business engineering healthstudies security sport grasp

18
Business Engineering Health Studies Security Sport GRASP- Overview

Upload: others

Post on 15-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Business  Engineering   Health Studies  Security   Sport

GRASP- Overview

Business  Engineering   Health Studies  Security   Sport

GRASP constitutes the first European wide, comprehensive effort to investigate Green Propellants

GRASP is funded by the EC in the FP7 program

GRASP incorporates 12 entities from 7 European countries

GRASP consortium consists of industry, SME, universities, and research institutes

GRASP beneficiaries come from Austria, France, Germany, Italy, Sweden, Poland, United Kingdom

GRASP will run from the 01.12.2008 to 01.12.2011

GRASP shall provide context and reference of past and present research of green propellants and provide the basis for a road map for future efforts

GRASP – Green Advanced Space PropulsionFacts and numbers

GRASP at a glance

Business  Engineering   Health Studies  Security   Sport

GRASP at a glance

Business  Engineering   Health Studies  Security   Sport

GRASP Motivation

Currently used propellants for space application are highly toxic and carcinogenic

• Propellant related costs (procurement, handling etc.) during development and qualification can top 1/3 of the total cost (f(thrust))High (re-)concurrent cost and low potential for cost

reductionReduced level of innovation (keep the status quo)

• Increasing awareness of risk potential with regard to the human operators and environment led to more and more restrictive use further increase in cost expected difficult market environment (REACH/ECHA)

results in significantly reduced planning reliability for industry

Business  Engineering   Health Studies  Security   Sport

GRASP Goals

Creation of knowledge to promote/enable further investigation by the research community enable industry to make informed decision

• Safer working environment• Lower environmental impact• Reduction of costs • Strengthening European competitiveness • Creation of new high level working jobs • Improved propulsion performance

GRASP goals• Establishment of a status-quo of green propellants• Theoretical investigation of green propellants• Experimental investigation of green propellants on component as well as on system level

• Increased mission applicability• Promoting and supporting new space mission • Education of students and young professionals• Increasing level of innovation• Increased human presence in space • etc.

Business  Engineering   Health Studies  Security   Sport

GRASP Vision

Today Tomorrow

Video was kindly provided by the Swedish DefenseResearch Agency FOI

Business  Engineering   Health Studies  Security   Sport

GRASP methodology                   

Starting from an additional number of 92 (plus derivatives) green propellant candidates, theGRASP project has four built‐in assessments. Each assessment investigates different properties in order to filter out those propellantswhich are considered not to be promising candidates:

Business  Engineering   Health Studies  Security   Sport

Initial propellant candidates (partial)

Aniline3‐3'‐diaminopropylamineethylammonium nitrateethylenoxideethyl nitratefurfuryl alcoholmonomethylamineTetranitromethaneTrimethylaluminium2,4‐xylidinepolynitrogens (eg N3)  2,5‐dimethyltetrazole  allyl‐dipropenylamine JP‐1 JP‐3  RJ‐5  AFRL4 Tri‐prop‐2‐ynyl‐amine Bicyclopropylidene 3‐prop‐2‐ynyloxy‐propyne tris(azidomethyl)amine C‐stoff mixed oxides of nitrogennitromethanenitroglycerinepropaneJP‐10

heptanepropynetriethylaminediethylenetriamine1,3‐diaminopropane1,2‐diaminocyclohexaneethanecyclopropaneethyl methyl etherdibutyl etherpropadieneethanolamineacetaldehydeammoniaammonium nitratebutanediethylene glycol dimethyl etherdimethyletherd‐LimoneneDMAZ (and CINCH)dimethylamine ethanolethyleneethylenediamineHTPB

hydrogen peroxide1,5‐hexadiyneionic liquids (ADN, HAN, HNF)iso‐octaneisopropyl alcoholkerosene (Jet A‐1, JP‐4, JP‐5, RP‐1)methanemethanolmethylammonium nitratenitrous oxideN‐propyl nitrateoctaneoxygen (LOX)pentanePMMApolyethylenepropanepropyl aminepropyl etherpropylenesilanestetrahydrofurantetramethylethylenediaminetoluenetriethylaluminiumturpentine

Business  Engineering   Health Studies  Security   Sport

Data collection (based on ~250 literature sources)

Initial propellant candidates (partial)

Business  Engineering   Health Studies  Security   Sport

1st Assessment output                   

• A large number of the propellant candidates have significant lower toxicity level thanthe presently utilized propellants and can be handled with minimal personnel protection

Oral [LD50] [mg/kg]Inhalation [LC50]

[ppm/4h] Dermal [LD50] [mg/kg]

Hydrazine 60 330 91

MMH 32 34 95

UDMH 132 252 1060

Ethanol 7060 46500 20000

• Green Monopropellants show in many cases (e.g. ionic liquids) significant higher specific impulse and inpulse density than comparable toxic propellants

• Green bipropellants have a specific impulse roughly 2‐6% less than comparabletoxic propellant (combinations) but up to 10% higher impulse densityNOTE: the above statements are based on identical operational conditions (pc, ε)

• A large number of green propellant candidates have procurement costs a magnitudelower than the toxic propellants

• In many cases, the knowledge background and TRL is low. Some of the green propellantcandidates however have already a strong background and are even flight proven (e.g. H2O2)

Business  Engineering   Health Studies  Security   Sport

27 most promising green propellant candidates were flagged for further investigation. All of them show a significant reduction in toxicity, good performance potential, strong background in storage and handling, and in some cases a large reduction in procurement cost.

11 of those 27 candidates are scheduled to be experimentally investigated (bold letters)

ADN based Dibutyl ether HNF based 30-50% w/wo fuel Diethylenetriamine HAN 80-90% w/wo fuel Heptane HAN-ADN-HNF-AN aqueous mixture Triethylamine Ammonium nitrate based Butane Hydrogen peroxide Dimethylether Nitrous oxide d-Limonene Ethanol • Dipentene Isopropyl alcohol Octane Kerosene (Jet-A1) Propyl ether Turpentine Tetramethylethylenediamine Propyl amine HDPE

Methane HTPB

(Penta-) silanes PMMA

1st Assessment output                   

Business  Engineering   Health Studies  Security   Sport

Experimental assessment : Propellants                  

Those propellants which have been identified as promising are experimentally investigated.

The  activities focus on the fundamental investigation of properties of propellants andcatalysts for example by:

• thermodynamic characterization

• material compatibility testing

• COTS investigation

• shock sensitivity

• batch/dynamic reactors

The GRASP consortium has a multitude of facilities and measurement techniques on hand and is using them to their full extent

Business  Engineering   Health Studies  Security   Sport

In the 2 ½ years GRASP has been running the following major achievements have beenaccomplished:

‐Establishment of a data base of more than 100 potential propellants with significantlyreduced toxicity. This data base will be made available to the community‐Theoretical assessment of all the green propellant candidates‐ Experimental assessment of a selection of propellant candidates (~30)

Review of GRASP efforts and achievements

Business  Engineering   Health Studies  Security   Sport

Review of GRASP efforts and achievements

In the 2 ½ years GRASP has been running the following major achievements have beenaccomplished:

‐Presently 6 propellants are integrated in 8 different propulsion systemand their performance is being experimentally evaluated.‐Investigated propellants are hydrogen peroxide, ethanol, kerosene, ADN, turpentine, dipentene, HDPE‐The investigated system include monopropellant, bipropellant and hybrid thruster conceptsin a thrust range from 1 to 500 N

Injector plate(inlay)

Gas cooling

Outer jacket

Combustion chamber

N2 Supply

Catalyst chamber

Fuel Supply

H2O2 Supply

Business  Engineering   Health Studies  Security   Sport

Catalyst development:

Intensive R&D has led over the past years to very high performance Catalysts. Some examples of those results are:

• Performance:   T‐Transition times:       <1 sThrust response times: 0.3‐0.5 sEfficiencies:                  >95%Pressure drop:               ~100 mbar

• Lifetime:    ‐ in excess of 140 thermal cycles (always cold start)‐ total load equivalent to ones from existing systems

• Catalyst storage at air for 2 years without detrimental impact was shown

• Effect of alternative HTP stabilizers on catalyst performance was assessed

• Study of long term storage was prepared

Review of GRASP efforts and achievements

Business  Engineering   Health Studies  Security   Sport

Propulsion system development:

• Thruster hardware (plus subcomponents) was developed for some of the most promising green propellant candidates including:

•1 N      Bipropellant:       HTP/Kerosene•20 N    Monopropellant: HTP•20 N    Monopropellant: ADN (FLP‐106)•200 N  Bipropellant:       HTP/Kerosene/Turpentine/Dipentene•200 N  Hybrid:                HTP/HDPE 

Those battleship propulsion systems shall provide information with regard to

o Thrust range verificationo Performance (specific impulse)o Throttling capabilitieso MIB capabilityo Preliminary lifetime assessment

Review of GRASP efforts and achievements

Business  Engineering   Health Studies  Security   Sport

Propulsion testing

University of Naples, ItalyHybrid, 200 N, H2O2/HDPE

Fotec, AustriaBipropellant, 1 N, H2O2/Kerosene

Univ. of Southampton, UKMonopropellant, 20N, H2O2

DELTACAT Ltd. and Univ. of Southampton, UKBipropellant, 300N, H2O2/Turpentine

Business  Engineering   Health Studies  Security   Sport

Summary                

• GRASP has established a large data base with regard to green propellants includingmaterial properties, toxicity assessment, and potential applications (market analysis). Thisdata base will be available to the public.

• Significant progress in many areas such as simulations ,catalyst development, propulsionsystem developments etc. have been achieved.

• Non toxic monopropellants have been identified which provide significant increase in thruster performance.

• Very promising non toxic bipropellants have been identified. 

• GRASP has build up a knowledge base with which industry can make informed decisicionshow to embarge on a transition towards non‐toxic propellants.