footbufferzonestoprotectriparianareasinConnecticut.ConnecticutBureauofNaturalResources,InlandFisheriesDivision.5pp.

Murphy,M.C.andF.C.Golet.1998.DevelopmentofrevisionstothestateofRhodeIsland’sfreshwaterwetlandregulations.FinalReport.DepartmentofNaturalResourcesScience,UniversityofRhodeIsland.Kingston,RI.143pp.

Naiman,R.J.andH.Decamps.1997.Theecologyofinterfaces:riparianzones.AnnualReviewofEcologyandSystematics28:621-658.

Naiman,R.J.,H.Decamps,andM.Pollock.1993.Theroleofripariancorridorsinmaintainingregionalbiodiversity.EcologicalApplications32:209-212.

Naiman,R.J.,E.V.Balian,K.K.Bartz,R.E.Bilby,andJ.J.Latterell.2002.Deadwooddynamicsinstreamecosystems.USDAForestServiceGen.Tech.Rep.PSW-GTR-181.26pp.

NationalResearchCouncil.2004.ManagingtheColumbiaRiver:instreamflows,waterwithdrawals,andsalmonsurvival.NationalAcademiesPress,Washington,DC.

NaturalResourcesConservationService.2006.Nationalshowcasewatersheds.U.S.DepartmentofAgriculture.226pp.

Nieber,J.L.,C.Arika,C.Lenhart,andM.Titov.2011.Evaluationofbufferwidthonhydrologicfunction,waterquality,andecologicalintegrityofwetlands.MinnesotaDepartmentofTransportation,ResearchServicesSection.FinalReport2011-06.98pp.

Osborne,L.L.,andD.A.Kovacic.1993.Riparianvegetatedbufferstripsinwater-qualityrestorationandstreammanagement.FreshwaterBiology29:243-258.

Page 50: Buffer Options for the Bay: Exploring the Trends, the

49

Pearson,S.F.andD.A.Manuwal.2001.Breedingbirdresponsetoriparianbufferwidthinmanagedpacificnorthwestdouglas-firforest.EcologicalApplications11:840-853.

PennsylvaniaLandTrustAssociation.2014.Riparianbufferprotectionvialocalregulation:aguideandmodelordinanceforPennsylvaniamunicipalities.32pp.

Peterjohn,W.T.andD.L.Correll.1984.Nutrientdynamicsinanagriculturalwatershed:observationsontheroleofariparianforest.Ecology65:1466-1475.

PiscataquaRegionEstuariesPartnership(PREP).2013.StateofOurEstuaries2013.PREPPublications.Paper259.http://scholars.unh.edu/prep/259

Polyakov,V.,A.Fares,andM.H.Ryder.2005.Precisionriparianbuffersforthecontrolofnonpointsourcepollutantloadingintosurfacewater:areview.EnvironmentalReviews13:129-144.

Pusey,B.J.andA.H.Arthington.2003.Importanceoftheriparianzonetotheconservationandmanagementoffreshwaterfish:areview.MarineandFreshwaterResearch54:1-16.

Rabeni,C.F.1991.Bufferzonesforriparianzonemanagement:aliteraturereview.DepartmentoftheArmy,CorpsofEngineers,NewEnglandDistrict.Waltham,MA.

Raney,P.A.,J.D.Fridley,andD.J.Leopold.2014.Characterizingmicroclimateandplantcommunityvariationinwetlands.Wetlands34:43-53.

Reed,G.C.2013.BobcatsinNewHampshire:understandingtherelationshipsbetweenhabitatsuitability,connectivityandabundanceinachanginglandscape.Master’sThesisinNaturalResources:WildlifeEcology.UniversityofNewHampshire.Durham,NH.106pp.

Refsnider,J.M.andM.H.Linck.2012.HabitatuseandmovementpatternsofBlanding'sturtles(Emydoideablandingii)inMinnesota,USA:alandscapeapproachtospeciesconservation.HerpetologicalConservationandBiology7:185-195.

Reid,L.M.andS.Hilton.1998.Bufferingthebuffer.USDAForestService.GeneralTechnicalReportPS-GTR-168.10pp.

RhodeIslandRiversCouncil.2005.Establishmentofriparianandshorelinebuffersandthetaxationofpropertyincludedinbuffers:areporttothegovernor,presidentoftheSenateandspeakeroftheHouse.Providence,RI.10pp.

Rishel,G.B.,J.A.Lynch,andE.S.Corbett.1982.Seasonalstreamtemperaturechangesfollowingforestharvesting.JournalofEnvironmentalQuality11:112–116.

Rittenhouse,T.A.G.andR.D.Semlitsch.2007.Distributionofamphibiansinterrestrialhabitatsurroundingwetlands.Wetlands27:153-161.

Saab,V.1999.Importanceofspatialscaletohabitatusebybreedingbirdsinriparianforests:ahierarchicalanalysis.EcologicalApplications9:135-151.

Sallenger,A.H.,K.S.Doran,andP.A.Howd.2012.HotspotofacceleratedsealevelriseontheAtlanticcoastofNorthAmerica.NatureClimateChange1597:1-5.

Schwerr,C.B.,andJ.C.Clausen.1989.Vegetativefiltertreatmentofdairymilkhousewastewater.JournalofEnvironmentalQuality18:446-451.

Scrivener,J.C.andM.J.Brownlee.1989.EffectsofforestharvestingonspawninggravelandincubationsurvivalofChum(Oncorhynchusketa)andCohoSalmon(O.kisutch)inCarnationCreek,BritishColumbia.CanadianJournalofFisheriesandAquaticSciences46:681-696.

Semlitsch,R.D.1998.Biologicaldelineationofterrestrialbufferzonesforsalamanders.ConservationBiology12:1113-1119.

Semlitsch,R.D.andJ.R.Bodie.2003.Biologicalcriteriaforbufferzonesaroundwetlandsandriparianhabitatsforamphibiansandreptiles.ConservationBiology17:1219-1228.

Semlitsch,R.D.,andJ.Jensen.2001.Corehabitat,notbufferzone.TheNationalWetlandsNewsletter23:5-6,EnvironmentalLawInstitute,Washington,D.C.3pp.

Page 51: Buffer Options for the Bay: Exploring the Trends, the

50

Sheldon,D.,T.Hruby,P.Johnson,K.Harper,A.McMillan,T.Granger,S.Stanley,andE.Stockdale.2005.WetlandsinWashingtonState-Volume1:ASynthesisoftheScience.WashingtonStateDepartmentofEcology,Olympia,WA.85pp.

Shirley,S.M.2006.Movementofforestbirdsacrossriverandclearcutedgesofvaryingbufferstripwidths.ForestEcologyandManagement223:190-199.

Shirley,S.M.2004.TheinfluenceofhabitatdiversityandstructureonbirduseofriparianbufferstripsincoastalforestsofBritishColumbia,Canada.CanadianJournalofForestResearch34:1499-1510.

Shirley,S.M.andJ.N.M.Smith.2005.Birdcommunitystructureacrossriparianbufferstripsofvaryingwidthsinacoastaltemperateforest.BiologicalConservation125:475-489.

Shoemaker,K.T.andJ.P.Gibbs.2013.Geneticconnectivityamongpopulationsofthethreatenedbogturtle(Glyptemysmuhlenbergii)andtheneedforaregionalapproachtoturtleconservation.Copeia2013:324-331.

Short,F.T.2016.EelgrassdistributionintheGreatBayEstuaryfor2014.FinalReport.PiscataquaRegionEstuariesPartnership.9pp.

Smith,C.2012.ImplementationandeffectivenessmonitoringresultsfortheWashingtonConservationReserveEnhancementProgram(CREP):plantandbufferperformance.WashingtonStateConservationCommission.40pp.

Smith,T.A.,D.L.Osmond,C.E.Moorman,J.M.Stucky,andJ.W.Gilliam.2008a.Effectofvegetationmanagementonbirdhabitatinriparianbufferzones.SoutheasternNaturalist7:277-288.

Smith,M.P.,R.Schiff,A.Olivero,andJ.G.MacBroom.2008b.Theactiveriverarea:aconservationframeworkforprotectingriversandstreams.TheNatureConservancy.Boston,MA.64pp.

Steckler,P.,J.Glode,andS.Flanagan.2016.Landconservationprioritiesfortheprotectionofcoastalwatershedresources:asupplementtothelandconservationplanforNewHampshire’scoastalwatersheds.TheNatureConservancy.PreparedfortheNewHampshireDepartmentofEnvironmentalServicesCoastalProgram.Concord,NH.24pp.

StraughanEnvironmentalServices,Inc.2003.Riparianbuffereffectivenessliteraturereview.MarylandDepartmentofNaturalResources.Annapolis,MD.31pp.

Sweeney,B.W.andJ.D.Newbold.2014.Streamsideforestbufferwidthneededtoprotectstreamwaterquality,habitat,andorganisms:aliteraturereview.JournaloftheAmericanWaterResourcesAssociation50:560-584.

Talberth,J.,E.Gray,E.Branosky,andT.Gartner.2012.Insightsfromthefield:forestsforwater.WorldResourcesInstituteIssueBrief9:1-7.

Trowbridge,P.,M.A.Wood,J.T.Underhill,andD.S.Healy.2014.GreatBaynitrogennon-pointsourcestudy.NewHampshireDepartmentofEnvironmentalServices.ReportR-WD-13-10.76pp.

U.S.ArmyCorpsofEngineers.2015.Vernalpoolbestmanagementpractices(BMPs).NewEnglandDistrict.5pp.

U.S.EnvironmentalProtectionAgency.2010.Community-basederosioncontroleffortsstopwaterqualitydecline.Section319NonpointSourceProgramSuccessStory–Maine.OfficeofWater,Washington,DC.EPA841-F-10-001BB.2pp.

U.S.EnvironmentalProtectionAgency.2008.LocalgroupskeytoMousamLakerestoration.Section319NonpointSourceProgramSuccessStory–Maine.OfficeofWater,Washington,DC.EPA841-F-08-001A.2pp.

U.S.EnvironmentalProtectionAgency.2006.Projectimproveswaterqualityandsaveserodingfarmland.Section319NonpointSourceProgramSuccessStory–NewHampshire.OfficeofWater,Washington,DC.EPA841-F-06-003E.2pp.

Page 52: Buffer Options for the Bay: Exploring the Trends, the

51

VermontAgencyofNaturalResources.2005.Riparianbuffersandcorridors:technicalpapers.Waterbury,VT.39pp.

Wallace,J.B.,S.L.Eggret,J.L.Meyer,andJ.R.Webster.1997.Multipletrophiclevelsofaforeststreamlinkedtoterrestriallitterinputs.Science277:102-104.

Watson,K.B.,T.Ricketts,G.Galford,S.Polasky,andJ.O’Niel-Dunne.2016.Quantifyingfloodmitigationservices:theeconomicvalueofOtterCreekwetlandsandfloodplainstoMiddlebury,VT.EcologicalEconomics.130:16-24.

Wenger,S.1999.Areviewofthescientificliteratureonriparianbufferwidth,extentandvegetation.OfficeofPublicServiceandOutreach,InstituteofEcology,UniversityofGeorgia.59pp.

Whitaker,D.M.andW.A.Montevecchi.1999.BreedingbirdassemblagesinhabitingriparianbuffersstripsinNewfoundland,Canada.JournalofWildlifeManagement63:167-179.

WoodsHoleGroup,Inc.2007.Naturalattenuationofnitrogeninwetlandsandwaterbodies.FinalReportPreparedforMassachusettsDepartmentofEnvironmentalProtection.Lakeville,MA.36pp.

Young,R.A.,T.Huntrods,andW.Anderson.1980.Effectivenessofvegetatedbufferstripsincontrollingpollutionfromfeedlotrunoff.JournalofEnvironmentalQuality9:483-487.

Zhang,X.,X.Liu,M.Zhang,andR.A.Dahlgren.2010.Areviewofvegetatedbuffersandameta-analysisoftheirmitigationefficacyinreducingnonpointsourcepollution.JournalofEnvironmentalQuality39:76-84.