building superior steam air heaters - pin fin tube · steam air heaters building superior. ......

16
CONCEPT ENGINEERING INTERNATIONAL COMPACT, LIGHTWEIGHT AND EFFICIENT SOLUTIONS. STEAM AIR HEATERS BUILDING SUPERIOR

Upload: phungxuyen

Post on 28-Jul-2018

225 views

Category:

Documents


1 download

TRANSCRIPT

CONCEPT ENGINEERING INTERNATIONAL

COMPACT, LIGHTWEIGHT AND EFFICIENT SOLUTIONS.

STEAM AIR HEATERSBUILDING SUPERIOR

Saturated steam condensing in tubes has a very high heattransfer coefficient. To harness its true potential you need a very efficient fin tube as the airside is the limiting factor. Our PIN Fin tube fits the bill. It consists of wire loops fastened to the tube with a flattened wire soldered to the tube. The soldering(lead free solder is an option) gives 100% bondingand strength and the wire loops provide very high airside turbulence. The result is an extremely high airside coefficient enhancing significantly the overall heat transfer coefficient. These fin tubes can be provided with carbon steel, stainless steel or copper wire fins on steel, stainless steel or copper/copper alloy tubes. To demonstrate the performance of these tubes against helical fin tubes we have done the following:

1. Designed a 1 meter by 1 meter 3 row panel using ¾” OD steel tubes with 10 FPI L type Aluminum fins. We have used 57 tubes in this panel. (19 tubes/row) The fin thickness was 0.5 mm and the fin height was 13 mm giving a heat transfer area of 3.51 ft2/ft. The transverse pitch was 50.8 mm and the longitudinal pitch was 38 mmv

2. Using HTRI software, we calculated the heat transfer and pressure drop of this panel under different air flow rate conditions, 25 deg C ambient air temperature and saturatedsteam at 3 kg/cm2g pressure in the tubes. We calculated all the parameters like air outlet temperature, LMTD, linear heat transfer coefficient, heat load and airsidepressure drop. We also isolated the airside heat transfer coefficient.

3. We then repeated this exercise using the same tube size but substituting the L type fins with our Pin fins in 5 different wire-winding configurations. The design was done using our in house design data proven over 2 decades of use. Since Aluminum cannot be used in wire wound fin tubes, we have considered stainless steel wire fins.

4. We also used panels with the same 1 meter by one meter 3 row configuration but changed the tube OD. We have adjusted the number of tubes to fit this configuration. We have selected the most commonly used winding configuration for each tube OD selected. We thus had panels with 1” OD at 51 tubes per panel, 5/8” tubes at 60 tubes per panel and 3/8” tubes at 77 tubes per panel.

5. We thus arrived at 9 panels, One of ¾” L type fin tubes, five of different windings of ¾” wire wound fin tubes and one each of 3/8”, 5/8” & 1” tubes. The idea of comparing one meter by one-meter panels was to be able to compare the performance of similarly sized heat exchangers across the tube options.

6. When comparing coefficients we have decided to use a linear coefficient (Per length of tube) instead of the generally used surface area. This gives a more straightforward comparison between tubes and is easier to use.One must keep in mind that with lower OD tubes a larger number of tubes can be fitted in a panel which will gives a higher panel coefficient. (Linear coefficient x length of tube in panel).

7. Due to its fin geometry and efficiency the weight of the wire fin tube is very low both in absolute per meter terms andmore so when the total length is adjusted for higher performance. To compare, S1 and the higher efficiency S2 and S3 stainless steel fin tubes are lower in weight than the 10 FPI Aluminum fin steel tube combination. The S4 & S5 are only slightly higher. When comparing against the stainless steel L fin tube, the S1 is 40% of the weight. The S5 stainless steel is only 2.9 kgsvs. 4.7 kgs for the stainless steel fin L tube. When you consider that the S1 is 30% more efficient and the S5 is 3 times the efficiencyof the L tube great new possibilities open up. The weight chart that follows is worth studying.

www.conceptengg.com

Design ParameterDesign ParameterDesign ParameterDesign ParameterDesign ParameterDesign ParameterModel No Units

L 10, S1,S2,S3,S4,S5 T5 R2 P4

Air inlet temperature deg C 25 25 25 25Steam Pressure kg/cm^2g 3 3 3 3

Dirt factor outside (Rdo) hr. ft2 F/btu 0.002 0.002 0.002 0.002Dirt factor inside (Rdi) hr. ft2 F/btu 0.0005 0.0005 0.0005 0.0005

Face Area M^2 1 1 1 1

   Heat Transfer Coefficient             Heat Transfer Coefficient             Heat Transfer Coefficient             Heat Transfer Coefficient             Heat Transfer Coefficient             Heat Transfer Coefficient             Heat Transfer Coefficient             Heat Transfer Coefficient             Heat Transfer Coefficient             Heat Transfer Coefficient             Heat Transfer Coefficient             Heat Transfer Coefficient          Tube side (hi) btu/hr. ft^2 F 1500 1500 1500 1500

When referred to tube ID/OD (hio) btu/hr. ft^2 F 1180 - - -

with dirt factor (hiod) btu/hr. ft^2 F 742 742 742 742linear heat transfer coefficient btu/hr. ft F 145.64 202.27 122.20 70.29

TubeTubeTubeTubeTubeTubeTubeTubeTubeTubeTubeTubeOD in 0.75 1 0.625 0.375thk in 0.08 0.08 0.064 0.048ID in 0.59 0.84 0.497 0.279

No.of rows   3 3 3 3No. of tubes   57 51 60 77

Pitch in row (pir) mm 50.8 57.2 48 38row pitch (Rp) mm 38 44 36 28

Weight of different fin configurations of fintubesWeight of different fin configurations of fintubesWeight of different fin configurations of fintubesWeight of different fin configurations of fintubesWeight of different fin configurations of fintubesWeight of different fin configurations of fintubesWeight of different fin configurations of fintubesWeight of different fin configurations of fintubesWinding Code Tube OD Weight per meter (kg/mtr)Weight per meter (kg/mtr)Weight per meter (kg/mtr)Weight per meter (kg/mtr) Total

weightTube Fins Tension wire Solder wire Kg/mtr

S1 A ¾” 1.01 0.91 0.062 0.09 2.072S2 B ¾” 1.01 1.1 0.07 0.093 2.273S3 C ¾” 1.01 1.25 0.08 0.11 2.45S4 D ¾” 1.01 1.38 0.083 0.12 2.593S5 E ¾” 1.01 1.68 0.083 0.12 2.893P4 F 3/8”  0.16 0.45 0.05 0.06 0.72R2 G 5/8”  0.34 0.88 0.08 0.09 1.39T5 H 1”  0.75 1.63 0.12 0.14 2.64

L fins SS L 10 FPI ¾” 1.01 3.71 - - 4.72L fins AL L 10 FPI ¾” 1.01 1.41 - - 2.42

www.conceptengg.com

www.conceptengg.com

Air

sup

Udl

inea

rU

dlin

ear

Udl

inea

rU

dlin

ear

Udl

inea

rU

dlin

ear

Udl

inea

rU

dlin

ear

Udl

inea

rU

dlin

ear

Air

coe

ffic

ient

Air

coe

ffic

ient

Air

coe

ffic

ient

Air

coe

ffic

ient

Air

coe

ffic

ient

Air

coe

ffic

ient

Air

coe

ffic

ient

Air

coe

ffic

ient

velo

city

fpm  

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

          bt

u/hr

. ft

btu/

hr. f

tbt

u/hr

. ft

btu/

hr. f

tbt

u/hr

. ft

btu/

hr. f

tbt

u/hr

. ft

btu/

hr. f

tbt

u/hr

. ft F

btu/

hr. f

t Fbt

u/hr

. ft F

btu/

hr. f

t Fbt

u/hr

. ft F

btu/

hr. f

t Fbt

u/hr

. ft F

btu/

hr. f

t Fbt

u/hr

. ft F

btu/

hr. f

t Fde

g C

deg

Cde

g C

deg

Cde

g C

deg

Cde

g C

deg

CP4

R2L

finS1

S2S3

S4S5

T5P4

R2L

finS1

S2S3

S4S5

T512

.61

16.6

916

.80

19.7

624

.43

28.8

632

.19

39.7

931

.92

15.6

819

.75

22.3

223

.48

30.2

137

.05

42.6

156

.70

38.7

616

.47

21.3

020

.40

23.9

129

.33

34.3

838

.13

46.5

339

.82

22.1

326

.55

27.8

629

.58

38.0

746

.68

53.6

971

.44

51.0

619

.65

25.1

122

.67

27.2

433

.20

38.6

842

.71

51.6

146

.22

28.2

632

.75

31.2

234

.85

44.8

555

.00

63.2

684

.17

62.0

921

.73

28.3

824

.20

30.0

436

.42

42.2

146

.45

55.6

851

.64

32.7

938

.55

33.6

339

.59

50.9

362

.45

71.8

395

.55

72.2

723

.63

31.2

525

.71

32.4

839

.18

45.2

449

.62

59.1

156

.33

37.3

244

.04

36.0

443

.90

56.5

169

.31

79.7

310

6.12

81.8

124

.70

34.0

127

.17

34.6

341

.61

47.8

652

.35

62.0

160

.47

40.0

649

.73

38.4

547

.95

61.7

075

.67

87.0

411

5.82

90.8

525

.85

35.6

228

.53

36.5

743

.77

50.1

754

.76

64.5

364

.18

43.1

753

.25

40.8

551

.74

66.5

881

.65

93.9

112

4.94

99.4

826

.88

37.0

729

.82

38.3

345

.72

52.2

656

.92

66.7

766

.74

46.1

256

.55

43.2

355

.33

71.2

087

.32

100.

4413

3.64

105.

7827

.81

38.3

831

.09

39.9

447

.50

54.1

558

.86

68.7

969

.11

48.9

259

.67

45.5

658

.75

75.6

192

.73

106.

6814

1.96

111.

8528

.65

39.5

932

.23

41.4

349

.13

55.8

660

.62

70.5

871

.28

51.6

062

.64

47.7

862

.04

79.8

397

.89

112.

6014

9.81

117.

6529

.43

40.7

133

.29

42.8

150

.64

57.4

562

.24

72.2

373

.28

54.1

865

.48

49.8

965

.20

83.8

910

2.87

118.

3215

7.42

123.

2030

.15

41.7

534

.28

44.1

052

.04

58.9

163

.74

73.7

575

.14

56.6

668

.21

51.9

068

.23

87.8

110

7.68

123.

8616

4.81

128.

5430

.82

42.7

235

.20

45.3

153

.35

60.2

765

.12

75.1

376

.87

59.0

670

.84

53.8

271

.18

91.6

011

2.32

129.

2017

1.90

133.

6931

.44

43.6

336

.09

46.4

554

.58

61.5

566

.41

76.4

378

.49

61.3

973

.38

55.6

574

.02

95.2

711

6.84

134.

4117

8.86

138.

67

Air

sup

velo

city

fpm  

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Air

out

let

Air

out

let

Air

out

let

Air

out

let

Air

out

let

Air

out

let

Air

out

let

Air

out

let

Air

out

let

Hea

t lo

adH

eat

load

Hea

t lo

adH

eat

load

Hea

t lo

adH

eat

load

Hea

t lo

adH

eat

load

Hea

t lo

adte

mp

tem

pte

mp

tem

pte

mp

tem

pte

mp

tem

pte

mp

         d

eg C

deg

Cd

eg C

deg

Cd

eg C

deg

Cd

eg C

deg

Cd

eg C

kcal

/hr.

kcal

/hr.

kcal

/hr.

kcal

/hr.

kcal

/hr.

kcal

/hr.

kcal

/hr.

kcal

/hr.

kcal

/hr.

P4R2

L fin

S1S2

S3S4

S5T5

P4R2

L fin

S1S2

S3S4

S5T5

107.

310

8.8

108.

111

3.6

121.

912

7.60

130.

8013

5.80

127.

289

234.

590

860.

992

400.

096

065.

410

5064

.711

1245

.011

4714

.612

0135

.911

0811

.310

1.3

101.

999

.710

4.6

113.

311

9.60

123.

3012

9.70

120.

912

4093

.512

5069

.312

4950

.012

9460

.614

3610

.215

3856

.415

9874

.017

0282

.915

5970

.796

.596

.692

.397

.810

6.4

112.

9011

6.80

123.90

115.6

1550

49.1

1552

65.9

1501

50.0

1578

68.2

1765

17.4

1906

12.8

1990

70.0

21446

6.5

19646

7.8

91.2

92.2

85.7

92.4

100.

8107.20

111.20

118.

5011

1.0

1794

44.9

1821

55.6

1690

50.0

1826

97.7

2054

67.2

22281

5.3

23365

7.9

2534

45.6

2331

15.8

87.1

88.6

80.9

88.0

96.1

102.

3010

6.30

113.60

106.9

2019

97.5

20687

6.7

1869

00.0

2049

25.0

23127

2.5

2514

39.8

2644

50.9

28819

6.1

26640

2.5

82.5

85.7

77.3

84.3

92.0

98.1

0101.90

109.

20103.4

21820

7.2

2303

50.9

20370

0.0

22503

8.0

2542

58.8

2774

07.8

29182

8.4

3195

31.2

29752

0.8

79.0

82.1

74.1

81.1

88.5

94.30

98.1

0105.20

100.

223

4200

.024

7644

.821

8400

.024

3307

.827

5401

.930055

6.7

3170

37.4

34783

0.4

3261

45.2

76.0

79.0

71.5

78.3

85.4

91.0

094.70

101.60

96.8

2488

37.5

26347

5.0

2331

00.0

2600

59.6

29470

1.7

3220

25.0

34007

8.0

37374

4.2

35032

4.2

73.3

76.3

69.3

75.8

82.7

88.10

91.6

098

.30

93.7

2618

48.6

2781

12.5

2467

50.0

2754

01.9

3128

08.8

34208

3.8

3610

58.4

3973

81.1

3724

43.1

71.0

73.9

67.3

73.7

80.2

85.4

088.80

95.3

091

.027431

7.6

29161

1.6

25935

0.0

29041

8.9

32918

1.2

3601

91.0

38046

6.6

4192

28.9

3935

86.2

68.9

71.7

65.5

71.7

78.0

83.00

86.3

092

.60

88.4

2855

93.9

3038

09.5

2709

00.0

3038

09.5

3447

94.5

37732

2.3

3987

90.6

4397

75.6

4124

52.3

67.0

69.8

63.9

69.9

76.0

80.8

083

.90

90.0

086

.129

6002

.831573

6.3

2814

00.0

31644

1.1

35943

2.0

3932

60.9

4151

08.7

4580

99.6

4306

13.6

65.2

6862.4

68.3

74.1

78.7

081

.80

87.7

084

.030511

0.6

3263

62.1

29190

0.0

3286

39.0

3726

60.0

4075

73.1

4311

01.5

4758

81.5

4477

99.1

63.7

66.4

61.1

66.8

72.4

76.9

079

.80

85.5

082

.131

4706

.333

6662

.530

1350

.033991

5.3

3854

54.2

4220

48.0

4456

30.6

4919

82.7

4643

34.1

Air

sup

velo

city

fpm  

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

LMTD

LMTD

LMTD

LMTD

LMTD

LMTD

LMTD

LMTD

LMTD

Air

side

Air

side

Air

side

Air

side

Air

side

Air

side

Air

side

Air

side

Air

side

         pr

dro

ppr

dro

ppr

dro

ppr

dro

ppr

dro

ppr

dro

ppr

dro

ppr

dro

ppr

dro

pde

g C

deg

Cde

g C

deg

Cde

g C

deg

Cde

g C

deg

Cde

g C

in w

cin

wc

in w

cin

wc

in w

cin

wc

in w

cin

wc

in w

cP4

R2L

finS1

S2S3

S4S5

T5P4

R2L

finS1

S2S3

S4S5

T568

.71

67.5

465

.263

.63

56.1

550

.24

46.4

639

.43

50.6

80.

055

0.04

90.

070.

038

0.05

10.

067

0.08

10.

115

0.11

373

.23

72.7

972

.270

.78

63.8

858

.33

54.7

747

.81

57.1

10.

110.

110.

128

0.08

30.

112

0.14

70.

178

0.25

0.25

376

.66

76.5

978

75.7

469

.41

64.2

160

.87

54.1

761

.92

0.18

0.19

40.

194

0.14

70.

196

0.25

70.

309

0.43

20.

446

80.2

979

.61

82.3

79.4

873

.59

68.7

965

.61

59.3

465

.78

0.26

20.

301

0.27

30.

227

0.30

20.

394

0.47

30.

660.

692

8382

.02

85.8

82.4

176

.94

72.5

69.4

963

.63

69.0

20.

357

0.43

0.36

80.

325

0.43

0.56

0.67

10.

930.

9985

.95

83.9

188

.484

.81

79.7

575

.53

72.7

967

.22

71.6

80.

463

0.58

30.

471

0.44

0.58

0.75

30.

91.

243

1.34

188

.14

86.2

190

.586

.84

82.0

878

.18

75.5

370

.33

74.0

30.

580.

758

0.58

70.

572

0.75

10.

973

1.16

11.

598

1.74

389

.99

88.1

492

.188

.58

84.1

80.4

277

.91

73.0

176

.45

0.70

80.

954

0.71

10.

721

0.94

41.

221.

453

1.99

42.

195

91.6

289

.81

93.5

90.1

185

.83

82.3

580

.02

75.3

978

.60.

846

1.17

30.

847

0.88

71.

158

1.49

31.

775

2.42

92.

697

9391

.26

94.8

91.3

887

.484

.181

.88

77.4

980

.42

0.99

41.

414

0.99

61.

071.

393

1.79

22.

128

2.90

43.

2594

.24

92.5

895

.992

.58

88.7

685

.64

83.5

279

.34

82.1

51.

152

1.67

81.

153

1.26

91.

649

2.11

82.

511

3.41

93.

853

95.3

593

.71

96.9

93.6

589

.99

87.0

285

.06

81.0

983

.65

1.31

91.

963

1.32

31.

485

1.92

72.

472.

926

3.97

44.

506

96.3

994

.76

97.8

94.5

991

.14

88.3

386

.482

.61

851.

495

2.27

1.50

51.

718

2.22

52.

847

3.36

84.

565

5.20

997

.25

95.7

98.6

95.4

692

.16

89.4

487

.65

84.0

486

.21

1.68

12.

61.

695

1.96

82.

544

3.25

3.84

25.

196

5.96

3

Air

sup

Velo

city

fp

m  20

030

040

050

060

070

080

090

010

0011

0012

0013

0014

0015

00

ud/p

anel

ud/p

anel

ud/p

anel

ud/p

anel

ud/p

anel

ud/p

anel

ud/p

anel

ud/p

anel

ud/p

anel

A

ir Co

effic

ient  

   

A

ir Co

effic

ient  

   

A

ir Co

effic

ient  

   

A

ir Co

effic

ient  

   

A

ir Co

effic

ient  

   

A

ir Co

effic

ient  

   

A

ir Co

effic

ient  

   

A

ir Co

effic

ient  

   

A

ir Co

effic

ient  

   

btu/

hr p

anel

F      

     

   

btu/

hr p

anel

F      

     

   

btu/

hr p

anel

F      

     

   

btu/

hr p

anel

F      

     

   

btu/

hr p

anel

F      

     

   

btu/

hr p

anel

F      

     

   

btu/

hr p

anel

F      

     

   

btu/

hr p

anel

F      

     

   

btu/

hr p

anel

F      

     

   

btu/

hr p

anel

deg

C    

 bt

u/hr

pan

elde

g C    

 bt

u/hr

pan

elde

g C    

 bt

u/hr

pan

elde

g C    

 bt

u/hr

pan

elde

g C    

 bt

u/hr

pan

elde

g C    

 bt

u/hr

pan

elde

g C    

 bt

u/hr

pan

elde

g C    

 bt

u/hr

pan

elde

g C    

 P4

R2L

finS1

S2S3

S4S5

T5P4

R2L

finS1

S2S3

S4S5

T531

8532

8431

4136

9445

6853

9660

1974

3853

3939

6038

8641

7343

9056

4869

2679

6710

600

6483

4161

4191

3814

4470

5483

6427

7129

8699

6661

5590

5225

5208

5531

7117

8728

1003

913

357

8541

4962

4942

4239

5093

6207

7231

7985

9649

7732

7138

6446

5837

6516

8385

1028

311

827

1573

710

387

5489

5585

4524

5617

6808

7892

8684

1041

086

3882

8275

8662

8874

0195

2211

676

1342

917

864

1208

959

6961

5048

0660

7273

2584

5792

7811

051

9423

9426

8666

6738

8208

1056

512

958

1490

719

839

1368

562

3966

9350

8064

7577

7989

4797

8811

592

1011

610

118

9787

7189

8964

1153

614

147

1627

321

653

1519

765

2970

1053

3368

3681

8493

8110

238

1206

410

736

1090

410

480

7638

9674

1244

815

264

1755

723

360

1664

167

8972

9555

7571

6585

4897

7010

641

1248

411

165

1164

711

129

8082

1034

513

312

1632

518

778

2498

617

694

7023

7554

5812

7467

8881

1012

311

005

1286

111

561

1235

511

743

8518

1098

414

136

1733

819

944

2654

118

711

7237

7792

6026

7745

9186

1044

411

333

1319

611

924

1303

312

328

8933

1159

914

925

1830

221

051

2800

819

680

7433

8012

6225

8004

9468

1074

011

636

1350

412

258

1368

312

887

9327

1218

915

684

1923

322

121

2943

020

609

7614

8216

6409

8245

9730

1101

411

916

1378

812

569

1431

113

424

9704

1275

716

417

2013

223

158

3081

421

502

7783

8407

6581

8472

9974

1126

912

175

1404

712

859

1491

713

941

1006

113

308

1712

521

000

2415

532

139

2236

379

4085

8667

4886

8510

204

1150

712

417

1429

013

130

1550

514

441

1040

413

840

1781

221

845

2512

933

440

2319

6

www.conceptengg.com

Tables giving maximum air velocity and performance for various tubes at different pressure drop points. (Measured in inches of water column.) We have after analysis generated the following tables where we have generated the maximum airflow rate possible for every panel given a pressure drop limit. We have set the limit at .5”, 1”, 1.5” and 2” of water column. For this maximum airflow, we have given the corresponding heat transfer parameters. These tables allow us to optimize the tubes and airflow rates to get the desired results.

0.5” Water Column0.5” Water Column0.5” Water Column0.5” Water Column0.5” Water Column0.5” Water Column0.5” Water Column0.5” Water Column 

Tube  

P4R2

L finS1S2S3S4S5T5

 Tube  

P4R2

L finS1S2S3S4S5T5

 Tube  

P4R2

L finS1S2S3S4S5T5

 Tube  

P4R2

L finS1S2S3S4S5T5

Air Air side Air Udlinear LMTD Heat Load Outlet Velocity Pr Drop Co efficient       temp

             700 0.463 40.06 24.70 85.95 218207.2 82.5600 0.430 44.04 31.25 82.02 206876.7 88.6700 0.471 38.45 27.17 88.40 203700.0 77.3700 0.440 47.95 34.63 84.81 225038.0 84.3600 0.430 56.51 39.18 76.94 231272.5 96.1500 0.394 62.45 42.21 68.79 222815.3 107.20500 0.473 71.83 46.45 65.61 233657.9 111.20400 0.432 84.17 51.61 54.17 214466.5 123.90400 0.446 62.09 46.22 61.92 196467.8 115.60

1” Water Column 1” Water Column 1” Water Column 1” Water Column 1” Water Column 1” Water ColumnAir Air side Air Udlinear LMTD Heat Load Outlet

Velocity Pr Drop Co efficient       temp             1100 0.994 51.60 28.65 93.00 274317.6 71.0

900 0.954 56.55 37.07 88.14 263475.0 79.01100 0.996 47.78 32.23 94.80 259350.0 67.31100 1.070 62.04 41.43 91.38 290418.9 73.7

900 0.944 71.20 45.72 84.10 294701.7 85.4800 0.973 81.65 50.17 78.18 300556.7 94.30700 0.900 87.04 52.35 72.79 291828.4 101.90600 0.930 106.12 59.11 63.63 288196.1 113.60600 0.990 81.81 56.33 69.02 266402.5 106.90

1.5” Water Column 1.5” Water Column 1.5” Water Column 1.5” Water Column 1.5” Water Column 1.5” Water ColumnAir Air side Air Udlinear LMTD Heat Load Outlet

Velocity Pr Drop Co efficient       temp             1400 1.495 59.06 30.82 96.39 305110.6 65.21100 1.414 62.64 39.59 91.26 291611.6 73.91400 1.505 53.82 35.20 97.80 291900.0 62.41300 1.485 68.23 44.10 93.65 316441.1 69.91100 1.393 79.83 49.13 87.40 329181.2 80.21000 1.493 92.73 54.15 82.35 342083.8 88.10

900 1.453 100.44 56.92 77.91 340078.0 94.70800 1.598 124.94 64.53 70.33 347830.4 105.20700 1.341 90.85 60.47 71.68 297520.8 103.40

2” Water Column 2” Water Column 2” Water Column 2” Water Column 2” Water Column 2” Water ColumnAir Air side Air Udlinear LMTD Heat Load Outlet

Velocity Pr Drop Co efficient       temp             1500  1.681  61.39  31.44  97.25  314706.3  63.7 1300 1.963 68.21 41.75 93.71 315736.3 69.8  1500  1.695  55.65  36.09  98.60  301350.0  61.1

1500 1.968 74.02 46.45 95.46 339915.3 66.81300 1.927 87.81 52.04 89.99 359432.0 76.01200 2.118 102.87 57.45 85.64 377322.3 83.01100 2.128 112.60 60.62 81.88 380466.6 88.80

900 1.994 133.64 66.77 73.01 373744.2 101.60900 2.195 105.78 66.74 76.45 350324.2 96.80

www.conceptengg.com

Analysis of the Data generated:

Performance of any Fin tube cooler is a combination of its Air side Coefficient and tubeside coefficient as given by the general formula:

Ud = h’fi*h’i/h’fi+h’i

Where:Ud = overall heat transfer Coefficienth’fi = Heat transfer coefficient on fin side of the tube.h’i = Heat transfer coefficient inside the tube

From this formula we can see that any increase of the coefficient on one side (Air or tube) will lead to a less than proportional increase in the overall coefficient.

So to get a fair idea of the performance of a fin tube we have to look at both the Airside performance as well as the overall performance to see its individual impact as well as composite impact. We have accordingly in the interest of transparency given both the airside coefficient as well as the overall coefficient.

The lower material consumption per meter of tube offsets in part its greater labor cost giving a surprisingly economical tube. When the lower length of tube required in any equipment is factored in it becomes definitely very cost effective.

Now the findings:

1. In the general Airflow velocity range of 800 to 1200 the pressure drop of S1 pin fin tube is almost identical to the 10 FPI L fin tube. However the airside coefficient is higher by 26-30% similarly the overall coefficient is higher by 28% in the case of 3-bar steam in the tubes.

2. For S5 the overall coefficient is 220% and airside coefficient is 300% of the coefficient of the 10 FPI L fin tube. This implies a reduction to 40% in panel size for the same performance.

3. The wire fin tube hits the pressure drop limit at a lower airflow rate as compared to the L fin tube. However at this lower air flow it has a much higher coefficient than the L fin tube operating at the higher airflow rate giving a higher total heat load. This translates into significant power saving.

4. The outlet Air temperature achieved at different flow rates is higher for the S5 Panel by about 25 degrees centigrade. Again this implies that one can achieve the desired air temperature with a lower number of fin tube rows.

5. Again with the log mean temperature difference we are able to achieve an improvement of about 18-24 degrees between the 10 FPI L fin tube and S5. A tighter LMTD means a much more efficient heat exchanger.

6. Notwithstanding the tight LMTD achieved, the heat load for S5 is higher by 60-61% for S5 compared to the 10 FPI L panel.

7. While the difference is very large for S5 and 10 FPI L fin, it is also substantial when compared with S1, the lowest configuration.

8. Copper fins give a 15% higher airside coefficient and an 8-10% higher overall coefficient as compared to stainless steel or steel fins.

In a nutshell, we can achieve a reduction in number of rows of the steam air heater, by approximately 50%. We can achieve a further reduction in weight as the wire fin tube is much lighter than the L fin tube. (If the same metal is used by over 50%, In case the L fin is made of aluminum the weight may be about the same.) A significant reduction in power consumption is also achieved. We are able to substitute aluminum fins with stainless steel without an increase in cost or weight.

www.conceptengg.com

Designing your own exchangers

We have made it easy to design your own exchangers by providing extensive data. Also by presenting the data in the form of 1x1 meter 3 row Panels, and expressing the coefficient in linear terms we have made it easy to predict performance by scaling up these panels in face area or number of rows. We have tried to make it intuitive.

For easy reference we have also given a graph comparing the same panel 3 kgs with 10 kgs steam.

By isolating the airside coefficient, we have made it possible for designers to use the data for any other type of heat exchanger like oil coolers, water coolers or any other air-cooled heat exchangers.

The Data tables have given a color code to values where the typical allowable pressure drops are reached. (.5, 1, 1.5 & 2) inches of water column. This allows you to select the most appropriate tube and airflow rate for a given allowable pressure drop. This allows you to easily optimize your tube type and panel sizing.

Assistance with design

We are willing to work together with you to design your equipment. We charge a very nominal design fee, which we are willing to rebate at the time of order conclusion. Our design capability covers all types of heat exchangers and fin tubes. We generally limit ourselves to process design but can also assist in mechanical design.

Partnership

Concept engineering wishes to work with local companies in all countries. We encourage our local partners to fabricate the heaters themselves using our fin tubes, turbulators, components and design capability. This makes it possible for companies with Fabrication capacity but limited heat exchanger design capability to partner with us to successfully make and market heat exchangers. Of course we are looking at sustained partnerships with a win win perspective.

www.conceptengg.com

Concept Engineering International Turbulator Division, 2nd floor, KK Chambers, Sir P.T. Marg, Fort, Mumbai 400001.

Phone: +91-22-4353 3700-99Fax: +91-22-4353 3717

E-mail: [email protected]