burner calculation

8
Directions Page 1 1) Input Fuel characteristics 6) Once the barrel is complete, adjust the tip cross sectional areas 2) Input kiln production data Ultimate target is Is = 1.8 and Sw = 0.15, by adjusting the tip dimensions. Change the tip cross sectional areas by adjusting the axial holes 3) Determine (goal seek) transport air flow rate : 5 kg/m3 for blower, 7 kg/m diameter and the width of groove for the swirl. - vary the transport flowrate - Nm3/h - note that blowers cannot take the higher material density rate 7) Optimise static pressures at tip, tip cross sectional area and all other constraints. Obtain the best balance for: 4) Obtain optimum or target flow rates values (swirl & axial) Target of Is = 1.8 and Sw = 0.15,. For a first calculation, start with static pressures of 40.000 Pa for axial, Optimum flow rates 25.000 Pa for swirl - 10% primary air; 7% axial + transport (in case that no swirl is used). Use solver, changing the groove width, the axial holes diameters, t 8) Confirm choice of fan or blower for swirl air based on static pressure in the tip - choice effects bias coefficient and to the swirl pressure (>18.000 Pa if fan, 20.000-30.000 Pa if blower). 9) Determine range for blowers: maximum for (Is,Sw)=(1.8,0.15), and Note the optimum flow rates as well as cross section areas (mm2) minimum for (0.9,0.05). Check that , doing this, we stay in the range Ultimate target is Is = 1.8 and Sw = 0.15. of 7 to 12% primary air. 5) Dimension the barrel: What is the free diameter required in the centre? Depends on how many fuels the plant wants to burn simultaneously: waste, oil, etc… In theory, min. of 200 mm (8 in.) is needed for the bluff body effect although 6 in. has been used. Use standard pipes (see table). The outer diameter of this first pipe is the inside diameter for the swirl air channel. Continue to build, using the criteria below: 1) Swirl:Velocity in barrel: 15 to 25 m/s Swirler angle = 30 - 40°; common to use 35° Transport design: drawing instructions 18 to 22 vanes (or slots), 8 mm depth minimum Maximum angle of inlet = 12.5 degree with the burner axis No straight stream through the swirler = long enough Enter from the top (better distribution) 2) Transport: Velocity in tip and barrel: 25 to 35 m/s Inlet rectangle: Internal width should be equal to internal radial gap of annulus > or = to 10 mm (concentricity, plugging) diameter of outer pipe of the fuel annulus. The velocity A slight reduction of the cross section area is being done at the tishould never decrease from the fuel intoduction into the line a better fuel distribution around the annulus (automatic) to the burner tip. (Settlement) 3) Axial: Velocity in barrel = 15 to 25 m/s (trade-off weight of burner pipe versus pressure drop). Target 20 holes, generally 16 to 24 Diameter of holes >or = to 12 mm the swirl static pressures. Add constraints on the axial pressure (35.000-60.

Upload: pepinocy

Post on 28-Oct-2015

393 views

Category:

Documents


4 download

DESCRIPTION

Cement kiln burner - running simulation file

TRANSCRIPT

Page 1: Burner Calculation

Directions

Page 1

1) Input Fuel characteristics 6) Once the barrel is complete, adjust the tip cross sectional areas2) Input kiln production data Ultimate target is Is = 1.8 and Sw = 0.15, by adjusting the tip dimensions.

Change the tip cross sectional areas by adjusting the axial holes 3) Determine (goal seek) transport air flow rate : 5 kg/m3 for blower, 7 kg/m3 for pump diameter and the width of groove for the swirl. - vary the transport flowrate - Nm3/h - note that blowers cannot take the higher material density rate 7) Optimise static pressures at tip, tip cross sectional area and all other

constraints. Obtain the best balance for:4) Obtain optimum or target flow rates values (swirl & axial) Target of Is = 1.8 and Sw = 0.15,.For a first calculation, start with static pressures of 40.000 Pa for axial, and Optimum flow rates25.000 Pa for swirl - 10% primary air; 7% axial + transport (in case that no swirl is used). Use solver, changing the groove width, the axial holes diameters, the axial and 8) Confirm choice of fan or blower for swirl air based on static

pressure in the tip - choice effects bias coefficientand to the swirl pressure (>18.000 Pa if fan, 20.000-30.000 Pa if blower).

9) Determine range for blowers: maximum for (Is,Sw)=(1.8,0.15), and Note the optimum flow rates as well as cross section areas (mm2) minimum for (0.9,0.05). Check that , doing this, we stay in the range Ultimate target is Is = 1.8 and Sw = 0.15. of 7 to 12% primary air.

5) Dimension the barrel:What is the free diameter required in the centre? Depends on how many fuels the plant wants to burn simultaneously: waste, oil, etc…In theory, min. of 200 mm (8 in.) is needed for the bluff body effect although 6 in. has been used.Use standard pipes (see table). The outer diameter of this first pipe is the inside diameter for the swirl air channel. Continue to build, using the criteria below:

1) Swirl: Velocity in barrel: 15 to 25 m/sSwirler angle = 30 - 40°; common to use 35° Transport design: drawing instructions18 to 22 vanes (or slots), 8 mm depth minimum Maximum angle of inlet = 12.5 degree with the burner axisNo straight stream through the swirler = long enough Enter from the top (better distribution)

2) Transport: Velocity in tip and barrel: 25 to 35 m/s Inlet rectangle: Internal width should be equal to internal radial gap of annulus > or = to 10 mm (concentricity, plugging) diameter of outer pipe of the fuel annulus. The velocity A slight reduction of the cross section area is being done at the tip, for should never decrease from the fuel intoduction into the line a better fuel distribution around the annulus (automatic) to the burner tip. (Settlement)

3) Axial: Velocity in barrel = 15 to 25 m/s (trade-off weight of burner pipe versus pressure drop). Target 20 holes, generally 16 to 24Diameter of holes >or = to 12 mm

the swirl static pressures. Add constraints on the axial pressure (35.000-60.000 Pa),

A11
Reiterer: change: 12% Pa to 10% and 8% axial +transport to 7%
A13
Reiterer: change: 45.000 to 60.000 Pa in order to reduce PA
A28
Reiterer: change: 35° to 30 - 40° common to use 35°
A31
Reiterer: change: 28 to 25 m/s
Page 2: Burner Calculation

document.xls

Lucian Calinoiu Page 2 04/17/2023

SWIRL AND MOMENTUM DETERMINATIONSWIRL AND MOMENTUM DETERMINATIONOriginal: CLV / S.THIERS Apr-95 PLANT : HOGUpdate: CTEC / H. REITERER Oct-00 Date : 28-Aug-06

Name : Lucian CalinoiuCOMMENTS :Plant altitude: 480 m

Atm. Pressure : Err:511 mmHg = Err:511 Err:511 Pa

TIP CROSS SECTION AREAS Diameters : % cross section reduction Dext : 540.0

(mm) thk : 8 524AXIAL AIR 523.0 8.5 76,694 Pa

Holes 1, Vanes 2 : 1 ### m/s 471.0 77.5% Err:511 m/s Err:511 Nm3/h9123 mm2 Dext : 470.0

446.0 12.5 thk : 12 446TRANSPORT AIR 23 m/s 387.0 23.2 m/s Dext : 387.0

38600 mm2 thk : 12.5 362343.0 22 17,839 Pa

SWIRL AIR ### m/s 311.6 47.1% Err:511 m/s Err:511 Nm3/h7000 mm2 Dext : 298.5

265 23.3 thk : 7.1 284.3

DETAILS OF THE TIP Swirler Number slots groove width radial gap radiusangle (o) of vanes width(mm) (mm) vanes(mm) raccord.

Swirl 35 16 33.0 27.0 0.5 1Axial (if vanes) -

Axial (if holes) Number of holes : 24 Diameter : 22.00Pitch cirle (mm): 497 Spacing (mm): 65.06

GENERAL DATAKiln TYPE : NP Production (t kk/d) : 3660

NP : no preca, AT : air through, AS : air seperat. Specific heat consumpt.kcal/kg CK : 840

FUEL ANALYSIS, AS FIRED (DRY BASIS) Swirl Air: F=Fan; B=Blower F

% C 85.14 % O 2.70 Percent of heat at back-end : 8.50% S 3.26 NCA SR (%) : 8.50% H 3.70 Nm3/kg fuel 8.58

Total combust. air (Nm3/hr) : 140,804SPECIFIC HEAT CONSUMPTION Throughput L.H.V. Therm.power Total combust. air (Nm3/kg kk) : 0.923AT THE BLAST PIPE t/h Kcal/kg Gcal/h Shell internal diameter (m) : 5.80Petcoke 14.30 8195 117.21textile 0.00 3600 0.00PVC 0.00 6000 0.00wood 0.00 4000 0.00 Recalculated SHC :

Total (Gcal/h) : 117.21 840 kcal/kg CK

GAS FLOW MEASUREMENTS Axial Swirl TransportStatic pressure in the tip (Pa) 76,694 17,839 1,000Temperature in the pipe (deg C) 103 33 20Theoretical flow rate (Nm3/h) Err:511 Err:511 - Fuel to air ratio:Bias coefficient : 0.77 1.00Accepted flowrate (Nm3/h) Err:511 Err:511 3000 4.44 kg/m3

7 for pumpAxial / Swirl distribution Err:511 Err:511 5 for blower

RESULTSFLOW VELOCITIES Axial Swirl Transport Is SwirlNature of flow Err:511 Err:511 velocity Nh/GcalRelease tip velocity (m/s) Err:511 Err:511 23 Err:511 Err:511

Primary air rate, axial : Err:511 Targets: Fuel-Oil 5.0 0.15swirl : Err:511 Coal 6.3 0.15

transport : 2.13% Coke 7.5 0.15Axial + Transport: Err:511Primary air rate Err:511 THERMAL LOAD (MW/m2) : 5.94

mmH2O =

Page 3: Burner Calculation

document.xls

Lucian Calinoiu Page 3 04/17/2023

SWIRL AND MOMENTUM DETERMINATIONSWIRL AND MOMENTUM DETERMINATIONOriginal: CLV / S.THIERS PLANT : HOGUpdate: CTEC / H. REITERER Date : 28/08/2006

Name : Lucian Calinoiu

DETAILED RESULTS

GEOMETRY Axial Swirl TransportHeight of spacers/blades (mm) 15.2 -Width de fraise d'usinage (mm) 27.0 -Width of blades in front (mm) 34.2 -Surf. masquée par les raccords 7 -Surf. apparente de sortie (mm2) 9123 8546 -Exit effective area (mm2) 8849 6790 38600gyration radius(mm) - 164 -

DETENTE Axial Swirl Transportmassic flowrate(kg/s) Err:511 Err:511 1.078exit volumic flowrate(m3/h) Err:511 Err:511 3220specific gravity in the pipe (kg/m3) Err:511 Err:511 1.205specific gravity at the B-tip(kg/m3) Err:511 Err:511 1.205

Velocity in the burner pipe (m/s) Err:511 Err:511 23Velocity at the nozzle (m/s) Err:511 Err:511 23Expansion velocity (m/s) Err:511 Err:511 23

Axial momentum (N) Err:511 Err:511 25Impulsion normale (N) 0 Err:511 0Rotation Momentum (N.m) 0 Err:511 0

Momentum Equivalent Diameter : Err:511 mm

Axial Swirl Is SwirlFlow-type: subsonique subsonique N.h/GJExpansion velocity (m/s) Err:511 Err:511 Err:511 Err:511

Axial primary air ratio: : Err:511 Targets: Fuel-Oil 5.0 0.15radial: Err:511 Coal 6.3 0.15

transport : 2.13% Coke 7.5 0.15Total : Err:511

MEASUREMENTS-CROSSCHECK BY ENERGY CONSERVATION

Axial Swirl TransportE gases into the nozzle (KJ/kg) Err:511 Err:511 294E gases at the exit (KJ/kg) Err:511 Err:511 295¯E/E (%) Err:511 Err:511 0.1Geometry of the swirl body

Radial gap (mm) : 0.5

Height of blades (mm) : 15.2

Slot width (mm) : 33

312

343

Groove width (mm) : 27

35°

Minimum lenght of swirl body (mm) : 91

Page 4: Burner Calculation

document.xls

Lucian Calinoiu Page 4 04/17/2023

5.11

Page 5: Burner Calculation

document.xls

Lucian Calinoiu Page 5 04/17/2023

Page 6: Burner Calculation

X/TPP/Rt/ALLGBERE/document.xls/burner control 04/17/2023

Algorithm for burner control

Data`s burner KujawyEffectiver exit area Axial (Aa) 8849 mm2 Konstant I = 0.86 N/GJ/h

Effectiver exit area Radial (Ar) 6790 mm2 Konstant Sw = 0.074Effectiver exit area Transport (At) 38600 mm2 KonstantBlade angle 35 ° Konstantgyration radius (Rg) 0 m KonstantTemperature burner inlet Axial (Tax) 20 °C MeasurementTemperature burner inlet Radial (Trot) 35 °C MeasurementAmbient temperatur (Tu) 20 °CTemperature burner inlet Transport (Ttran) 75 °C KonstantAxial pressure after blower (Pax) 487 mbar MeasurementAxial pressure burner Pax1 487 mbar MeasurementRadial pressure after fan (Prot) 128.99 mbar MeasurementRadial pressure burner Prot1 128.99 mbar MeasurementAxial air (Qmeax) 1421 m3/h Measurement or from curvesRadial air (Qmerot) 1094 m3/h Measurement or from curvesTransport air (Qtran0) 3000 Nm3/h KonstantSpec. heat consumption kiln (Qkiln) 840 kJ/kg kk From the ReportingOutput kiln (Pkiln) 3660 t/d From the ReportingPercent of heat at back-end (SF) 8.5 From the Reporting

Thermal power of the burner (Pth) = Pofen * Qofen * (100 - SF) / 24 / 100000 117.2115 GJ/h

Overview air density

Increase of the axila air temperature in the burner pipeTax(e) = Tax + 100 120 °C

Density ambient airROu = 1,293 * 273/(273+Tu) 1.205 kg/m3

Density of the air in the burner pipeROax0 = 1,293 * (101325 + 100*Pax1) / 101325 * 273 / (273 + Tax(e)) 1.330 kg/m3ROrot0 = 1,293 * (101325 + 100*Prot1) / 101325 * 273 / (273 + Trot) 1.292 kg/m3

Density of the air at the burner nozzleROax1 = ROax0 * (101325/(101325+100.Pax1))^0,7143 1.005 kg/m3ROrot1 = ROrot0 * (101325/(101325+100.Prot1))^0,7143 1.186 kg/m3RO tran = 1,293 * 273 / (273+Ttran) 1.014 kg/m3

Overview gas and mass flow

Qnax = Qmeax * (101325 +100* Pax) / 101325 * 273 / (273 + Tax) 1961.0 Nm3/hQnrot = Qmerot * (101325 +100* Prot) / 101325 * 273 / (273 + Trot) 1093.0 Nm3/hQax = = Qnax * 1,293 / ROax1 2523.5293 m3/hQrot = = Qnrot * 1,293 / ROrot1 1191.6246 m3/hQtran = Qtran0 * (273 + Ttran) / 273 3824 m3/h

Qmax = Qax * ROax1 / 3600 0.704 kg/sQmrot = Qrot * ROrot1 / 3600 0.393 kg/sQmtran = Qtran * ROtran / 3600 1.078 kg/s

Expansion velocity of the air

Vsax = Qmax / ROax1 / Aa * 1000000 79 m/sVsrot = Qmrot / ROrot1 / Ar * 1000000 49 m/svstran = Qmtran / ROtran / At * 1000000 28 m/s

Impuls

Gax = Qmax * Vsax 56 NGrot = Qmrot * Vsrot * cos 35 16 NGtran =Qmtran * Vstran 29.7 NGaxial =Gax + Grot + Gtran 101.1 NGradial =Qmrot * Vsrot * sin 35 11 N

MED =2 * Wurzel ((Qmax + Qmrot + Qmtran) * (Qax + Qrot + Qtran) / 3600 / Pi / Gaxial) 0.239 m

Operation figures burner

Is = (Gax + Grot + Gtran) / Pth 0.86 N/GJ/h

Sw = (Gradial x Rg) / (Gaxial x MED) 0.074

Remark: Sometimes the PDL system is not able to calculate y = x^0,7In this case we will make a mathematical transformationY = EXP( 0,7 * LN( X))

Page 7: Burner Calculation

X/TPP/Rt/ALLGEBERE/document.xls/Sketch 04/17/2023

ReportingFuel consumption (Qofen)

Radial air

Radial air flow (Qmerot)Radial pressure (Prot)

MeasurementAxial air flow (Qmeax)Axial pressure (Pax)

Axial air

Constant valuesEffectiver exit area Axial (Aa)Effectiver exit area Radial (Ar)Effectiver exit area Transport (At)Blade anglegyration radius (Rg)Transport air (Qtran0) CalculationPercent of heat at back-end (SF)

Temperature burner inlet Axial (Tax) Is SwTemperature burner inlet Radial (Trot)Temperature burner inlet Transport (Ttran)

Page 8: Burner Calculation

X/TPP/Rt/ALLGEBERE/document.xls/Sketch 04/17/2023

Data logging systemKiln feed{kiln output (Pofen)}

Page 9: Burner Calculation

Fuel Charac

Page 9

Fuel characteristics (dry basis)

Coal coke Blend

% 0% 100% 100%

% volatiles 26.06 4.73 4.73

% C 64 91.3 91.30% S 0.71 1.88 1.88% H 3.05 3.69 3.69% O 6.9 1.64 1.64

LHV (BTU/lb) 11763 14617 14617LHV(Kcal/kg) 6535 8121 8121LHV(kJ/kg) 27361 34000 34000LHV(kcalkg) 6,546 8,134 8,134