by: gabby jones, bridget crawford, and emily baker

12
BY: Gabby Jones, Bridget Crawford, and Emily Baker

Upload: claud-jennings

Post on 28-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BY: Gabby Jones, Bridget Crawford, and Emily Baker

BY: Gabby Jones, Bridget Crawford, and Emily Baker

Page 2: BY: Gabby Jones, Bridget Crawford, and Emily Baker

• History • Use• Light Microscope• Compound

Microscope• Scanning Tunneling

Microscope• X-Ray Microscope• Binocular

Microscope

• History • Use• Light Microscope• Compound

Microscope• Scanning Tunneling

Microscope• X-Ray Microscope• Binocular

Microscope

• Scanning Electron Microscope

• Atomic Force Microscope

• Electron Microscope

Page 3: BY: Gabby Jones, Bridget Crawford, and Emily Baker

The first record of the use of lenses to manipulate images was in Greek and Roman writings of around 1000 A.D. As for the origins of someone using lenses to magnify a minute object, it is unclear. Most scientific instruments have a clear place in the historical records when they were formed and who created them, not the microscope though. The definition of the microscope makes it difficult to determine when it was first created. Since there were lenses dating back to ancient societies, how do we say when those lenses were used to look at minute objects? It is practically impossible to say when a single lens was used in that fashion. Credit for the first compound microscope (multiple lenses) is generally given to Zacharias Jansen and John Lipperhey of the Netherlands, in 1590.

The first record of the use of lenses to manipulate images was in Greek and Roman writings of around 1000 A.D. As for the origins of someone using lenses to magnify a minute object, it is unclear. Most scientific instruments have a clear place in the historical records when they were formed and who created them, not the microscope though. The definition of the microscope makes it difficult to determine when it was first created. Since there were lenses dating back to ancient societies, how do we say when those lenses were used to look at minute objects? It is practically impossible to say when a single lens was used in that fashion. Credit for the first compound microscope (multiple lenses) is generally given to Zacharias Jansen and John Lipperhey of the Netherlands, in 1590.

Page 4: BY: Gabby Jones, Bridget Crawford, and Emily Baker

• A microscope is an instrument that produces an enlarged image of an object.

• A microscope is an instrument that produces an enlarged image of an object.

Page 5: BY: Gabby Jones, Bridget Crawford, and Emily Baker

• A microscope ( Greek: Micran= small and scopos = aim) is an instrument for veiwing objects that are to small to be seen by the naked or unaided eye. The science of investing small objects using such an instrument is callled microscopy, and the term microscopic means minute or very small, not easily visible with the unaided eye. In other words, requiring a microscope to examine.

• A microscope ( Greek: Micran= small and scopos = aim) is an instrument for veiwing objects that are to small to be seen by the naked or unaided eye. The science of investing small objects using such an instrument is callled microscopy, and the term microscopic means minute or very small, not easily visible with the unaided eye. In other words, requiring a microscope to examine.

Page 6: BY: Gabby Jones, Bridget Crawford, and Emily Baker

A microscope which consists of two microscopes in series, the first serving as the ocular lens (close to the eye) and the second serving as the objective lens (close to the object to be viewed). Credit for creating the compound microscope goes usually to the Dutch spectacle makers Hans and Zacharias Janssen who in 1590 invented an instrument that could be used as either a microscope or telescope. The compound microscope has evolved into the dominant type of optical microscope today.

A microscope which consists of two microscopes in series, the first serving as the ocular lens (close to the eye) and the second serving as the objective lens (close to the object to be viewed). Credit for creating the compound microscope goes usually to the Dutch spectacle makers Hans and Zacharias Janssen who in 1590 invented an instrument that could be used as either a microscope or telescope. The compound microscope has evolved into the dominant type of optical microscope today.

Page 7: BY: Gabby Jones, Bridget Crawford, and Emily Baker

• The scanning tunneling microscope (not to be confused with scanning electron microscopes electron microscopes), or STM, was invented in 1981 by Gerd Binning and Heinrich Rohrer of IBM's Zurich Lab in Zurich, Switzerland. Although initially greeted with considerable scepticism by materials scientists in the early 1980s, the invention garnered the two a Nobel Prize in Physics in 1986. The STM allows scientists to visualize regions of high electron density and hence infer the position of individual atoms, where previously arduous study of diffraction patterns from prior methods lead to much debate as to the real, spatial lattice structure of the item in question. The STM has higher resolution than its slightly later invented but nevertheless related cousin, the atomic force microscope (AFM). Both the STM and the AFM fall under the class of scanning probe microscopy instruments.

• It is used to obtain images of conductive surfaces at an atomic scale 2 × 10−10 m or 0.2 nanometre. It can also be used to alter the observed material by manipulating individual atoms, triggering chemical reactions, and creating ions by removing individual electrons from atoms and then reverting them to atoms by replacing the electrons.

• The scanning tunneling microscope (not to be confused with scanning electron microscopes electron microscopes), or STM, was invented in 1981 by Gerd Binning and Heinrich Rohrer of IBM's Zurich Lab in Zurich, Switzerland. Although initially greeted with considerable scepticism by materials scientists in the early 1980s, the invention garnered the two a Nobel Prize in Physics in 1986. The STM allows scientists to visualize regions of high electron density and hence infer the position of individual atoms, where previously arduous study of diffraction patterns from prior methods lead to much debate as to the real, spatial lattice structure of the item in question. The STM has higher resolution than its slightly later invented but nevertheless related cousin, the atomic force microscope (AFM). Both the STM and the AFM fall under the class of scanning probe microscopy instruments.

• It is used to obtain images of conductive surfaces at an atomic scale 2 × 10−10 m or 0.2 nanometre. It can also be used to alter the observed material by manipulating individual atoms, triggering chemical reactions, and creating ions by removing individual electrons from atoms and then reverting them to atoms by replacing the electrons.

Page 8: BY: Gabby Jones, Bridget Crawford, and Emily Baker

An X-ray microscope uses electromagnetic radiation in the soft X-ray band to produce images of very small objects. Unlike visible light microscopes, X-rays do not reflect or refract easily, and they are invisible to the human eye. Therefore the basic process of an X-ray microscope is to expose film or use a charge-coupled device (CCD) detector to detect X-rays that pass through the specimen, rather than light which bounces off the specimen.

Early X-ray microscopes by Kirkpatrick and Baez used grazing-incidence reflective optics to focus the X-rays, which grazed X-rays off parabolic curved mirrors at a very high angle of incidence. An alternative method of focusing X-rays is to use a tiny fresnel zone plate of concentric gold or nickel rings on a silicon dioxide substrate. Sir Lawrence Bragg produced some of the first usable X-ray images with his apparatus in the late 1940's.

In the 1950's Newberry produced a shadow X-ray microscope which placed the specimen between the source and a target plate, this became the basis for the first commercial X-ray microscopes from the General Electric Company.

An X-ray microscope uses electromagnetic radiation in the soft X-ray band to produce images of very small objects. Unlike visible light microscopes, X-rays do not reflect or refract easily, and they are invisible to the human eye. Therefore the basic process of an X-ray microscope is to expose film or use a charge-coupled device (CCD) detector to detect X-rays that pass through the specimen, rather than light which bounces off the specimen.

Early X-ray microscopes by Kirkpatrick and Baez used grazing-incidence reflective optics to focus the X-rays, which grazed X-rays off parabolic curved mirrors at a very high angle of incidence. An alternative method of focusing X-rays is to use a tiny fresnel zone plate of concentric gold or nickel rings on a silicon dioxide substrate. Sir Lawrence Bragg produced some of the first usable X-ray images with his apparatus in the late 1940's.

In the 1950's Newberry produced a shadow X-ray microscope which placed the specimen between the source and a target plate, this became the basis for the first commercial X-ray microscopes from the General Electric Company.

Page 9: BY: Gabby Jones, Bridget Crawford, and Emily Baker

• A compound microscope with two eyepieces viewing down a single optical channel and objective lens. This is different than a stereo microscope, which has a separate optical channel for each eye.

• A compound microscope with two eyepieces viewing down a single optical channel and objective lens. This is different than a stereo microscope, which has a separate optical channel for each eye.

Page 10: BY: Gabby Jones, Bridget Crawford, and Emily Baker

The scanning electron microscope (SEM) is a type of electron microscope capable

of producing high resolution images of a sample surface. Due to the manner in

which the image is created, SEM images have a characteristic three-dimensional

appearance and are useful for judging the surface structure of the sample.

Page 11: BY: Gabby Jones, Bridget Crawford, and Emily Baker

• The Atomic Force Microscope (AFM) is a very powerful microscope invented by Binnig, Quate, and Gerber in 1986. Besides imaging it is also one of the foremost tools for the manipulation of matter at the nanoscale.

• The Atomic Force Microscope (AFM) is a very powerful microscope invented by Binnig, Quate, and Gerber in 1986. Besides imaging it is also one of the foremost tools for the manipulation of matter at the nanoscale.

Page 12: BY: Gabby Jones, Bridget Crawford, and Emily Baker

• The electron microscope is a microscope that can magnify very small details with high resolving power due to the use of electrons rather than light to scatter off material, magnifying at levels up to 500,000 times

• The electron microscope is a microscope that can magnify very small details with high resolving power due to the use of electrons rather than light to scatter off material, magnifying at levels up to 500,000 times