c 4 z - nasa€¦ · to be concentrated as desired, and is applicable to all multi-connected...

260
NASA CONTRACTOR REPORT C_4 ! Qg _J Z BOUNDARY-FITTED CURVILINEAR COORDINATE SYSTEMS FOR SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON FIELDS CONTAINING ANY NUMBER OF ARBITRARY TWO-DIMENSIONAL BODIES Joe F. Thompson, Frank C. Thames, and C. Wayne Mastin Prepared by MISSISSIPPI STATE UNIVERSITY Mississippi State, Miss. 39762 ]or Langley Research Center NASA CR-2 7 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. JULY https://ntrs.nasa.gov/search.jsp?R=19770021145 2020-04-19T17:31:58+00:00Z

Upload: others

Post on 17-Apr-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

NASA CONTRACTOR

REPORT

C_4!

Qg_J

Z

BOUNDARY-FITTED CURVILINEAR

COORDINATE SYSTEMS FOR SOLUTION

OF PARTIAL DIFFERENTIAL EQUATIONS

ON FIELDS CONTAINING ANY NUMBER

OF ARBITRARY TWO-DIMENSIONAL BODIES

Joe F. Thompson, Frank C. Thames,

and C. Wayne Mastin

Prepared by

MISSISSIPPI STATE UNIVERSITY

Mississippi State, Miss. 39762

]or Langley Research Center

NASA CR-2 7

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JULY

https://ntrs.nasa.gov/search.jsp?R=19770021145 2020-04-19T17:31:58+00:00Z

Page 2: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

_Z- __ _ _.: -

• ZZ m- _--_Z "

_---- u_-Z-- _-

..... _H

---Z_ ._-Z

z

. 1.

Z

r

_1

1

:j

Page 3: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

1. Report No. 2. Government Acc_sion No. 3. R_ipient's Catal_ No.

NASA CR-2729

5, Repo_ Date

July 1977

• 4. Title and Subtitle

Boundary-Fitted Curvilinear Coordinate Systems For Solution ofPartial Differential Equations on Fields Containing Any Number ofArbitrary Two-Dimensional Bodies

7. Author(s)

Joe F. Thompson, Frank C. Thames, and C. Wayne Mastin

9. Performing Organization Name and Addre_

Mississippi State UniversityMississippi State, Mississippi 39762

12. Sponsoring Agency Name and Address

National Aeronautics & Space Administration

Washington, DC 2n546

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

Grant NGR 25-001-055

13, Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

3860

15, _pplementary Notes

Ruby Davis of the Theoretical Aerodynamics Branch of Langley Research Center converted the

UNIVAC 1106 code generated at Mississippi State University to the CDC 6000 Series code atLangley Research Center. Percy J. Bobbitt was the Langley Teclmical Monitor. Final report.

16. Abstract

A method for automatic numerical generation of a general curvilinear coordinate system withcoordinate lines coincident with all boundaries of a general multi-connected two-dimensional regioncontaining any number of arbitrarily shaped bodies is presented. No restrictions are placed onthe shape of the boundaries, which may even be time-dependent, and the approach is not restrictedin principle to two dimensions. With this procedure the numerical solution of a partialdifferential system may be done on a fixed rectangular field with a square mesh with no interpolationrequired regardless of the shape of the physical boundaries, regardless of the spacing of thecurvilinear coordinate lines in the physical field, and regardless of the movement of the coordinatesystem in the physical plane. A number of examples of coordinate systems and application thereofto the solution of partial differential equations are given. The FORTRAN computer program andinstructions for use are included.

17. Key Words (Sugg_ted by Authoris))

Coordinate transformationMultielement airfoilsNavier-Stokes

18. Distribution Statement

Unclassified - Unlimited

_.- Subject Category 02

19. S_urity Clauif. (of this report} 20. Security Classif, (of this _)

Unclassified Unclassified

21. No. of Pages 22. Price"

253 $9.00

Q

For saleby the National Technical Information Service, Springfield, Virginia 22161

Page 4: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate
Page 5: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

TABLE OF CONTENTS

Ie

II.

III.

Introduction ...........................

Mathematical Development .....................

Preliminaries ..........................

Doubly-Connected Region ......................

Multiply-Connected Region .....................

Simply-Connected Region ......................

Coordinate System Control .....................

Time-Dependent Coordinate Systems ........ .........

Numerical Solution ........................

Difference Equations .......................

Multiple-Body Fields .......................

Multiple-Body Segment Arrangements ................

Initial Guess ..........................

Convergence Acceleration .....................

Optimum Acceleration Parameters ..................

IV. Examples of Coordinate Systems ..................

Coordinate System Control .....................

Various Body Shapes ........................

V. Examples of Application to Partial Differential Equations .....

Potential Flow ..........................

Viscous Flow ...........................

Velocity-Pressure Formulation ................

Pressure Distribution and Force Coefficients .........

Loaded Plate ...........................

_I. Instructions for Use - Coordinate Program ............

Coordinate System .........................

Dimensions ........................

Input Parameters .......................

Field Size ....................

Plotting ...........................

Initial Guess ........................

Body Contours ............ ............

Re-entrant Boundaries ....................

Acceleration Parameters ...................

Coordinate System Control ..................

Convergence of Very Large Fields ...............

Listing of Program TOMCAT .....................

Page

1

7

i0

13

15

15

19

21

21

23

24

26

30

33

36

36

37

38

38

42

44

45

46

47

47

48

48

48

48

49

49

50

51

51

54

56

iii

Page 6: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

VII.

Vlll.

IX.

X.

XI.

TABLE OF CONTENTS, CONTINUED

Page

Sample Cases ............. •............. 93

i. Simply-Connected Region ................ 94

Input ....................... 94

Output ...................... 96

Plot ....................... i01

2. Single-Body Field ................... 102

Input ....................... 102

Output ...................... 103

Plot ....................... 109

3. Double-Body Field ................... ii0

Input ....................... ii0

Output ...................... 112

Plot ....................... 122

Instructions for Use - Factors Program ............. 123

Scale Factors .......................... 123

Listing of Program FATCAT .................... 124

Sample Case: Single-Body Field ................. 140

Input ........................... 140

Output ........................... 141

References ........................... 147

Tables ............................. 150

Figures ............................. 170

Appendices ........................... A-I

iv

Page 7: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

BOUNDARY-FITTED CURVILINEAR COORDINATE SYSTEMS

FOR SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONSON FIELDS CONTAINING ANY NUMBER OF ARBITRARY TWO-DIMENSIONAL BODIES

By Joe F. Thompson,t Frank C. Thames,* and C. Wayne Mastin §

Mississippi State University

Mississippi State, Mississippi 39762

Research Sponsored by NASA Langley Research Center, Grant NGR 25-001-055

SUMMARY

A method for automatic numerical generation of a general curvilinear

coordinate system with coordinate lines coincident with all boundaries of

a general multi-connected, two-dimensional region containing any number of

arbitrarily shaped bodies is presented. No restrictions are placed on the

shape of the boundaries, which may even be time-dependent, and the approach

is not restricted in principle to two dimensions. With this procedure the

numerical solution of a partial differential system may be done on a fixed

rectangular field with a square mesh with no interpolation required regard-

less of the shape of the physical boundaries, regardless of the spacing of

the curvilinear coordinate lines in the physical field, and regardless of

the movement of the coordinate system in the physical plane. A number of

examples of coordinate systems and application thereof to the solution of

partial differential equations are given. The FORTRAN computer program and

instructions for use are included.

I. INTRODUCTION

There arises in all fields concerned with the numerical solution of

partial differential equations the need for accurate numerical representa-

tion of boundary conditions. Such representation is best accomplished when

the boundary is such that it is coincident with some coordinate line, for

then the boundary can be made to pass through the points of a finite dif-

ference grid constructed on the coordinate lines; hence the choice of

cylindrical coordinates for circular boundaries, elliptic coordinates for

tprofessor of Aerophysics and Aerospace Engineering, Ph.D.

*Engineering Specialist, Ph.D., Present Affiliation:

Corporation, Dallas, Texas.

§Associate Professor of Mathematics, Ph.D.

LTV Aerospace

Page 8: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

elliptical boundaries, etc. Finite difference expressions at, and adjacent

to, the boundary may then be applied using only grid points on the inter-

sections of coordinate lines, without the need for any interpolation between

points of the grid.

The avoidance of interpolation is particularly important for boundaries

with strong curvature or slope discontinuities, both of which are common in

physical applications. Likewise, interpolation between grid points not

coincident with _he boundaries is particularly inaccurate with differential

systems that produce large gradients in the vicinity of the boundaries, and

the character of the solution may be significantly altered in such cases.

In most partial differential systems the boundary conditions are the dominant

influence on the character of the solution, and the use of grid points not

coincident with the boundaries thus places the most inaccurate difference

representation in precisely the region of greatest sensitivity. The genera-

tion of a curvilinear coordinate system with coordinate lines coincident with

all boundaries (herein called a "boundary-fitted coordinate system" for pur-

poses of identification) is thus an essential part of a general numerical solu-

tion of a partial differential system.

A general method of generating boundary-fitted coordinate systems is to

let the curvilinear coordinates be solutions of an elliptic partial differen-

tial system in the physical plane, with Dirichlet boundary conditions on all

boundaries. One coordinate is specified to be constant on each of the bound-

aries, and a monotonic variation of the other coordinate around each boundary

is specified. Thus, there is a coordinate line coincident with each boundary.

The procedure is not restricted to two dimensions, allows the coordinate lines

Page 9: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

to be concentrated as desired, and is applicable to all multi-connected regions

(and thus to fields containing any number of arbitrarily shaped bodies).

The coordinate system so generated is not necessarily orthogonal, but

orthogonality is not required, and its lack only requires that the partial

differential system to be solved on the coordinate system when generated

must be transformed directly through implicit partial differentiation rather

than by use of the scale factors and differential operators developed for

orthogonal curvilinear systems. An orthogonal system cannot be achieved

with aribtrary spacing of the coordinate lines, and the capability for such

concentration of coordinate lines is of more importance than orthogonality.

This general idea has been applied previously to two-dimensional regions

interior to a closed boundary (simply-connected regions) by Winslow [i],

Barfield [2], Chu [3], Amsden and Hirt [4], and Godunov and Prokopov [5].

Winslow [i] and Chu [3] took the transformed coordinates to be solutions of

Laplace's equation in the physical plane which, as is shown in the next sec-

tion, makes the physical cartesian coordinates solutions of a quasi-linear

elliptic system in the transformed plane. Barfield [2] and Amsden and Hirt

[4] reversed the procedure, taking the physical coordinates to be solutions in

the transformed plane of a linear elliptic system which consists of Laplace's

equation modified by a multiplicative constant on one term. This makes the

transformed coordinates solutions of a quasi-linear elliptic system in the

physical plane. Barfield also considered a hyperbolic system, but such a

system cannot be used to treat general closed boundaries, since only elliptic

systems allow specification of boundary conditions on the entirety of closed

boundaries. Stadius [6] also used a hyperbolic system to generate a coordinate

system for a doubly-connected region having parallel inner and outer boundaries.

Page 10: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

With parallel boundaries it is only necessary to specify conditions on one of

the boundaries, the location of the other boundary being free. The elliptic

system, however, allows all boundaries to be specified as desired and thus has

much greater flexibility.

Amsden and Hirt [4] constructed the coordinate generation method by

iterative weighted averaging of the values of the physical coordinates at

fixed points in the transformed plane in terms of values at neighboring

points. Although not stated as such, this procedure is precisely equivalent

to solving Laplace's equation, or modification thereof of the form noted above

in Barfield [2], for the physical coordinates in the transformed plane by

Gauss-Seidel iteration. Amsden and Hirt also allowed the boundary to move at

each iteration, but this is simply equivalent to approaching the solution of

the boundary-value problem through a succession of boundary-value problems

converging to the problem of interest. In the approach of Godunov and Proko-

pov [5] the elliptic system is quasi-linear in both the physical and transformed

planes. These authors applied a second transformation to that used by Chu [3],

the transformation functions of this latter transformation being chosen a

priori to control the coordinate spacing. Though not stated as such, the over-

all transformation may be shown to be generated by taking the transformed coor-

dinates to be solutions in the physical plane of Laplace's equation modified

by the addition of a multiple of the square of the Jacobian, the multiplicative

factors being a priori chosen functions of the physical coordinates.

Meyder [7] generated an orthogonal curvilinear system by solving for the

potential and "force" lines in a simply-connected region and taking these as

the coordinate lines. This amounts to makin_ the curvilinear coordinates

Page 11: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

5

solutions of Laplace equations in the physical plane with Dirichlet boundary

conditions (constant) on part of the boundary and Neumann boundary conditions

(vanishing normal derivative) on the remainder. The solution for the coordinates

was done, however, in the physical plane on a rectangular grid using interpola-

tion at the curved boundaries, rather than in the transformed plane.

Orthogonal curvilinear coordinates for multi-connected regions, including

regions with two bodies, have been generated by Ives [8] using conformal mapping.

Conformal mapping is a special case of the generation of coordinate systems

by solving an elliptic boundary value problem, but is not extendable to

three dimensions and is less flexible in the spacing of the coordinate lines.

There have also been a number of transformations developed directly for

special purposes without solving a partial differential system. One such

approach is that of Gal-Chen and Somerville [9] for the treatment of an

irregular boundary, such as mountaneous terrain, in a simply-connected region.

In the present research, the technique of generating the transformed coor-

dinates as solutions of an elliptic differential system in the physical plane

has been applied to multi-connected regions with any number of arbitrarily

shaped bodies (or holes). The elliptic equations for tile coordinates are

solved in finite difference approximation by SOR iteration. Procedures for

controlling the coordinate system so that coordinate lines can be concentrated

as desired have been developed. Present effort is confined to two dimensions

in the interest of computer economy, but the technique is extendable in

principle to three dimensions. The procedure is also applicable

Page 12: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

6

to fields with time-dependent boundaries, one coordinate line remaining

fixed to the moving boundary. Here the equations for the coordinates must be

re-solved at each time step. The computational grid remains fixed in spite

of the movementof the physical grid.

Any partial differential system can be solved on the boundary-fitted

coordinate system by transforming the set of partial differential equations

of interest, and associated boundary conditions, to the curvilinear system.

(It is shownin Appendix B that the equations do not change type, i.e.,

elliptic, parabolic, hyperbolic, under the transformation.) Since the bound-

ary-fitted coordinate system has coordinate lines coincident with the surface

contours of all bodies present, all boundary conditions can be expressed at

grid points, and normal derivatives on the bodies can be represented using

only finite differences between grid points on coordinate lines, without

need of any interpolatio_ even though the coordinate system is not orthogo-

nal at the boundary. The transformed equations can then be approximated

using finite difference expressions and solved numerically in the transformed

plane. Thus, regardless of the shape of the physical boundaries, and regard-

less of the spacing of the finite grid in the physical field, all computa-

tions, both to generate the coordinate system an4 subsequently, to solve the

partial differential system of interest can be done on a rectangular field

with a square meshwith no interpolation required on the boundaries. More-

over, the physical boundaries mayeven be time-dependent without affecting

the grid in the transformed region.

The computer software utilized to generate the boundary-fitted coordi-

nate system is independent of the set of partial differential equations to

be solved on this system. For example, numerical solutions for inviscid

Page 13: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

7and viscous fluid flows have been obtained using this system (Ref. 10-14).

The partial differential equations governing these phenomenadiffer drasti-

cally. However, for a given body geometry, the sameboundary-fitted system

generation program was used in both solutions. Another major advantage of

using boundary-fitted coordinates is that the computer software generated to

approximate the solution of a given set of partial differential equations is

completely independent of the physical geometry of the problem. The coordi-

nate systems for the wide variety of bodies included in this report, for

example, were all developed utilizing the samecomputer program. Finally,

it is shown in Appendix C that physical integral conservation relations need

not be lost in the transformed plane.

This report presents a detailed development of the method for generation

of boundary-fitted coordinate systems for general, multi-connected, two-

dimensional regions. The basic doubly-connected region transformation is

discussed in Section II in somedetail. Extensions of the basic transforma-

tion to multi-connected regions, contracted coordinate systems, and time-

dependent systems are also discussed. The numerical techniques used to

implement the method and a numberof specific examples are presented in the

Sections III and IV. Examplesof application to the solution of partial

differential equations are given in Section V. Finally, instructions for

use and a listing of the FORTRANprogram are given in Section VI. Various

derivative relations used in the transformation of partial differential systems

and program parameters used in the examples included are given in Appendix A.

II. MATHEMATICALDEVELOPMENT

Preliminaries

The general transformation from the physical plane [x,y] to the trans-

formed plane [_,n] is given by the vector-valued function

Page 14: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

8

(x,y)J

(1)

The Jacobian matrix for this transformation is

F

J1

-- [_x qy

(2)

where the subscripts denote partial differentiation in the usual mannez.

The inverse function or transformation of (i) is, if it exists,

(3)

The Jacobian matrix of (3) will be denoted by J2 and is given by

(_)

The Jaeobian determinant, or Jacobian as it is normally called, is

then

j = det[J2] = x_y n - xqy$ (5)

The Jacobian matrices, (2) and (4), are related by

J1 = [J2 ]'I (6)

which implies the relations

_x = Yq/J' Ey = -xn/J' qx = -Y_/J' ny = x_/J (7a,b,c,d)

Page 15: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

Partial derivatives are transformed as follows:

9

f = a(f,y) / _ (YT]f_ - Y_fn)x a(_,n) a($,n) = a (8)

f = _ / a(x,y) (-xT]f$ + x_fT])y _ (_,T]) a (_, T]) = J (9)

where f is some sufficiently differentiable function of x and y. Higher

derivatives are obtained by repeated application of (8) and (9). A com-

prehensive set of transformed derivatives, operators, unit vectors, and

other useful relations is given in Appendix A.

Sufficient conditions for the transformation described above to exist

are given by the inverse function theorem (Ref. 15). In particular, if

the component functions of (i) are continuously differentiable at a point,

say (Xo, yo) , and the Jacobian matrix (2) is nonsingular at (Xo, yo) then

there exists a disk N about (x yo ) such that the inverse function (3)o o'

exists and (6) holds for all [x,y] in N . It is readily apparent that theo

theorem guarantees existence only in a local fashion. For this reason com-

ponent functions of (i) which possess even more desirable properties than

those required by the inverse function theorem are sought.

Since the basic idea of the present transformation is to let the com-

ponent functions of (I) be solutions of an elliptic Dirichlet boundary value

problem, an obvious choice is to require that _(x,y) and n(x,y) be either

harmonic, subharmonic, or superharmonic. Harmonic functions have continuous

derivatives of all orders. Moreover, harmonic functions obey a maximum

principle,which states that the maximum and minimum values of the function

must occur on the boundaries of the region D. Thus, since no extrema occur

within D, the first derivatives of the function will not simultaneously

Page 16: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

l0

vanishes in D, and hence the Jacobian J will not be zero due to the presence

of an extremum. (Note that this merely removes one condition which may cause

the Jacobian to vanish.) Further, the maximumprinciple guarantees uniqueness

of the coordinate functions _(x,y) and n(x,y), (Ref. 16), and thus ensures

that no overlapping of the boundaries will occur. Subharmonicand superhar-

monic functions are also continuously differentiable and obey a maximum

principle. (The maximumprinciple is not as strong for these functions as

it is for harmonic functions.) A more general discussion of the mathematical

properties of the transformation is given in [17].

Doubly-Connected Region

Consider the transformation of a two-dimensional, doubly-connected

region D boundedby two simple, closed, arbitrary contours onto a rectangular

region D* as shownin Figure i. (The basic transformation is discussed here

assuming that the body contour and outer boundary are transformed, respec-

tively, to the constant H-lines forming the bottom and top sides of the

transformed region. The more general case of segmentedbody contours trans-

forming to any side of the transformed region follows analogously and is

discussed in later sections. The computer program allows the body contour(s)

and outer boundary to be segmentedand placed around the sides of the trans-

formed plane in any mannerdesired.) Let FI maponto FI*, F2 maponto F2*,

F3 onto F3*, and F4 onto F4*" For identification purposes region D will be

referred to as the physical plane, D* as the transformed plane, and _ as the

body contour. Note that the transformed boundaries (FI* and F2*) are madecon-

stant coordinate lines (_-lines) in the transformed plane. The contours F3

and F4 which connect the contours FI and F2 are coincident in the physical

Page 17: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

ii

plane and thus constitute re-entrant boundaries in the transformed plane.

In view of the closing remarks of the previous sectio_ consider taking

Laplace's equation as the generating elliptic system. That is, let _(x,y)

and n(x,y) be harmonic in D. Then

+ = 0 (10a)Sxx _yy

+ = 0 (10b)qxx qyy

with the Dirichlet boundary conditions

r! B 1[x,y] e rI (10e)

_2(x,Y)

n 2, [x,y] e r 2 (lOd)

where ql and q 2 are different constants (n2 > nl),and _l(x,y) and _2(x,y)

are specified monotonic functions on Pl and P2' respectively, varying over

the same range. The arbitrary curve joining F1 and P2 in the physical

plane, which transforms to the right and left sides of the transformed plane,

specifies a branch cut for the multiple-valued function $(x,y). Thus, the

values of the physical coordinate functions x(_,n) and Y(_,n) are the sale on

F3 as on P4' and these functions and their derivatives are continuous from F3

to F4. Therefore, boundary conditions are neither required nor allowed on

P3 and P4" (A graphic analog to the above ideas can be found in most com-

plex variable texts where Riemann surfaces are discussed. For example, see

Levinson and Redheffer, Ref. 16.).

Page 18: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

12

Since it is desired to perform all numerical computations in the uni-

form rectangular transformed plane, the dependent and independent variables

must be interchanged in (i0). Use of equation:(A.18) of Appendix A yields

the coupled system

(lla)

(llb)

where

a - x 2 + yn2n

B -=xEx n + YEYn

_, - x 2 + y 2

with the transformed boundary conditions

fl(_,_l)

f2(_,n I)

(llc)

(lid)

(lle)

, [_,nl] e FI* (llf)

n2)]= , [_,n2]_

[g2(E,n2)j r2*

(llg)

The functions fl(_,nl), f2(_,nl ), gl(_,n2 ), and g2(_,n2) are specified by

the known shape of the contours F1 and F2 and the specified distribution of

thereon. As noted, boundary data are neither required nor allowed along

the re-entrant boundaries F3* and F4*.

The system given by the equations of (ii) is a quasi-linear elliptic

system for the physical coordinate functions, x(_,n) and _,n), in the

Page 19: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

13

transformed plane. Although this system is considerably more complex than

that given by (i0), the boundary conditions (llf,g) are specified on straight

boundarie_ and the coordinate spaclng in the transformed plane is uniform.

The boundary-fitted coordinate system generated by the solution to (ii) has

a constant H-line coincident with each boundary in the physical plane. The

_=constant lines maybe spaced as desired around the boundaries since the

assignment of the _-values to the Ix,y] boundary points via the functions fl'

f2' gl' and g2 in (llf,g) is arbitrary. (Numerically the discrete boundary

values [xk,Yk] are transformed to equi-spaced discrete _k-points on both

boundaries.) Control of the radial spacing of the q=constant lines and of

the incidence angle of the _=constant lines at the boundaries is accomplished

by varying the generating elliptic system (i.e., the system of which _(x,y)

and q(x,y) are solutions) as will be demonstrated in Section IV. As illus-

trated in Figure i, the left and right boundaries of the transformed plane

are re-entrant boundaries, which implies that both solutions, x(_,q) and

y(_,_), are required to be periodic in the region {[_,n]I - _ < _ < _,

nI _<n _< n2}.

Multiply-Connected Region

The basic ideas and procedures introduced in the preceding section

can be extended to regions containing more than one body--that is, to general

multi-connected or multi-body regions. One transformation for two bodies is

illustrated in Figure 2. The bodies are connected with one arbitrary cut,

with an additional cut joining one of the body contours to the outer boundary.

The physical plane contours F1 - F8 map respectively onto the contours FI* -

FS* in the transformed plane. Note that the body defined by the union of

F7 and r 8 is split into two segments (F7* and F8*) , as is the cut joining

Page 20: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

14

this body and the one defined by contour FI. The n-coordinate is the same

for both of the bodies and cut between them. Conversely, the cut defined by

F3 and F4 in the physical plane is taken as a _=constant line in the trans-

formed plane as before for the single body case. The outer boundary contour

F2 mapsonto the upper boundary in the [_,n] plane, becoming a constant

H-line in the manner of the one-body transformation. In contrast to the one-

body transformatio$ two re-entrant boundaries occur for this two-body trans-

formation. The left and right vertical boundaries (F4*, F3*) appear as

before. In addition a horizontal re-entrant segmentdue to the coincidence

of F5 and F6 in the physical plane arises. The coordinate functions and the

derivatives thereof are thus continuous across these re-entrant boundaries.

The boundary-fitted coordinates for the multi-body transformations are

again determined by the solution of the set of equations (Ii) with the added

boundary conditions

hl(_' I

nI)

h2(_,n I)

[$,_i ] c F7* (llh)

= , [$,nI] c F8*

2(_,Ul)]

(lli)

to define the additional body. Note that boundary conditions cannot be

specified along the re-entrant boundaries defined by F3*, F4* , F5* , and

F6*. As with the basic transformation all numerical computations both to

generate the system and subsequently to utilize the coordinates for

Page 21: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

15

solving a set of partial differential equations,are executed on a rectangular

field with a uniform grid.

Simply-Connected Region

For a simply-connected region there are no bodies in the field and hence,

no cuts inthe physical plane and no re-entrant boundaries in the transformed

plane. The single continuous boundary surrounding the physical field trans-

forms to the entire rectangular boundary of the transformed field. The

manner in which the physical boundary is split into four segments for place-

ment on the four sides of the rectangular boundary in the transformed plane

is a matter of choice.

Coordinate SystemControl

Control of the spacing of the coordinate lines on the body is easily

accomplishe_ since the points on the body are input to the program. The

spacing of the coordinate lines in the field, however, must be controlled by

varying the elliptic generating system for the coordinates. Onemethod of

variation is to modify the Laplace equations (i0) by adding inhomogeneous

terms to the right sides so that the generating system becomes

Exx + Eyy = P(E,n) ' _xx + nyy = Q(_,n) (12)

In the transformed plane these equations become

+ + J2(pxE + Qxn) = 0- 2_x_ yxn_

_ - 2BY_n+ YYnn+ j2(py$ + Qyn) = 0

(13a)

(13b)

Page 22: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

16

The effect of changing the functions P(_,n) and Q(_,n) on the coordinate

system can be seen by examining the system (12). If P _ Q _ 0, the system

reduces to the pair of Laplace equations used as the original generating

system, i.e., Eq. (i0). Let _', n' be the solutions of (i0) with boundary

values on D. Let _", n" be the solutions to system (12) with the same

boundary values and with positive functions P aLidQ on the right hand side

of the equations. Now_" and _" are subharmonic on D. Thus for any constant

k, the _" = k coordinate line would be closer to _" = Smaxthan would the 6' = k

line. The samerelation holds for the n" = k and n' = k coordinate lines.

Nowif all or part of the curve 6' = _ is a branch cut in D, this branchmax

cut will movein the direction of increasing _ to meet the curve 6" = max

if the right side of the system (12) is increased from 0 to a positive

function P. An analogous discussion can be madeon the effect of negative

functions P and Q on the generated curvilinear coordinate system.

Even though a change in P or Q in a subregion of D would change the

coordinate lines throughout the entire region, the effect would certainly be

more pronounced in the subregion. Also, the greater the change in P and Q,

the greater the movementof the coordinate lines. By varying the sign and

magnitude of P(_,n) and Q(E,n) for different values of _ and n, considerable

control can be exerted over the coordinate line spacing as will be seen from

the examples that follow in Section IV.

Oneparticularly effective procedure is to choose P and Q as exponential

terms so that the coordinates are generated as the solutions of

Page 23: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

n

$xx + _yy = - Zi=l

a.i sgn(_ - _i)exp(-cil_ - _iJ)

17

m

- Z

j=lb.3 sgn(_ - _j)exp(-dj/(_ - _j )2 + (n - njYr-)

- P(_, n) (14a)

n

nxx + nyy i=l a.1 sgn(q - qi)exp(-ciJq - qil)

m

Z

j=lb.3 sgn(rl - qj)exp (-dj,/(_ -- _j)2 + (19 - rl.)2j )

Q(_, n) (14b)

where the positive amplitudes and decay factors are not necessarily the same

in the two equations. Here the first terms have the effect of attracting

the $ = constant lines to the $ = _i lines in Equation (14a),and attracting

n = constant lines to the q = qi lines in Equation (14b). The second terms

cause _ = constant lines to be attracted to the points (_j,qj) in (14a),

with similar effect on q = constant lines in (14b). No computational dif-

ficulties have been encountered because of the discontinuities in P and Q

caused by the sgn function, which is defined by setting sgn(x) to be i, 0,

or -i depending on whether x is positive, zero, or negative. Should pro-

blems arise in later applications, this function can be replaced by

2Arctan(nx), where n is a large positive integer. The sgn function was

chosen to give the maximum control. Several examples of the use of coordinate

system control are given in Section IV.

Page 24: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

18

With the inclusion of the sgn function (or the arctan function) the

equations (14a & b) for the curvilinear coordinates are no longer subharmonic

or superharmonic, since the sgn function causes a sign change on the right

side when the attraction is to lines or points not on the boundaries. It is

possible, therefore, that too strong an attraction amplitude may cause the

system to overlap and therefore be unusable. Manysuccessful systems (all

those included in the examples given herein) have been generated, however,

using the above equations.

The use of the sign-changing sgn function is only necessary to cause

attraction to both sides of a line or point in the field. Elimination of this

function causes attraction on one side and repulsion on the other. If it is

only desired to concentrate coordinate lines near one boundary, such as the

body surface, then there is no need for the sign chang_ and the sgn function

can be eliminated. In this case the equations are subharmonic or superharmonic,

and a maximumprinciple is in effect to prevent overlap. Such a choice is

provided for in the computer program.

The subject of coordinate system control is still very muchunder investi-

gation, and other control functions are being evaluated. It is anticipated

that new coordinate control packageswill be madeavailable for inclusion in

the code whenwarranted. Of particular interest is the capability to cause a

specified numberof lines to fall within a certain physical region, such as

a boundary layer. Another area of further investigation is the coupling of

the coordinate equations with the partial differential system to be solved

thereon so that the coordinate lines concentrate automatically in regions of

high gradient.

Page 25: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

Time-DependentCoordinate Systems

19

If the coordinate system changeswith time then the grid points move

in the physical plane. Ordinarily such movementof the physical grid

points would require interpolation amongthe grid points to produce values

of the dependent variables at the new locations of the grid points. With

the present method of coordinate system generation, however, it is possible

to perform all computation on the fixed rectangular grid in the transformed

plane without any interpolation no matter how the grid points move in the

physical plane as time progresses. This occurs as follows:

Recall that the coordinate system is generated as the solution

of someelliptic system with the values of the transformed coordinates

[_,_] specified on the boundaries in the physical plane, one of these

coordinates being specified to be constant on the boundaries and the other

being distributed as desired along the boundaries in order, perhaps, to

concentrate grid points in certain regions. The transformed coordinates

define a rectangular plane, the extent of which is determined by the range

of the values of E and n. Nowif the sameboundary values of _ and q are

redistributed in the physical plane, perhaps because the boundaries in the

physical plane have actually movedor maybejust to change the concentration

of grid points around the boundaries, and the elliptic system is re-solved for

the transformed coordinates with these new boundary conditions, new trans-

formation functions can be produced with still the samerange of values in

and n (provided the elliptic system used exhibits a maximumprinciple) and

hence to the samerectangular field in the transformed plane. The grid

points in the rectangular transformed plane thus remain stationary, and the

effect of the movementof the. coordinate system in the physical plane is just

to change the values of the physical coordinates [x,y] at the fixed grid

points in the rectangular transformed plane.

Page 26: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

2O

Thus, although the position of a grid point changes on the physical

plane, its position in the transformed plane is fixed. The time

derivative transforms to the transformed plane as shownbelow:

3f _(x,y_f) / $(x,y,t)(_-t) = _ (_,n,t) _ (_,n,t)

x,y

= ft - xt(f_Y_ - fqY_)/J

+ yt(f_x n - f x_)/J(15)

Here all derivatives are expressed in the transformed plane, so that the

interpolation that would be necessary to supply values at grid points in

the physical plane that have moved is not required in the transformed plane.

(Note that in the transformed expression for the time derivative, all

derivatives are taken at the fixed grid points in the transformed plane.

The movement of the grid in the physical plane is reflected only through

the rates of change of x and y at the fixed grid points in the transformed

plane.)

The problem of solving N partial differential equations of any type in

a physical region with time dependent boundaries has been replaced by a new

problem consisting of N + 2 equations with fixed boundaries. The two

additional equations are, of course, those governing the transformation

(either (i0) or (12)). Thus, it is possible to construct numerical solutions

to physical problems with time dependent boundaries in a fixed rectangular

plane with a fixed square mesh with no interpolation required. Again the

above statements imply the independence of computer software from physical

geometry. Problems involving moving blast fronts, shocks, free surfaces,

and any other time-varying boundaries c_n be attacked successfully with these

Page 27: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

21

procedures. (Someapplication to free surface flow is illustrated in Ref. 26.)

In addition this method allows time-dependent concentration of grid points as

desired in the physical plane.

The use of time-dependent coordinate systems requires that the difference

equations for the curvilinear coordinates be resolved at each time step,

of course. The coordinate values at the previous time step can serve as

the initial guess for the next, however, so that the iteration will converge

rapidly.

III. NUMERICALSOLUTION

Difference Equations

The discussion here assumesthe body contour and outer boundary trans-

form, respectively, to the n-lines forming the lower and upper sides of the

rectangular transformed plane as discussed in Section II. More general seg-

mentation of the body contour(s) and the outer boundary, and placement as

desired around the boundary of the transformed field, are provided for in the

computer program.

The finite difference grid for the single-body problem is illustrated

in Figure 3a. Circles denote the points at which the difference approxi-

mation to (lla,b) or (13a,b), are applied, while the triangles denote boundary

points. The left and right vertical boundaries are coincident in the physical

plane, and the values of x and y are thus equal along these lines. Such lines

are designated re-entrant boundaries as indicated before. If the number of

= constant lines is designated IMAXand the numberof n-lines by JMAX, the

computational field size is (JMAX-2)(IMAX-I). Boundary values are specified

Page 28: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

22

on j=l and j=JMAXfor all I _ i j IMAX. The j=l line corresponds to

the contour F1 (the body contour) in the physical plane while j=JMAXis

associated with the remote boundary contour F2. Second-order central dif-

ference expressions (see Appendix D) are used to approximate all derivatives

in the transformed equations. The resulting equations are, for (lla,b),

+ Xi+l, j) - 8'i,j (x_n)i,j/2I

xl,j " [_i,j(Xi_l,j

+ T' + -1)]/[2(aii,j(xi,J+l xi,j ,J

!

+ Ti, j) ] (16a)

+ Yi+l,j) - $' ' ./2i,j (Y_n)i,3Yi,J " [_i,J(Yi-l,J

+ T'i,j(Yi,J+l + Yi,J-l)]/[2(sl,J + Ti,j' )] (16b)

where _'i,j' B'.l,],7i,j,. ' (x_)i,j, and (Y_)i,j are the difference ap-

proximations for e, 8, 7, and the cross derivatives respectively. These

expressions are developed in Appendix D. The re-entrant boundaries

occurring at i=l and i=IMAX are dealt with as follows. Since the values

of x and y are equal along these lines, iteration is necessary along only

one of them. Choosing i=l for convenience, the _-derivatives along this

line are approximated as exhibited below:

(x_)i, j = (x2, j - XIMAX_I,j)/2(17a)

(x ) = x 2 - 2x I +_ i,J ,j ,j XlMAX-I,J(17b)

(17c)(xEn)i, j -- (x2,j+ 1 - xz,j_ I + XlMAX_I,j- 1 - XIMAX_I,j+I)/4

Page 29: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

for 2 _ j j JMAX-I. Similar expressions are used for the derivatives of

y. The set of non-linear simultaneous difference equations produced by

(16a,b) is solved by point SORiteration.

23

Multiple-Body Fields

A sample mesh for a two-body transformation is shownin Figure 3b.

As before, circles denote computational nodes and triangles the boundary

points. Values defining the outer boundary contour F2 (see Figure 2) are

required for 1 _ i _ IMAXalong the j-JMAX line. Boundary values specifying

the shape of the body contours FI, F7, and F8 in the physical plane are

required in segmentsalong the j=l line as follows:

rl: I2 <_i ! I3

F7: 1 2 1 2 Ii

]"8: I4 <__i < IMAX

The above requirements may be more clearly seen by comparing Figures 2 and

3b. The difference equations (16a,b) and the vertical re-entrant boundary

relations (17a,b,c) are also valid for multi-body transformations. The

primary difference in the two transformations results from the existence,

in the multi-body case, of the horizontal re-entrant boundaries along j=l.

The equivalence of x and y values along these segments is demonstrated in

Figure 3b. Again it is only required to calculate values along one re-

entrant segment. Choosing the leftmost (II < i < I2), the n-derivatives

are calculated using special procedures which are illustrated by the

expressions below for the point marked with an_ (i,j = II + i,i) in

Figure 3b:

Page 30: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

24

(Xn)ll+l,l -_ (Xll÷l,2 - xi4 - 1,2)/2

(xnn)ii+l,l = Xll+l,2 - 2Xll+l,l + x14_l, 2

(18a)

(18b)

-_ _ + Xll+2, 2 _ Xli,2)/4 (18c)(x{n) II+i, i (x14,2 x14- 2,2

Note the existence of the horizontal re-entrant boundaries increases the

size of the computational field somewhat. In the two-body example given

the numberof additional equations to be solved is I2 - (Ii+l).

Multiple-Body Segment Arrangements

In the case of a single body it is logical to keep the body contour in

one segment, with a single cut connecting the single segment to the outer

boundary. This type of arrangement is illustrated in Figure 4a. (Figure 4b

showsan alternate single body arrangement. In these and all subsequent

figures the dotted lines on the segment arrangement diagrams identify the

two membersof a re-entrant pair.) In the case of multiple bodies there is

a wider choice of reasonable arrangements, someof which may be better than

others for certain applications. The boundaries in the physical plane may

be split into as manysegmentsas desired, and these segmentsmaybe arranged

around the rectangular boundary of the transformed plane in any way desired.

These segments are all connected by branch cuts in the physical plane and by

re-entrant boundaries in the transformed plane. Several of these arrangements

are illustrated in Figures 5-13. Illustrative values of the segment input

parameters are given in Table 1 for each of these arrangements, and input

instructions are given in Section VI.

Page 31: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

25

In the arrangement of Figure 5, an n-llne encircles both bodies and

forms a cut between the bodies, the cut to the outer boundary being a G-llne.

The outer boundary is also a llne of constant n but at a different value.

Here one body is split into two segments, while the other body and the outer

boundary are each in single segments. Figure 6 shows an arrangement in

which each body is in a single segment, each body being a _-line of different

value. Here there is no cut between the bodies, but rather an n-line cut

between each body and the outer boundary, which is split into two segments,

each being an n-line of different value. (This produces a system similar

to a bi-polar coordinate system.) In Figure 7 each body is also in a single

segmentwith the outer boundary split into two segments, but here an

n-line encircles each body and forms the cut between that body and the outer

boundary. In Figure 8 one body is a single segment encircled by an n-llne

which forms a cut to the other body. The other body is split into two seg-

ments, each being a G-llne of different value, with each segment connected to

the outer boundary by a G-llne. The outer boundary is in a single segment

and is an n-line. Other arrangements are shownin Figures 9-13. All

these arrangements are shownwithout coordinate line attraction, and, conse-

quently, manyof the resulting systems exhibit wide spacing in concave areas.

This spacing can be improved by coordinate attraction as illustrated in the

examplesof Section IV. The results of the use of several of these multiple-

body segment arrangements are given for two-body potential flow in Section V.

Coordinate system control was used effectively in that case to improve the

spacing in the concave region. These concave regions occur when he cut and

body are on the samecoordinate line.

Page 32: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

26Initial Guess

Since the difference equations are nonlinear, the initial guess must be

within a certain neighborhood of the solution if the iterative solution is to

converge. With somesegmentarrangements a logical choice of an initial

guess is difficult to perceive. Therefore several different types of initial

guesses have been inserted in the program, with the choice to be madeby the

user as guided by past experience. The rationale for someof these guesses

is more intuitive than analytical. The choices available are detailed below.

(In each case the initial values of x and y on all cuts are interpolated

linearly between the boundary values at the cut end points.) The choice is

controlled by the input parameter IGESas discussed in Section VI. The guess

type is identified by this number in the discussion below.

(a) Weighted Average of Four Boundary Points - Here the values of x

and y at each point in the field are set equal to the average of

the four boundary points having either the same_ index or the

same_ index, the average being weighted by the distance to the

boundary in the transformed plane. Thus

JMAX- " + j -i2 xij = (JMAX lJl)Xi,l (JM__X-l)Xi, JMAX

IMAX- i + i- 1+ (IMAX l)Xl,j (I_IAX- 1)XIMAX,j (19)

for i = 2, 3, ..., IMAX-I and j = 2, 3, ..., JMAX-I. An

analogous equation is used for y. (IGES = I). A variation of

this type (and also of types (b),(c), & (e)) is provided by IGED,

whereby the average maybe restricted to only a two-point average

in either the _ or q direction. The direction chosen should be

that which proceeds between the bodies and the outer boundary. This

variation is useful with an outer boundary located on three sides.

Page 33: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

27

(b) Sameas (a), except zeroes replace the values on the cuts in the

formation of the average. This type of initial guess is particu-

larly effective with simply-connected regions, single-body fields,

and multiple-body segmentarrangements having the all body seg-

ments on one horizontal (vertical) side and the outer boundary a

single segment on the other horizontal (vertical) side. (IGES= 0)

(c) Weighted Average of Body SegmentBoundaryPoints Only - This type

guess is the sameas that of (a), except that boundary points on

cuts are not included in the formation of the average, which there-

fore maybe formed with fewer than four points. This type and the

exponential projection below are widely effective. (IGES = 2)

(d) MomentProjection - Here the initial value at each field point is

given by

(e)

(Z dijk)(Z X_k) - Z dijkX kk k k

xij N E dij k (20)k

with dij k = /(xij - Xk)Z + (Yij - Yk )2

Here xk is the value at a point on the boundary of the trans-

formed plane; dij k is the distnace to that boundary point in the

transformed plane; N is the total number of boundary points; and

the summations extend over the entire boundary in the transformed

plane (IGES = 3). A modification of this type omits the division

by N (IGES = 4).

Exponential Weighted Average of Body Segment Boundary Points -

This guess is similar to that of (c) except that the weight in the

average is exponential rather than linear. Increasing IGES causes

the points to contract nearer the boundary segments corresponding

Page 34: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

28to the lowest values of n and _. This type is most effective

when strong coordinate attraction is used with a single-body

field having the body located on the bottom or left side of the

rectangular transformed field. (IGES > 4)

(f.) Exponential Projection - The initial value of x is determined at

each field point by

Exk exp(-llGESldijk/d o)k

xij E exp(-llGE--_ijk/d o) (21)k

where d is the diagonal length of the transformed field, theo

other quantities having the samedefinitions as in (d) above.

(IGES < 0)

Examplesof these initial guess types are shownin Figures 14-23 for

the segment arrangements given in Figures 4-13. The value of IGESfor each

is given in the upper left corner of each plot. Table 2 lists the types for

which convergence was obtained with each of these segmentarrangements.

The most widely effective initial guess in these cases was the expo-

nential projection. This type of guess produced convergence in the single-

body case and in six of the nine two-body cases. The optimum decay factor

for the exponential projection was 40 (IGES = -40) in most cases, with an

optimum of 20 (IGES= -20) in a few cases.

GuessType 2 (IGES= 2) also gave convergence in six of the nine two-

body cases and in the single-body case. However, the numberof iterations

required was a bit larger than with the exponential projection. Type 2 gave

convergence with one segmentarrangement (Figure 9) for which the exponential

projection gave divergence, but gave divergence for another arrangement (Figure

12) for which the exponential projection gave convergence.

Arrangements having the outer boundary in two segments tend to be the

more difficult to converge. Of the four arrangements of this type (Figures,

Page 35: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

296, 7, 12, 13), GuessType 2 gave convergence for only one (Figure 13), while

the exponential projection failed for two of the four. The two arrangements

of Figures 6 and 7 proved to be particular recalcitrant, requiring a switch

to a different size field in order to get convergence for the arrangement of

Figure 6 and the introduction of a special guess for that of Figure 7.

The general suggestion for two-body cases is to use either exponential

projection with a decay factor of about 40 or GuessType 2. For simply-

connected regions, single-body cases, and the two-body segment arrangements

having both bodies on the samecoordinate line, GuessType 0 is generally

more efficient, although the exponential weighted average or projection and

GuessType 2 will also give convergence. Arrangements having two bodies in

single segmentson opposite sides of the transformed plane are particularly dif-

ficult, and GuessesType 1 and 4 may be used.

With somesegment arrangements with multiple bodies, convergence can

be achieved with a close outer boundary, but not with the outer boundary

farther out. Therefore, provision has been madefor initially converging

the solution with a circular outer boundary close in and then constructing

an initial guess for a field with a larger circular outer boundary from this

solution by linear projection to the larger field. This process can be

repeated as many times as desired with the outer boundary gradually being

movedout to its desired position. Two types of movementare provided: (a)

the outer boundary radius is doubled at each step, or (b) the outer boundary

radius is increased linearly at each step. This provision should not be used

unless necessary, and then the movementof (a) is to be preferred in general,

with as few steps as will produce convergence.

Finally, with strong coordinate line attraction it may not be possible

to achieve convergence from an initial guess that gives convergence without

attraction. Provision therefore has been madewhereby the attraction can be

Page 36: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

30

added gradually, the converged solution for a small attraction becoming the

initial guess for a case of stronger attraction. Two types of increase

in attraction strength are provided: (a) the attraction amplitude is doubled

at each step, or (b) the attraction amplitude is increased linearly at each

step. This procedure is to be used only when necessary. In general, type

(a) is preferred, with as few steps as will provide convergence. Further dis-

cussion of the use of the various initial guesses is given in the instructions

of Section VI.

Convergence Acceleration

For a difference equation of the general form

al(fi+l, j + fi_l,j) + a2(fi,j+ I + fi,j_l ) + bl(fi+l, j - fi_l, j)

+ b2(fi j+l - f" ) + cf.. + d.. = 0, 1,j-i 13 13(22)

(i = i, 2, --, I ; j = i, 2, --, J)

with boundary values specified on i = j = O, i = I + i, and j = J + i, and

al, a2, bl, b2, c, and d constant, the optimum value of the SOR acceleration

parameter _ can be obtained in the case where a]2i b12 and a22 _ b22, and in

the case where alz _ b12 and a22 _ b22, (Ref. 18). The optimum parameters

in these two cases are as follows:

>_ b12Case #i: a12 and a22>_ b22

2= (over-relaxation, i < _ < 2) (23)

i + _--_- _

Case #2: a12 _ b12 and a22 _ b22

2w = (under-relaxation, 0 < w < i) (24)

1 + d-7-

Page 37: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

31

where

0 = 2 - cos I + i

cos j +-----_ (25)

In the remaining case where al2 _ b12 and a22 _ b22 , no theoretical

determination of the optimum acceleration parameter exists as yet.

Since the difference equations for the coordinate system are nonlinear,

the above theory is not directly applicable. However, if the equations are

considered as locally linearized then a local optimum acceleration parameter

can be obtained which will vary over the field. It should be noted that

the local linearization is applied only to the determination of the accel-

eration parameters, not to the actual solution of the difference equations.

Following this approach and neglecting the effect of the cross deriva-

tives, the local constants in the above equations become

aI = _ a 2 = y

bl j2p j2Q= 2 b2 = 2

c = -2(_ + y)

so that locally optimum acceleration parameters are

Jij 2 IPij j > Jij2 IQij I

Case #i: _ij _ 2 and Yij - 2

_ij = (over-relaxation) (26)

i + /i - Pij 2

Page 38: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

322 2

Jij JPij J Jij JQij 1

Case #2: _i-'j< 2 and Yij < 2

lJ i + /i + Pij z

(under-relaxation) (27)

where

2 J .P •

= I _ij - _ cos MAX - iPiJ _ij _ Yij

4212+ Yij - 4 (28)

j2JpJ j2jQJ

In the remaining case where a _ 2--and y < 2 , not even a local

optimum is available. The program allows a choice of strategy in this case:

over-relaxation, under-relaxation, or a weighted average as follows:

First Pl and P2 are calculated from

Pl = _ +-----_ 4 cos --_ _ 1(29a)

02= +y y2_ 4 - i(29b)

If over-relaxation is _pecified then m is calculated from Eq. (26) using

The same expression for p is used in Eq. (27) if under-relax-P = Pl + P2"

ation is specified. If the weighted average is to be used then, using Pl

in place of P' _I is calculated from Eq. (26) if _ _> _ or2 by Eq. (27)

J__P_i Similarly, using p 2 in place of p, m2 is calculated fromif _ _ 2 "

Eq. (26) if y > _ else by Eq. (27) The average is then formed by2 '

Plml + p 2m2= (30)

Pl + P2

Page 39: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

OptimumAcceleration Parameters

In order to provide someguide to the selection of acceleration para-

meters for the most rapid convergence of the iterative solution, the

optimumvalues were determined in a number of representative cases by

computer experimentation.

The body for this study was a Karman-Trefftz airfoil, the contour of

which is shownin Figure 24. The points on the contour were spaced at

equal angular increments in the complex plane from which the airfoil was

generated, with three additional points added at half, fourth, and eighth

angular increments above and below the trailing edge to provide finer

resolution in that region.

A basic case was selected and four quantities, (the numberof points

on the body, the numberof coordinate lines surrounding the body, the

amplitude of the coordinate line attraction to the body, and the radius

of the circular outer boundary) were varied individually and in pairs

above and below the basic values. The initial guess type (Type 0) giving the

fastest convergence for the basic case was used for all. Each case was

run to convergence of 10-4. Additional cases were run with different

convergence criteria and different numbersof steps in the addition of the

final attraction amplitude. The basic case was also run with a circular

cylinder as the body for comparison of the effect of the body shape.

A series of two-body cases was also run with two of the sameKarman-

Trefftz airfoils positioned as an airfoil and flap system. Only one seg-

ment arrangement was considered, with both bodies on the samecurvilinear

coordinate line. The multiple-airfoil system and the segmentarrangement

are shownin Figure 25. The sameset of quantities varied in the single

body case was varied individually above and below the basic values (except

Page 40: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

34

that variation of the numberof points on the bodies above the basic value

involved too muchcore and was omitted). The initial guess type was the

sameas that used for the single-body studies, which proved to give the

fastest convergence in the basic two-body case as well. The values of all

input parameters for the cases run are given in Tables 3-6.

The results of these studies are given in Tables 7-10. For the single-

body field, Table 7 shows the effect of individual variation of each of the

chosen quantities; Table 8 gives the effect of variation in pairs, and in

Table 9 other miscellaneous quantities are varied. Table i0 gives the results

for the double-body field. The numberof iterations required with the

variable acceleration parameter field and the average variable acceleration

parameter over the field are also included in these tables. (Under-relaxation

was used in the case of complex eigenvalues.) In a numberof cases the vari-

able acceleration parameters tend to be too large, and only in a few cases

was the variable field better than the uniform experimentally determined

optimum.

Plots of the numberof iterations required vs. the acceleration para-

meter are given for a few cases in Figure 26. In a numberof cases the

optimumparameter was only 0.i below the divergence limit for the particular

case. A typical exampleof this appears in Figure 26b. The effect of the

general field size is evident in Figure 26c and d, where the larger field

(d) gives a muchsharper minimum. Strong attraction with small fields makes

the convergence more difficult as can be seen in Figures 26e and f. With

strong attraction and a small field convergencewas obtained only in a very

narrow band of acceleration parameters.

Page 41: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

35

A few trends are evident in these results:

(i) The optimum acceleration parameter, m*, and the number of iterations,

I*, increase with the numberof grid points.

(2) w* increases slightly as the outer boundary movesoutward, this effect

being more pronounced at small outer boundary radius. I* experiences a

minimumas the outer boundary movesoutward. Both of these effects are stronger

with two bodies than with one.

(3) _* is little affected by attraction amplitude with one body, but tends

to decrease with increasing attraction amplitude with two bodies. (This dif-

ference is probably due to the fact that in the two-body case there wasattraction

to a line in the field, i. e., the cut between the bodies, as well as the body

contours.) I* tends to increase with increasing attraction.

(4) There is an optimumnumber of steps for addition of the attraction,

with increasing I* occurring on both sides of this optimum. Too few steps

mayproduce divergence. This optimum is less apparent with two bodies than

with one.

(5) The numberof attraction lines had only a small effect on either

m* or I* in the cases considered.

(6) w* increases as convergence tolerance is tightened.

(7) The intermediate convergence tolerance value that should be

used when the attraction is added gradually should be 0.01. A tighter

tolerance requires more iterations, while a looser tolerance maynot produce

a sufficiently close initial guess for the next addition of attraction.

(8) The use of the variable acceleration parameter field is not generally

recon_nendedin cases where the optimum can be estimated from experience. This

feature can be useful, however, in the absenceof a good estimate. In that

Page 42: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

36

case it is probably best to use the variable field once, and then to use a

factor about 3%less than the average over the variable for subsequent runs.

IV. EXAMPLESOFCOORDINATESYSTEMS

A variety of results utilizing the theory and numerical procedures

outlined in previous sections are now presented. The results selected for

presentation here were chosen to exemplify the generality of the method, and

somewere used for the numerical fluids studies in Ref. ii. In most of the

plots only a portion of the physical field is shownin order that the coord-

inate lines maybe distinguishable near the bodies. The actual fields were

generally extended someten chord_ _, radit_ from the hodip_.

Coordinate SystemControl

As discussed in Section II, the curvilinear coordinate lines maybe

concentrated by attracting the lines to other lines or points in the field.

The control of the coordinate system in this manner is illustrated in Figures

27-28. Input parameters involved are given in Table ii. In Figure 27, the

basic system generated by the Laplace equations (zero right hand sides) is

shownin (a). In (b) the n-lines have been attracted to the body. In (c)

the attraction to the body has been madestronger on two sides, while in (d)

the lines are more strongly attracted over a small portion of the body. In

(e) and (f) the angle of intersection of the lines with the body has been

controlled, over the entire body in (e) and over only a portion of the body

in (f).

Figure 28 illustrates the use of control to pull the coordinate lines

into a concave portion of the body contour, (a) being the result of the

Laplace equations and (b) having the lines attracted to the slope disconti-

nuity on the lower surface.

Page 43: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

37

Various Body Shapes

Coordinate systems for a circular cylinder and a camberedJoukowski air-

foil are pictured in Figure 29. The contours are of equi-spaced _ = constant

and n = constant lines in the physical plane. (In the interest of clarity

only a portion of the grid is shownin this and subsequent figures. The

outer boundary for these and all succeeding results is circular and has a

radius of ten body-lengths.) Note that the two systems given in Figure 29

are orthogonal (The transformations in these instances are conformal.).

Slightly more general bodies are shownin Figure 30. These include a cambered

and an integral flap Karman-Trefftz airfoil. Although systems for each of

these could be generated by conformal transformations, the ones shownwere

obviously not. The effect of the coordinate system control is demonstrated

for both airfoils in Figure 31. The figures exhibit the effect of contraction

to the n-line coincident with the body profile. Note that the grid spacing is

significantly collapsed in the contracted transformation. The contracted

meshspacing near the solid body boundary allows the solution of viscous

flows (Ref. ii).

Contracted coordinate systems for more general airfoils are exhibited

in Figures 32-34. These are the Liebeck laminar airfoil, the G_ttingen

625 airfoil and a NACA0018 profile. Contraction to the single-body n-line

is demonstrated for the Liebeck profile and to the initial 15 n-lines for the

G_ttingen 625 and NACA0018 airfoils. The effects of multiple-H-line con-

traction are seen to be quite dramatic.

Coordinate systems for a multiple-airfoil system are shown in Figure 35,

with coordinate line concentration to the bodies and into the concave region

formed by the airfoils and the cut between. The coordinate line attraction is

to the first ten H-lines surrounding the bodies with an amplitude of i0,000

Page 44: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

38and a decay factor of 1.0 on all but the tenth line, where 0.5 was used. The

coordinate system for simply connected regions are shownin Figures 36 and 37.

Finally, to demonstrate the applicability of the transformation method

to quite arbitrary bodies, a system in contracted form (15 line) for a rather

odd looking body--denoted the camberedrock--is given in Figure 38.

V. EXAMPLESOFAPPLICATIONTOPARTIALDIFFERENTIALEQUATIONS

As noted above,any set of partial differential equations may be solved

on the boundary-fitted coordinate system by transforming the equations and

associated boundary conditions and solving the transformed equations numeri-

cally in the transformed plane. All computation can be done on the fixed

square grid in the rectangular transformed region regardless of the shape

of the physical boundaries. Several examplesof such application are given

below.

Potential Flow (Ref.ll, 12, 19)

The two-dimensional irrotational flow about any numberof bodies may

be described by the Laplace equation for the stream function _:

_xx + _yy = 0 (31)

with boundary conditions

_(x,y) = _k on the surface of the kth body.(32a)

_(x,y) = y cose - x sine at infinity. (32b)

where e is the angle of attack of the free stream relative to the positive

x-axis. Here the stream function is nondimensionalized relative to the air-

Page 45: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

foil chord and the free stream velocity.

coordinate system this equation becomes

39

Whentransformed to the curvilinear

_$ - 2B_n + Y_nn + °_n + _ = 0 (33)

The transformed boundary conditions are (see Figure I).

qJ(_'"11) = )o on n = nI (i.e., on I'I*) (34a)

,(_.,n2) = y(_.,rl2) cos0 - x(Y.,,12) si,10 ou n = 112 (i.e., ou F_) (34b)

The uniqueness is implied by insisting that the solution be periodic in

-_ < _ < _' ql i n _ _2" The coefficients _, B, y, o, and T are calculated

during the generation of the coordinate system (see Appendix A). Equation (33) was

approximated using second-order, central differences for all derivatives,

and the resulting difference equation was solved by accelerated Gauss-

Seidel (SOR) iteration on the rectangular transformed field. The value of

the boundary values of _ on the bodies were determined by imposing the Kutta

condition on each body.

The pressure coefficient at any point in the field may be obtained

from the velocities via the Bernoulli equation, which in the present non-

dimensional variables is

Cp = 1- IvI 2 (35)

On the body surface this becomes

Cp = 1 __I_Yj2 _D 2

(36)

Page 46: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

40

with the derivative evaluated by a second-order one-sided difference

expression. The nondimensional force on the body is given by

_"= - _ Cp lj ds (37)

where n is the unit outward normal to the surface, and ds is an increment

of arc length along the surface. The lift and drag coefficients are

CL = _ Cp (-x¢cos0 - yEsin0)d¢(38a)

CD = _ Cp (y¢cos0 + xi,sin0)d_j(38b)

These integrals were evaluated by numerical quadrature using the

trapezoidal rule.

The coordinate system for a Karman-Trefftz airfoil having an integral

flap is shownin Fig. 30b, and the streamlines and pressure distribution for

this airfoil are comparedwith the analytic solution (Ref. 20) in Figure 39.

Similar excellent comparisons have been obtained with other Karman-Trefftz

airfoils. Fig. 52 shows the coordinate system for a Liebeck laminar air-

foil, the solution for which is comparedwith experimental results (Ref.

21) for the pressure distribution in Fig. 40. Finally the coordinate

system for a multi-element airfoil is shown in Fig. 35, with the stream-

lines and pressure distributions shownin Fig. 41. Here coordinate system

control was employed as discussed above to attract the coordinate lines

into the concave region formed by the intersections of the cut between the

airfoils, as well as to the bodies.

Figure 42 shows a coordinate system for a pair of circular cylinders,

the coordinate lines being attracted to the intersections of the cut between

Page 47: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

the bodies with their surfaces. (The accompanyingdiagram shows

the arrangement of the body and re-entrant segments in the transformed

plane.) The streamlines for potential flow obtained on this coordinate

system are shownin Figure 43a, and the surface pressure distribution is

comparedwith the analytic solution (Ref. 22) in Figure 43b. By contrast,

the uncontracted coordinate system, generated by Eq. (ii), and resulting

pressure distribution are shownin Figure 44. The effectiveness of the

coordinate system control is clear in the comparison of these results with

those in Figure 43b. To illustrate the use of different segment arrangements,

Figures 45 and 46 show another coordinate system and pressure distribution

for the sametwo cylinders.

The effects of the various numerical parameters involved for the potential

flow solution were investigated in somedetail, and the results are reported

in Ref. 19. These results should serve as a guide to reasonable choices of

such parameters as field size, convergence criteria, meshspacing, etc. for

the use of the body-fitted coordinate systems in other applications as well.

Ref. 19 also serves to illustrate in somedetail the procedure of application

of the body-fitted coordinate system to the solution of a partial differentialsystem.

Page 48: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

42

Viscous Flow

The time-dependent, two-dimensional viscous incompressible flow about

any numberof bodies maybe described by the Navier-Stokes equations in

various formulations, two of which are illustrated below.

Vorticity-Stream Function Formulation. (Ref. Ii -14) with the vorticity and

stream function as dependent variables the transformed Navier-Stokes

equations are

_t + (_ - _$_n )IJ = (am_ - 2Bm_n

+ om + _m_)/j2 R (39)

- + Y_nn + + = _j2_ (40)a_ 2B_n °_ n _

with boundary conditions:

= constant A _g = 0 on body surface (41a), j

= y cose - x sine, m = 0 on remote boundary (41b)

All quantities are non-dimensionalized with respect to the free stream

velocity and the airfoil chord. All space derivatives in the field were

represented by second-order, central difference expressions. The time

derivatives were represented by two-point backward difference expressions.

The H-derivatives on the body surface were represented by second-order one-

sided difference expressions. The solution was implicit in time, all the

difference equations being solved simultaneously by SOR iteration at each

time step.

The boundary conditions were implemented directly except for the second

of (41a), which was satisfied by adjusting the value of the vorticity on the

body by a false-position iteration procedure until the second-order, one-

sided difference representation of the tangential velocity, -_ _n was belowj

some tolerance:

Page 49: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

43

(k) (k-l) I _I (k)(k+l) (k) mil - mil Fyy

Here (k) is the iteration count, K an adjustable parameter, and (i,l) refers

to a point on the body surface.

The surface pressure is calculated from the line integral of the Navier-Stokes

equations on the surface:

P2 - Pl = R f[2 (V x _). drr ~ ~~I

2 ¢

= R-_ f 2 (B_ - ym )d_ (43)

¢I

The body force components are then obtained from the integration of the

pressure and shear forces around the body surface:

F = + _ py_ d_ - 2x _ _ mx$ d_ (44a)

= 2 d_ (44b)Fy - _ px_ d_ - _ _ _y_

Finally, the lift and drag coefficients are given by

CL = F cos0 - F sin0 (45a)y x

CD = F sin0 + F cos0y x

where O is the angle of attack.

(45b)

The coordinate system for a GDttingen 625 airfoil shown in Fig. 33 was

used in this solution. The high density of constant n-lines near the airfoil

is the result of contraction to the first 15 n-lines. Streamline contours are

shown in Fig. 47, and velocity profiles are shown in Fig. 48. Pressure and

force coefficients are illustrated in Fig. 49.

To show that the boundary-fitted coordinate system can be used with

arbitrary shaped bodies, the viscous flow about a cambered rock at a Reynolds

number of 500 was developed. The contracted coordinate system used in

the solution is given in Fig. 38. _ and _ contours are shown in

Page 50: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

44

Figure 50, and velocity profiles are shown in Figure 51.

In order that the pressure be single-valued, it is necessary that the

value of the stream function on each body of a multiple-body system be such

that the line integral of the Navier-Stokes equation on each body vanishes:

2

!vl0 = _ V p • dr =- _ [_t + V(---_2-)

i

- v x m +_ V x a] dr

= _ 1 _ (V x a) • drR (46)

Thus in the transformed plane it must be that

(yan - B_)d_ = 0 (47)

on each body. Since this requires a double iteration, i.e., for both

and _ on each body, it appears that this formulation is not as well suited

for two-body calculations as is the primitive variable formulation that

follows.

Velocity-Pressure Formulation (Ref. 23, 14). With the velocity and pressure

(primitive variables) as the dependent variables the transformed Navier-

Stokes equations are

ut + [y (u 2)_ - y_(u2)]/Jq + [x_(UV)n - x_(uv_]/J

+ (yQp_ - y_pn)/J = (_u_ - 2Burn + YUnn

+ OuR + Tu_)/Rj2 (48)

v t + [yn(uv) - y[(uv)n ]/J + [x[(V2)n- x_(v2)[ ]/J

+ (x_p n - xnp_)/J = (av_ - 2Bvsn + yvnn

+ gv + Tv[)/RJ 2n

(49)

Page 51: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

45

aP_ 28P_n + YPnn + + = - (YnU_- oph Tp_ - y_un) 2

- 2(x_u - xnu_)(ynv _ - y_vn)

where(x_v n - xDv_) 2 - J2D t (50)

D _ (ynu_ - ygu + x_v - xnv$)/J

Equation (50) is the transformed Poisson equation for the pressure,

obtained by taking the divergence of the Navier-Stokes equations.

The boundary conditions are

(51)

u = v = 0 on body surface (52a)

u = cose, v = sin0, p = 0 on remote boundary (52b)

The pressure at each point on the body was adjusted at each iteration by

an amount proportional to the velocity divergence evaluated using second-

order one-sided differences for the H-derivatives on the body.

Pressure Distribution and Force Coefficients. The surface pressure distri-

bution is calculated in the vorticity-stream function formulation from

the line integral of the Navier-Stokes equation around the body surface.

In the velocity-pressure formulation the surface pressure, is, of course,

obtained directly. In the velocity-pressure formulation it is necessary to

calculate the body vorticity before applying (44) from

1

w = - _(y_v n + x_u ) (53)

Figure 35 shows the coordinate system for a multiple airfoil consisting

of two Karman-Trefftz airfoils, one simulating a separated flap. Coordinate

system control was used to attract the coordinate lines strongly to the first

ten lines around the bodies and to the intersections of the cut between the

bodies with the trailing edge of the fore body and the leading edge of the

aft body. Velocity vectors and pressure distributions for the viscous flow

Page 52: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

46

solution at Reynolds number i000 are shownin Figure 52.

Loaded Plate (Ref. 24)

Figure 53 showsa comparison between the numerical and analytic solution

(Ref. 25) for deflection contours for a simply supported uniformly loaded

triangular flat plate. This problem involves the solution of the biharmonic

equation by splitting into two Poisson equations. The transformed Poisson

equations appear as in Eq. (40) above. Again all computation was done in the

rectangular transformed plane.

Page 53: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

47

Vl. INSTRUCTIONSFORUSE- COORDINATESYSTEMS

The coordinate system is generated by the program TOMCATwith the

subroutines BNDRY,CORPLOT,LINWT,ERROR,GUESSA,MAXMIN,PARA,RHS,SOR,

PLOT,and SYMBOL.Subroutines PLOTand SYMBOLwere added for compatibility

between the GOULDand CALCOMPplotters. Each facility will probably have

to makeminor changes for plotting. A complete set of instructions for the

input is included in the listing of TOMCAT.

Core must be set to zero at load time.

Files. The program uses two essential files with internal namesi0 and ii.

File ii is used to store a partially converged solution so that the itera-

tion can be continued by a subsequent run. This file need not be retained

once the solution has converged.

The converged coordinate system is written on file i0. This should be

saved to use as input for PROGRAMFATCAT.

Page 54: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

48

Certain files and additional control statements will also be necessary

for the operation of the plotter, and these must be added to fit the user's

installation. The program is compatible with both the GOULDand the CALCOMP

plotters.

Dimensions. The standard program allows a maximum field size of 70 $ lines

and 60 _ lines and requires a core size of 131,000 words for the Langley

Research Center's CDC 6000 Series Computer System. Error signals and instruc-

tions for modification will be given if these limits are exceeded. The three

statements requiring modification for larger fields are separated from the

rest of the dimension and data statements of the main program for convenience.

In_n_ Parameters. Most of the input is self-explanatory in the instruc-

tions given in the listing of TOMCAT. However, a few additional comments

may be in order.

Field Size. The parameter IDISK controls the storage of the converged

system on the disk file and also signals the restart of a partially con-

verged solution. The format of the storage of the coordinate system on

the disk file is given following IDISK in the instructions.

Plotting. Plotting may be by-passed by setting IPLOT to zero and eliminating

certain control cards. The selection of the GOULD, CALCOMP, or other plotter

is made by the parameter IPLTR. Recall that the user must also add certain

site-dependent control statements to the run stream appropriate to the

particular plotter installation. The parameters NUMBR and NUMBRI allow the

Page 55: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

49plotted field to be confined to a portion of the actual field by restricting

the numberof curvilinear coordinatelines plotted. Coordinate lines maybe

skipped in the plot by adjusting ISKIPI and ISKIP2. The parameters XBI,

XB2, YBI, and YB2 also allow the plotted field to be restricted to the

portion of the actual field between limits in the cartesian coordinates.

Initial Guess. The parameter IGES controls the initial guess for the

iterative solution of the difference equations. Since these equations are

nonlinear, convergence can be obtained only from an initial guess within

some neighborhood of the solution. The same initial guess will not in

general give convergence for all segment arrangements. The type 0 is

suitable for single-body and simply-connected systems, however, as well as

for multi-body systems having all body segments on the same curvilinear

coordinate line. Types 2 and -40 are widely applicable to multiple-body

fields, except those having two bodies in single segments on opposite sides

of the transformed field, where types 1 or 4 may be effective. Very

strong coordinate attraction near a boundary having a sharp convex corner

requires an initial guess having sufficiently closely-spaced lines in the

region of line attraction, else the iterates may overlap the boundary. In

such a situation the exponential weighted average guess (type IGES > 4) should

be used. The lines in the guess will be more strongly contracted as IGES

is increased. Note that the use of this type of guess requires that the

boundary to which the lines are attracted be located on the bottom or left side

of the rectangular transformed field. Gradual movement of the outer boundary

may also help(see INFAC). See Section III for more information.

Body Contours. Points on the body and outer boundary contours may be placed

as desired around the contours, and the cartesian coordinates of these points

are input in order from cards, one card per point, or from a file with one

image per point.

Some of the contours of a multiple-body system may be split into several

Page 56: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

50

segmentswhich maybe located on the rectangular boundary of the trans-

formed field in manydifferent ways as noted above in Section III. For

single bodies the body and outer boundary contours are simply cut and

opened into single segments. The points will be placed on the rectangular

boundary from the first index, LBI, to the second index, LB2, even when

LBI exceeds LB2. The contour segmentsmust be arranged so that the segment

ends are connected by coordinate lines that do not cross. This is simply a

matter of arranging the segmentson the rectangular transformed field

boundary such that a continuous path is traversed over the contour seg-

ments and connecting cuts in the physical field as a closed circuit is

madeo_ the rectangular boundary of the transformed field. The order in

which these sets are input is immaterial, except that the outer boundary

contour must be last. There is no relation between the order of input of

the sets and the order of their appearance on the circuit of the rectangu-

lar boundary.

Note that no points are repeated in the input; the closure of each

body contour is accomplished internally by the program. (The total number

of _ and n lines, IMAXand JMAX,however, will include the repeated points

that close the contours. See, for example , the test cases given following

the program listings in this section.

If a circular outer boundary is desired, this contour maybe calculated

internally rather than being input. In this case the radius and origin

of the circle, and the angle of its initial point counter-clockwise with

respect to the positive x-axis, are input. The points on the outer boundary

contour will then be placed at equal angular increments clockwise from this

initial angle. This outer boundary may then be located on the rectangular

boundary in one or more segmentsin the samemanner described above.

Re-entrant Boundaries. The re-entrant segments pairs are specified by

their end points and the sides on which they lie, but no points are input

Page 57: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

51

thereon, since these are actually cuts rather than boundaries in the phy-

sical plane. The order in which the re-entrant segments are input bears no

relation either to the order in which these segments occur on the circuit

of the rectangular boundary or to the order in which the body contours are

input.

Acceleration Paramaters. If a non-zero value is input for R(1), then this

value will be used as a uniform SOR acceleration parameter. Typical values

for a number of cases have been given above in the Section III. The

program also has the capability of calculating a field of variable local

acceleration parameters which are updated at each iteration until the

maximum absolute change of acceleration parameter over the field is less

than the input value R(10), after which the acceleration parameter field is

frozen. Since these local parameters are calculated from linear theory, they

are not true optimum values. Furthermore, in certain local situations, not

even the linear optimum is known. A choice is given, via IEV, for these

situations, but under-relaxation is generally the safest course. As noted

in Section III, in some cases these calculated variable acceleration

parameters tend to be too high and may not give convergence. The use of

the variable acceleration parameters also requires extra computer time for

their calculation, of course, and this calculation involves a square root.

Therefore, the constant input acceleration parameter is usually to be

preferred, provided this value is selected with some care with attention to

the results in Section III.

Coordinate System Control. The curvilinear coordinate lines may be concen-

trated by attracting the lines to the body contours or other lines or to

points in the field. Generally an e_fective way for concentration in the

Page 58: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

52

vicinity of a body contour is to use attraction to the contour and also to

the first several lines off the contour, with decreasing attraction amplitude

on each line outward and a decay factor of 0.5 or less on all lines.

On a field that is I0 chords is radius with 40 lines surrounding the

body, an attraction amplitude of i000 with attraction to i0 lines gives

moderate concentration, while i00,000 gives very strong concentration.

Amplitudes of i00 or below give only slight changes from the concentration

that is inherent in the basic homogeneous equations.

Some attention must be paid to the rapidity of the change of coordinate

line spacing with strong attraction else truncation error in the form of

artificial diffusion may be introduced as follows: Consider the finite

difference approximation of a first derivative with variation only in the

x-direction to which the _-lines are normal.

Ynf_ f_f -

x x_y n x_

The difference approximation then would be

fi+l- fi-1f = + T.

x xi÷ 1 - xi_ 1 i

where T. is the local truncation error.l

Taylor series expansions of fi+l and fi-i

Then by (8)

about f. then yield, after1

some algebraic rearrangement,

T = 1 - 2x.)i - 2 (fxx)i (Xi+l + xi-i 1

But the last factor is simply the difference approximations of x so that

1

T = - _ x_ fxx

This truncation error thus introduces a numerical diffusive effect in

the difference approximation of first derivatives. Care must therefore be

taken that the second derivatives of the physical coordinates (i.e., the rate

of change of the physical spacing between curvilinear coordinate lines) are not

too large in regions where the dependent variables have significant second

derivatives in the direction normal to the closely spaced coordinate lines.

Page 59: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

_3

Just what is a permissible upper limit to the rate of change of the line

spacing is problem dependent. Consider, for instance, viscous flow past a

finite flat plate parallel to the x-direction. Here the velocity parallel

to the wall changes rapidly from zero at the wall to its free stream value

over a small distance that is of the order of-_--i where R is the Reynolds

number, R = _U_ , based on freestream velocity, U_ the distance from the

leading edge of the plate, x, and the kinematic viscosity, v.

The equation for the time rate of change of the velocity parallel to the

wall is

1

ut = -uu x - VUy + _(Uxx + Uyy)

Recalling that the large spacial variation in velocity occurs in the y-direc-

tion, coordinate lines would be contracted near the plate. The truncation

error introduced by this contraction would be

v

-v(-T) = (- _ yn_)Uyy

v

This introduces a negative numerical viscosity (- _ ynn), since v and Y_n

are both positive.

The effective viscosity is thus reduced (effective Reynolds number

increased),so that the velocity gradient near the wall is steepened. There-

fore care should be taken that y_ is limited so that the numerical viscosity

v

(- _ ynn) not significant in comparison with the physical viscosity (_).

The situation is mitigated somewhat of the fact that the numerical

viscosity is proportioned to the small velocity normal to the wall, this

velocity being of order 1 Actually this limit is conservative, since the/f

normal velocity drops to zero at the wall and only attains the order 1

£fin the outer portion of the region of large gradient of velocity parallel

to the wall where u is very small.YY

Sufficiently close spacing of lines can be obtained even subject to

such limits on the rate of change of the spacing by using decay factors in

Page 60: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

54

the tenths range for the coordinate attraction.

The use of coordinate system control tends to slow the convergence

of the iterative solution, and it is necessary to add the attraction grad-

ually for strong concentrations. Convergencecan be achieved even with

very strong attraction amplitude by successively partially converging the

field with a weaker amplitude and then using this result as the initial

guess for the iteration with a stronger amplitude. This can all be done in

one run by inputing the numberof steps to be used for addition of the full

amplitude (IFAC) and the multiple of the final convergence criterion to

be used as the criterion for the partial convergence of each succeeding

amplitude (EFAC). Generally the lowest or perhaps the next-to-the-lowest

numberof steps that will produce convergence is the most economical. In

typical single-body fields, an amplitude of i000 has required three steps,

while i0,000 has required six steps. A value of i00.0 is typical for EFAC.

Whenvery strong coordinate attraction is used to a boundary having

a sharp convex corner the lines may tend to overlap the corner unless the

SORiterative sweepis toward this boundary. Since the sweepis done to-

ward lower ¢ and n values, such a boundary should be located on the bottom or

left side of the rectangular transformed plane if strong attraction thereto

is to be used. In such a case the initial guess should be IGES> 4

as mentioned above, the stronger the attraction, the larger IGES. When

IGESis large enough it should not be necessary to use gradual addition

of the attraction. Movementof the outer boundary mayalso help (INFAC).

Convergence of Very Large Fields. With some segment arrangements for

multiple-body fields convergence problems have occured with large fields

(20 chords or so). This problem arises since with some arrangements, fewer

lines pass between the bodies and the outer boundary in some directions

than in others. Therefore, provision has been made for approaching con-

Page 61: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

55

vergence on the final field by successively partially converging smaller

fields and using each succeeding result to produce an initial guess by

linear projection for the next larger field. This can be done in a single

run by specifying INFACand INFACO. A choice is given between doubling

the field radius at each step and increasing it linearly. In the former

case the initial size is completely determined by the numberof steps

specified, while in the latter case it is necessary also to specify the

initial point in the linear increase from zero at which the radius is to

start. Care should be exercised that the initial outer boundary does not

intersect the bodies.

Page 62: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

56

Coordinate System

Program TOMCAT

Page 63: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

57

PROGRA_ TO_CAT(I_RUToOUTPUToTAPESIINp_ITwTAPEblOUTPljTeITAPEIO,TAPEI|)

E ******** MT$$T$$rPPT STATE _-0 80DY-_ITTED CnOR_TNAT_ _YSTE_ ********C * ($I_PLY nR MULTIPLy CON_ECTE_ REGIONS)E *

e * {DEPARTMENT OF AEROPMY$IC5 a_ AEROSPACE E_INEERI_G )E * ( _I$$1$STPP! 8TATE !J_TVERBITY tg?5 }C * {DEVELOPmEnT @PO_@nREO BY _ABA,L*_GLEV RESEA_C_ CENTER)C *

C * DIRECT IN_UTR_F@ TO _R, JOE F, THUMP@ONc • _A_ER A

C * _I_BISBIPPI _TATEw _S ]976_C *

C , PHnNEI bnl_3_S-]_5C *

C *********************************************************************C

DI,EN$10_ X(7np60), Y(TO,60], RETA(?O,_), RxT(70,bO), _ACC(70,bO)I, T*CC(?O,bO), XPLOT67_), YPLOT(7_)

l), LBI(6)_ LR_(6), LBDY(6], LR8_D(6)_ LRI_6), LRE(6) e L?$ID(b)_ LI_1(6], tIE(_)_ LTYPE(6), LSE_(6), IwER(_}

INTEGER TACC

DATA NbIM,NDIV! /70,60/OATA RA_/S?,EOST?OS1308/_ATA _NBBEG,_N_BEG /6,61_ATA ZERO /I,OE-08/

C

C *

C *** CARDS(S) , CIICE/BnY - FOR_AT{BAt_)C i (NAy RE BLANK)C *

C * C_ AND C_ • BO CHARACTER A/h ARRAYS ._ICH ARE PRINTED ATC w TH_ TOP OF EACH OUTPUT P'_GE AhD DN ANY PLDT$_C *

C * BOY • NA_E OF BODY BEING TRAN$FOR_ED (BO CNARACTER$ NAX),C *

C _*l CARD I IMAX,JMAXeNBDYeITER_IGEB,IDISK,t_R_I_INTL_I_FIN,IGED

C

C * I_AX = NUVBER OF XI•LI_EB,

C * J_AX . NUMBER OF ETa-LINES,C *

C * NBDY • NUMBER OF BODIES _N THE FIELD.C * (ZERO FOR B_NPLYeCONNECTEO REGION)C *

C * _TER = _AXI_U_ NUMBER OF ITERATIONB ALLOWED *C *

C * IGE$ • INITIAL GUE8B TYPE I (BEE IGEO AL80]C * (IOME BEGHENT ARRANGEMENT8 _ILL NOT.CONVERGEC * WITH THE |TANDARD _NIT_AL _UEBB, THEREPOREC * SEVERAL ALTERNATIVES ARC PROVI_ED,]C * (IGE$mO I8 TYPICAL _OR BINGLE•BOOY FIELOI ORC * MULTiPLE=BODY FIELOB HAVIN_ ALL BODIF8 ON THEC * SAME 81DE OF THE TRAN|FOR_ED FIELD. _GE$sE DR -_0

tE3U

S6?

o1o11t213

15

;Y

EOElE22x2,E5EbE7iB29_03132333.3S_6]T$8

taO

.5

.7

.e505t5_53S,5S_6

E85,bO

Page 64: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

58

cc

C

f.

f,

c.

Ccf-

cccCCccc

ccc

cCKCCCcCcccCCC

cCCcCCCCCcCcCc

'if

t

t

t

t

t

t

t

t

t

t

t

t

t

@

t

t

t

t

t

t

t t

t t

C I *

C * *

C t

C * *

I$ IYPICAL FOR OTHER MULTIPLF-_O_Y FIELDSe EXCEPTF_R THOSE HAVING TWO @_DIE@ IN SINGLE SEGMENTS0_' (}PP_$ITE SIDE@ OF T_E TRAN@ FORME_ FIELD, IN THE

LATTFR CASE TRY IGE§II O_ A,)(IGED.NE,O T@ MOR_ FFFECTI_F FOR CASE@ ,ITH TWEriOTER BOUNDARY O_ THREE @IOE$,)

mt - wEIGWTED AVERAGE OF FDL!R PRPJECTE_

BOUNDARY VALUE@,mO - SAME kS I EXCEPT ZERO I $EO I N PLACE OF VALL_E@

O_ CUT@,I_ - _AM_ i_ % EXCE pT _ OUNDARY VALUES ON CUTS

OMITTE_ IN AVERAGE,I_ - MOMENT PROJECTIONI

WI(@U_D,@UMXmSUMXD)/@UMD, DIVIDED BY IOTALNUMBER OF BOI_k$OARY POINTSew_ERE $UMWmSUV OF ROU_ARY VALUES,

@UMDISUP OF DISTANCE@ TO HOUNDARY POINTS,@U_XDmSUw OF RRO_UCT@ OF ABOVE,

m_ - SAME k@ ] EXCEPT NO _IVISlON BY TOTALNUMBER OF BOLINDARY ROIMT@,

)a - _AME A_ _ EXCEPT EXPONFNTIAL _EIGMT RATHER TMANLINEAR= CONCF_TRAT_ON I@ T_wARD LUwER VALUESOF XT AND/OR ETA WITH DECAY FACTOR OFO,I_(IGESea) ,

¢0 - EXPONENTI AL PROJECTIONIXISUMXE/@UME; wiTH EXPONENTIAL DECAYFACTOR EOUAL 10 IAMS(IGES),*WERE StJMEm@UM OF EXP{._ECAY*OISTANCE),

SUMWEISUM OF PRODUCT OF BOUNDARY VALUEAND ABOVE EXP,

(DISTANCE IS NDNDIMENSIONALIZEO RELATIVETO DIAGONAL OF RECTANGULAR TRAN$F _RMED FIELD)

IUISK - DISK READ/WRITE CDNTROLImO START ITERATION pROM INITTAL GUESS,

DON_T STORE C_ORDINATE $VSTEM ON DISK,m_ START ITERATION FROM INITIAL GUESS,

@TORE COORDINATE SYSTEM ON DISK,mE CONTINUE ITERATION OF k PARTIALLY

CONVERGED _OLUTION READ FROM RESTARTFILEON DISK, STOKE COORDINATE SYSTEM ON DISK,

m_ A@ #E EXCEPT _ONeT @TORE COORDINATE SYSTE M,

NOTEI IDI$K OF 1 _R Z CAUSES THF COOROINATE SYSTE _ TO BE _RITTEN

, TO DISK IN TWE FOLLOWING FORMkTI

,RITE(tOet) C1,RITE(IO,1] C2*RITE(tOet) IMA.X,jMAX,NBSEG,NRSEG,LISEGeNBDY*RITE(tO,I} (LBSID(L]_LBL(L)_L@_(L)_L@OY(L)*LSEN[L)_

I Lmt,NBSEG)_RITE(10_I) (LRSIO(L)eLRt(L),LR_(L).LISIO(L}eLIt(L}eLIZ{L]_

1LTYPE(L)_LmieNRSEG),RITE(IO_I) ((X(I_J), I=I_IMAW)_JII'JMAX}_

1 {(y(ImJ)_III_IMAX)_JI_JMAX)

MERE LISEG IS THE TOTAL NUMBER OF BODY @EGMENTS(EXCLUSIVEOF OUTER BOUNDARY SEGMENTS) PLUB 11 LBEN(L) IS et IF

61_Ze_@g

6Sb_elbB()@70T1?Z

7aTS

7'77_7';SO@1@Z@]5S_8'38bST@B@9_0919E93ea9596

_899

tO0101

tO$tOU1.OSlobtot10810@11011ttti_IL$

It@tL?118119tEO

Page 65: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

59

cCCCt"CcCCcCc.Ct'ccCccCCCCCCC

Cc¢CCC

CCCcCCcCCCCCCCCCCCCCCC

CCC

t

t

t

¢t

¢t

t

t

t

t

¢1

t

dr

#

I

t

t

t

¢t

J_

t

¢1

LP2CL_>LR1(I } ANn IS -I {_T_E_ISE(LRI a_D LR2 AREI_TE_CHA_GEO I_TERNALLY AFTF_ LSE_J TS _ET IF NECFSSA_YS_ T.AT LB2>LR1}I LTYPE IR Im2,],_,_,OR _, _ESPFCTZVELY,IF THE TWO SEGMENT8 Or A :E-E_T_a_T PaIR k_F tl) n_F ONmOTTO_ AND O_E _ T_P, (_) RPT_ _ ROTTO_. _) ROTH O_ TOP.{_) ONE ON LEFT AND O_E 0_' RIGHT, (_) B_TH nN LEFT_ ORfb) _OT_ 0_ RIGHT! X _D Y IRF THF _ARTEST_N COP_DIN_TF$.

IF CONVERGENCE IS NOT aTTAINED TN TWE ALLOWED N(_BE_ OFITERATInNS T_E PARTIALLY CONVERGE_ S_LLJTIO_ I$ _Tf_E_ ON

* DISK FOR RESTART, T_E ITE_ATInN _AY THEN HE C_NTT_UE_ Ry***** SETTING IOISK TO 20_ 3 AN_ INC_EASTN G ITEm,

T*I_ - _0 nO_T PRINT EAC_ ITERATION ERROR NOR_,_I PRINT EACH ITERATION ER_n_ NO_,

T*TNTL - m_ OON_T PRINT _NTTIaL _UF$$,11 PRINT INITIAL GtJE_S,

I.FI_ * *O PRINT C_ORDIkaTE SYSTEM,

II _ONeT PRINT CDORDINATF SYSTEM,

IGED - CONTROLS OIRECT]O_J OF wF]_TED AVERAGES FO_ INITIALGUESS TYPES 0,1,2, AND ,GT,U I

• 0 . AVERAGE IN ROTH Xl AND ETA _IRECTTONS(FOU_ POINT AVEragE)

• ! * AVERAGE IN nNLY ETA DIRECTION

(T._ ROINT AVERAGE)• E - AVERAGE _N _NLY Xy nI_ECTTON

(T*O _UI_T AVE_AGF}

**t CARD I IPLOT_IPLTR_NCOPY,LIN*T_,LIN_TE.NUHBR_NU_RR|_*** 18KIPI,ISKIP2, - FORHAT(qI_)

I

I

t

li

I

li

i

I

lt

I

Ir

I

il

t

Q

il

l)

l

1)iiil

t

IPLOT - PLOT OPTIONS1

mO NO PLOTS (INPUT OF REST OF CARD NOT REQUIRED),xl PLOT COORDINATE SYSTEM,l_ PLOT INITIAL GUE88 aND COORDINATE SYSTEm,

IPLTR - I1 PLOT _ITH OOULO _800,B2 PLOT kITH GERRER

m_ OTHER ( CALL P_EUO0 - DEVICE INDEPENDENT .VARIAN AND CALCOMP DO NOT HAVE LINE*TCAPABILITY]

NCOPY - NUMBER OF COPIES O_ PLOT DE8IRED,

LINwT1 . PLOT LINE wEIGHT DESIRED POR PLOT TITLES,(=_ "I_ O_ I_ _ RESPECTIVELY FOR TRIPLE_ DOUBLE_

NORMAL_ HALF_ THIRD WEIGHT LINES)(THIS APPLIE| ONLY TO THE GOULD _800)

LIN_T2 * PLOT LINE WEIGHT DESIRED FOR COORDINATE 8YSTEH,{|[E NOTE BELOW LINWTI]

(TH_8 APPL_F8 ONLY TO THE GOULD 4800)

NUHBR . NUMBER OF ETAmLINE8 DESIRED FOR PLOT,[ZERO VALUE PLOT$ ALL]

121

125I2(J

127

150131

135

13b157I_

I_I

I_

I_?

150

IS$

15S

157158

It)OI_

165

17o17I

177

Page 66: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

60

Cr

cFcccc

cccc

t

t

t

_.LJMmPl .. _ll,_E_ OF XT..LI_ER r_E._Tt_E r_ Ircl_ PLC1T,

(ZF.R{] VALLIE PLUT$ ALL)

TSKIPt - SKIP PARAMETER FOR XI-LT_E$,(1PL_TS EACH LINE, 2 PLOTS EVEPY SECO_ LT_E,ETC,

]SKIP2 - SKIP PkRA_ETE_ FOR ETk-LI_ES,

(REE NOTE BfLnW ]SKIP1)

t

*** EACW B_OY A_D TMF OUTFR _0 IjN_A_¥ IS nIVI_E_ I_T0 ONE OR

*** M_PF SEGMENTS PLACE_ ON TM_ BI_ES nF X_F RECTAN_ULA_ T_ANIFO _EO

*** FIWLn, TWESE 5EGME_IT$ _RF CONNECTED PY RE-E_TRA_;T SEGMENTS,

C *** TMF BFG_E_T CONFIG U_ATIo_ INPUT IS AS _OLLO_Sl

C **** CARD I N_SEG.NRSEG - FORMAT(2IS)

, NBBEG - T_TAL NUMBER OF _O_Y A_O O_TER BOUNDARY SEGMENTS,

, NRBEG - TOTAL NUMBER 8F PAIRS OF WE-ENTRA_;T SEGMENTS.

, (ZENO FnR $1MPLY-CON_ECTED REGION)

*** C&RD$(N_$EG) I LbSIDeLR%eLR2#LRDY " FOP_AT(_IS)

cCccCrCr

C *C *C *C *C *C *C *C *

C *C *(- ,C *C *

C *C *C *C *C *C *C *C *C *C *CCCCCCCCCCCCCC

L_$1D - BIDE OF RECTANGULAR TRAkSFOHMED FIELD nN wHICHR_DY _EGwE NT OR OUTER BO(IK, nARY SEGMENT I8 LOCATED,

(BOTTOM IS 1_ LEFT IB _, T_P I8 ], RIG wT IS _,)

LHI_Lm? - FIRS T AND LAST INDICES OF REGMENT,

(Lm} MAY EXCEED LB2)

LBDY -RQDY NUMBER (BUDIES ARE NIJMRERED CONSECUTIVELY

FROM | TO NBDY

OUTER BOUNDARY IS BODY NUMBER 0 OR Nb_Y_%,

NUMBER 0 CAUSES OUTER BOU_DIRY TO BE CALCULATED

INTERNALLY IS A CIRCLE, P_STTIVE nR NFGATIVENBDYe% CAUSE8 OUTE R BOUNDARY TO RE READ AS OTHER

BODIES,)NOTE I EACH BODY IS RFA_ VIA A SINGLE CADD OR SET

OF CARD8 wiTH _0 RFPEATED POINTS_ NOT EVENTME FIRST POINT, BODY SEGMENTS MUST BECONSECUTIVE ACCORDIN_ TO LBDY, WITH THEOUTER BOUNOARY LAST REGARDLESS OF ITSLBDY, _OINTS IN FACM SEGMENT ARE READCONSECUTIVELY AND PLACED ON BOUNDARYFROM INDEX LBI T_ INDEX LB_,

*** CAROS(NR_EG) I LRSID,LRI_LRE,LISIO,LII,LIE " FORMATCbIS}, (OMIT FOR 8IMPLY-CONNFCTEB REGION)

LI

R

LR$ID,LISI_ - SIDES OF RECTANGULAR TRANSFORMED FIELD ONWHICH IEOMENTB OF A RE-ENTRANT pAIR ARELOCATED, BEE NOTE BELOW LBSIB FOR 8IDES,(LIIIb MUST EQUAL OR EXCEED LRBIO)

LRteLREeLIIeLIE = FIRST AND LAST INDICES OF EACM SEGMENTOF A REtENTRANT PAIR, (I_ LISID II EQUALTO LRBID THEN LII MUST EXCEED LRE, IFLIiID T_ NOT EQUAL TO LRBI_ THEN LitMUST EQUAL LR%. IN ANY CASE LRE MUST

$ba18S

187188

Tel

E00

CO2_0520_E05EO__0?ZOb_09

2%2

ElS

_EO

E22

2_5Z2_

228

_0

!]?

Page 67: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

6i

CCcCccCcCCcCr¢ccCCC

cC

CCCCf,CC

CCCccCCC

CCCCCCCcCCCCC¢CC¢CCC

* EXCEED L_I, ANn LI_ MU_T EXCEED LII.]t

*** CARD I _(1)eR(2),R(3)eYINFI_oAIN_IN,XOT_.fjYOINF,_JI_F -FORMAT(?KIn.0,15)

R(I) - GAt,$$-$EIDEL ACCELE_ATIn_ PArAMETEr.ZERn VALUE CAUSES VARTARLF ACCELERATION PARAMETER

FIELD TO RE CALCULATE_ tNTEPNALLY,(TYPICALLY 1,85)

R(2) - CQNVERGENCE CRITERION Fn_ X ITE_ATInN EPROk NOR_,(TYPICALLY 0,0000|}

R(3] - CONVERGENCE CRITERION FO_ Y ITEWATIO_ ERPn_ NO_M,(TYPICALLY 0,00001}

YINFIh = RADIUS Or CIRCULAR OUIER _ULINOARY,

AINFIn - ANGLE OF FIRST PnINT nN OUTEP _O_NDARv, (nEGQEE$)(ANGLE t_ POSITIVE COIJNTER-CLOCK_ISE FWnM POSITIVE

X-AXIS, PC)INT8 ARE CLOCKWISE FROM T_T$ ANGLE.)

XOINF,YOINF - CENTEN OF CIRCilLAR O_ITER BOUNDARY,

k,INF= NUMBER _F UNIQUE POI6T$ ON DUTE_ ROUNDARY e

HOTEl YINFIN,AINFIN,XOINF_ & VnlNF _AV BE RLA_K IFOUTER BOUNDARY I_ TO _E READ,

*** CARD I IffvmIAIT,R(10] - FORMAT(@IS,FIO.01(BLANK CARD MAY e_ INPUT IF COh_TANT ACCELERATIOkPARAMETER I_ USE_}

IEV - CONTROLS COMPLEX JACOBI FIGENVALLJE PROCEnURE.[OPTIMUM ACCELERATION WITH R_AL _IGENVALUE_ ISOVER-RELAXATION. OPTIWIJw _ITW IMAGINARY I_UNDER-RELAXATION, NO THFORETICAL OPTIMUM 18 KNOWNFOR COMPLEX EYGENVALUE$,)-l I UNDERmRELAX=

0 I WEIGWTED AVERAGE,el I OVEHuRELAX,

IAIT - NONmZERO VALUE CAUSES VARIARLE ACCELERATIONPARAMETER FIELD TO _E PRINTffD,

R(|O) - CONVERGENCE CRITERION FOR VARIARLE ACCELERATIO hPARAMETER FIELDm FIELD I$ FROZEN wWE_ _AXlMUMABSOLUTE CHANGE ON FIELD I_ LESS THAN RCtO].(TYPICALLY O,OI)

*** CARD I INFAC,INFACO - FORMAT(EI_](CAN RE USED TO AID CONVERGENCE BY CONVERGING ASMALLER FIELO FIRST AND USING TwI! REiULT TO PRODUCE&N INITIAL GUE$! FOR k LARGER FIELD, BLANK CARDMAY RE INPUT If ?HI8 FEATURE I_ NOT TO BE II!ED,!TANDARD I! TO NOT U!E TWI! FEATURE,|

INFAC = NUMBER OF !TEP! IN ATTAINMENT OF OUTER BOUNDARY.POSITIVE DOUBLE! OUTER BOUNDARY AT EACH 8TEP_

NEGATIVE MOVE! OUTER BOUNDARY LINEARLY,

Page 68: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

62

cc

rCCr

CcrccC

ccccr

cccCcCcc

cccCCcCCCcccCcCccCCCCCCcCc

CC

CC

CCCcC

t {INCREASE MAGNITUDE IF DIVEWGENCE _CCUR$)t

* INFACn - INITIAL STEP IN ATTAINMENT OF OiITER BDU_DAWY,

, (LINEAW ATTAIk_E_T ONLY)

*** CArD I $1ZE,RATIO,_IST,XBIw_B_YRIeYm_ - FORmAT(IF)0,0)

(C)MIT IF NO PLOTS DESIRED= I,Fo= IF IPLOT IS ZFwO)

SIZE = PLOT SlZE IN Y=DIWECTION, (TNCH_B)[TYPICALLY 8,0)

RAIl0 = I0 X AND Y PLOT _CaLES ARE E_UAL,>0 X A_D Y PLOT SCALES ARE AnJIJSTE_ 80 THAT THE

PLOT I$ SQUARE,(IYPICALLY 0)

nlST - GOULD PAGES REOUEST(X=DTRECTIDN)p EITHER 10 OR 20,(TYPICALLY tO,O)

_BI,XB_ - _INIWUM A_D MAXIMUM W-VALUE8 TO BE PLOTTEO_

(ZERO8 PLOT ALL)

YBIeYB2 = MINIMU_ AND uAXI_UM Y=VALUE$ TO BE PLnTIED,(ZERO8 PLOT ALL)

*** AFTER THIS INPUT, READ IN BODY COORDTNATF$ = FORWATCEFtOmO)

_et

*** TF NO COORDINATE SYSTEM CONTROL 18 TO RE USED, FnLLOW TMESE CARDS

*** *ITH T_REE BLINK CARDS, TF CONTNnL I$ TO BE USED, *lSF THE

*** FOLL0.1NG I_PUT RATwFR THAN THF BLANK CARDSl

*** INPUT FOR COORDINATE SYSTE M CONTROL= USE TWO 8ETSe ONE FOR

*** XI-LINE CONTROL AND ONE FOR ETA=LINE CnKTROL,

*** (THIS DATA 18 RFA_ I_ SUBROUTINE SOR.) I#

*** CARD I ITYPwITYP,NLN=NPTeDECwAMPFAC = FDQMAT(Ab=I_I_F|O=0)

ATYP = TYPE OF ATTRACTION e (Xl FON XI'LINE ATTRICTION_

* ET_ FOR ETA-LINE ATTRACTION,) LEFT JUSTIFIED,

* ITYP - ZERO GIVE8 ATTRACTION ON BOTH $1DES,

* NON=ZERO GIVES ATTRACTInN ON CONVEX SIDE AND

, REPULSION ON CONCAVE 81_E,

e NLN = NUMBER OF ATTRACTION LINES,

l

• NPT = NUMBER OF ATTRACTION POINTS,

* OEC - NON-ZERO DEC U_E8 DEC FOR BECAY FACTOR,

• AMPFAC= NON=ZERO AMPFAC WULTIPLIE$ ALL AMPLITUDES

• BY AMPFACI

**• CARO$(NLN) I JLN_ALN_DLN - FDRMAT[§W=IS_F[0,0)• (OMIT IF NLN I8 ZERn)

• JLN = ATTRACTION LINE INhEW,

* ALN = AMPLITUDE (NEGATIVE REPELS) FOR LINE ATTRACTION,

e

30t30_

_05306$0130B30e

313

316

3IS3193_n

3_3

329330

33335.

336337_3833q

3.3

3_6

3_83wg3S0

3S$

35_

Page 69: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

63

* nL_ = DECAY FACT_ FnR LT_E XTT_AC?IO_J, 3hiC * 362

*** CA_S(NPT) I IPT,JPT,APTe_PT - FnWMAT(_I_,2FI_.Q) ]_C * (O_TT IF _PT T$ ZEkn) 3b_

C * TPTwJPT - ATT_ACTTOh POINT INDICES. 36_C * 367C * APT - A_PLTTU_F (NFGATIVF REPEL$_ WOQ POINT ATTrACTIOn. 368C * 36q

* f)PT - _ECAY FACTO_ FO_ P_INT ATT_ACTI_. 370C * 371C *** FOLLOW TMF COORDINATE SYSTE_ C_TROL CAR_S wITH THE 37_C *** FOLLOWING CADOt _T_C * 37.

C *** CArD I IFaC.TRTTeEFAC m FO_MAT{_ISeKIO.O) ]75C * (CAN BE USED T_ AID CONVERGENCE HY CO_vERGING ;IELn 37k

* _IT_ LESS ATTRACTION FIRST A_O D_TNG TWIS RESULT 377C * A_ TH_ INITIAL GHE_S F_ ST_N_E_ ATTRACTION, ]T_

* BLANK C_RD -LIST RE INPUT TF TwTS FEATURE I_ _OT USED. 3ToC * STAN_AR_ IS TO NOT USE THIS FEATI_IRE . _UT TT8 LISE MAY 380

* _E _ECESSARY _TTH STRONG ATTRACTION,) 381

C * _FAC - NUWRER OF STEP_ IN ADOITI_h 0F INMOMOGENEOUB T_M, _3

C * POSITIVE OOUflLES INHOM0_ENEOUS TERM AT EACW STEP, 3_Q

* NE_ATIVF INCWFASE_ INMO_OGE_tEOU$ TER_ LTNEARLY, 38_

C * (INCREASE MAGNITUnE IF _IVERGENCE OCCURS,) 386C * 38T

C * IRIT - NONmZERO VALUE CAUSES INWO_nGENFOUS TERM TO BE $_C * PRINTED, 38qC * 390

C * EFIC - MULTIPLE OF CONVERGenCE C_ITERIO_ TO RE USE_ FOR ]gtC * INTERMEDIATE CONVERCENCF BETWEEN AOnITI_NS OF ]9_C * INNOM_ENEOU8 TERM, (TYPICALLY |00,0 _ _C * $9_

C ********************************************************************* SqSC $qbC READ INPUT PARAMETERS ]97

C 3qO*RITE(_,6_O} Sqq

C _00

C A CALL TD PSEUDO INITIALIZES THE GRAPHIC OUTPUT SYSTEM, THIS MUST _OtC BE THE FIRST CALL FOR GRAPHICS IN ORDER TO GENERATE PLDT DATA Q02

C IN THE FORM DF A DEVICE INDEPENDENT PLQT VECTOR FILE, _03C k CALL TO LEROY _LOW8 TMF 8PFED FO_ GERBER F_R LTOUIO INK PEN, _0aC IT I$ OK TO LEAVE CALL LEROY IN FOR T_ OTHER DEVICES, _OSC _Ob

CALL PSEUDO _OTCALL LEROY _08RE_O (§_bSO) C|,C_BDY QO_

READ iS,k20) IMAW.JMAXeNBDYeITEReIGE8.1DISK,I*IR,TWINTLeIWFINeIGEO _10IF (IMAW,GT,NOIM) wRITE (6e700) IMAX_NDIM _11IF (JWAW,GT,NOIM|) WRITE (6,?_0} JMAX.NDI_[ U12IF (IMAX,GT,NDIM,OR,JMAW,GT,NDIM[) STOP [ _15READ (Se6_O) IPLOT_IPLTR,NCOPY_LINWTI,LINWT_NUMBReNUNBRI_I _1_

tIKIPI_IIKIP_ _[_REAO (§_q60) NBSEG.NRSEG _16IF (NB|EG,OT,MNBBEG) WRITE (_,qtO) NBSEG,MNBOEG _|7IF (NR|EG,GT,MNRDEG) WRITE (6#9_0) NRBEGeMNRBEG _18IF (NB|EG.GT,MNB|EG.OR.NRSE_,GT_MNR8EQ) 8TOP Z _19READ (_,880} (LROID(L]_LBI(L}.LRI(L).LRDY(L)eLBt_NBB[_) 0_0

Page 70: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

64

tL)wLIE(L)wLSloNQ$_G)RFA_ (_eO00) (_(1)_Tule$),YT_FI"_eAIKFT_,XnI4FjYOI_F,_I_'F

_An (S,_20) IEV,IAIT,_(In)RFAb (_b20) I_FAC_I_rACn

IF (IRLOT.hE.O] _FAP(_M30) !TZFogkTIOenI!T,X_leX_2wvR1wYR2

_WITF T_PLIT PARAMETFR$

*RITE (6,1n60)

_rRITE (6,990}

%,IGEO

_RITE (_,I010)

wWI_E (_,Ih205_RITP (a,tO3h]

*RITE (6,101o)

I"_W_J"_X,N_DY,ITKR,I_ES,T{)ISw_I*IR,IWINTL,IWFI _

IPLOT,TPLTW,_COPY_I. IN-T_,I I_WTP,NU_BP_U'_R|

I_V_I_IT,R(IO}

$1ZE,_ATTC},I)T!T_XBI,XB_,YHI_YB_

Ir (NRS[G.EQ.e) _RIT[ (b,IOMO)

_PITE (6_glO) (L,LR$I_{L)eL_I(L)eLBE(L),L_DY(L),LmI,NR!EG)

III(L),LI)(L)eLmI,NNSEG)

IF (INFACO.EG.O) INFACOmlIF (INFIC.EQ.O) INFACm|

wRTTF (6_9_0) YIkFT_INFTNeWOI_r_YOI_@,NTNF,INr_C,INr_CD

IF (R(1).GT.O.O) wRIT( (6,8?0)

SET {JP P_RAMETERS

I0

NPLT!m!

_INVINe_INFI_/R_D

IF (NUMBR,EO,0) _ILI_BRBJMAX

IF (NUMBR|.EQ.O) NUMBR[ZI_AX

IF (I$KI_I.E_.O} 18KIP!BI

Ir (I$KIPE.EO.O} 18KIP2utIF (NBDYoLE.O) NRDYm|

IF (I_LOT,EQ,O) G_ TO 10

IF (kB$(XBI),LT,ZERO) XBIB=t,0EEOIF (AB$(XBE).LT.ZERO) XS_le!lO[_O

I_ (AB$(YRE).LT.ZERO) YB_meI.0[_O

IF (DIST,LE,O,O) DTSTmlO,OCONTINU_

RE_D POINT8 ON BOOIE_ AND

READ OR CALCULATE _OINT5 ON OUTER ROUNDARY

DO 20 LmI_NB$E$E0 If (IAB_[LBDYtL]},EQ.NBOYeI.DR.LBDV(L).EG.O)

LISEGmNBOEG_IGO TO _0

30 LISEGmL

_0 DO SO luleZM_X

DO _0 Jmt,JMkXX(Z,J)uO.O

SO VCI,J)u0,Ok_OYOmO

GO TO $0

_EEu23

UE/__27(_28uEq

u3!

(_3q_W0

UWQ

Q_0

_SB_sq/4b0

/4e/_

/4bq

_0

Page 71: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

LBDYCNB8EG+I)me|O0 _81nO _EO LmSmNBSEG .82

XImLBI(L) _8_

T_mL82(L] _8_

ISENml _B5TF (Tt.GT.I_) TBENB-I ,86

LB[N(L)mTBEN _87

KImMTNO(II_T2) _8

K_mMAXO(II.I2] ,89LBI(L)mKI U90

LBZ(L)mK2 _91

Ie (LBnY(L).EQ.LBnYO) IIIIIeISEN _2IF (L_DY(L).NE.LBDY(LeI]] I2mT2-TSE_J _93IF (LBDYtL)mNEmLBOYO) I_mTI ,q,

KImMTN0(TI,12} .9_

K2mMAX0(IIwI2} _q6IGOT0mLBBIO(L) ,q?

GO TO (_Owl&O._Oe160). TGOIO ,98

C**** BOTTOM OR TOP .99

60 IF (LBBID(L),EQ,l} j=! SO0

IF (LBBIOCL),EQ,3) JmJMAX S0I

IF (NRBEGmEGmO) GO T0 gO _O_

IF (L,LT,LISEG] Gn TO 90 S0]IF (LBDY(L]) Q0o?0eQ0 S0Q

70 CJLL BNORY (XmY,JIIImI2mLB$10(L}pYI_FI_eAINFINmXOINF#YOIN_wNINF_ _0_INDIM} 50b

GO TO 130 S07

90 DO _00 XmKl,X_ 50BIIII÷(KmKI)*IBEN S09

100 RE_ (S,850) W(T,J],Y(I,J} 51_1_0 I_ (LBOV(L),EQ,LBDYO) GO TO I_0 SII

I_mj 51Zx._mXCla,la) 513

Y_6tY(I_,Ia) 51Q

_0 TO t50 SISIQO CONTINUE 51b

XCII-18EN.J]mX]5 517

Y(II-IBEN,J)uY$_ 518150 ISwJ 51q

ISmI_ 520

X$SmX(l$_IS) 5_1Y$SIY{I$115) 5_

IF (LBOY(L),EQ,LROY(Lel]) GO 70 2bO 5_3IF (NR_EGmEOm0eAND_NBOYmGTmI) GO TO _0 5_

X(II+IBEN_J)mW.6 5_YfI2+IBEN_J)aYQa 526GO TO _0 5_?

C*** LEFT OR RIGMT S_8160 IF (LBSIDCL],EQ,Z) Iml 5_9

I_ (LBBIDCL),EQ,#) TmIM_X 530IF (NROEG,EQ,O) GO 70 190 S]lIF (L,LT,LTSEG) GO TO 190 S$ZIF (LBDY(L)) 190_t70_190 533

170 C_LL BNDRY (X.YeI,I|_I_LBBIO(L),YINFIN,_TNFINeXOINFmYOINF_NINF_ 5}_INDIM) 5$5

GO TO _$0 _)b

190 DO _00 KIKI_K_ S]?JmIItCK-Wt)*ISEN S38

I00 READ ($,830)-X(I,J),y(I,j] 5$q

Page 72: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

66

2aO

_50

2eO

11)

it)

_Oo

CALL WAXMIN (X,T_AX,JMaXpNDI_,XB_AX,XRVTN,IDLwM,InlIM,IDUM,IDUMel,

)9O

Cn_TINUELROYOuLB_Y(L)cONTINU_

DO _90 LI|aNMSEGL_DYfL)mI_B$(LBnY(L))

CLASSIFY RE-ENTRANT SEG_MENT_

IF (NRSEG.EO.O} GO Tn 3_0no ),0 LmI,NRSEG

IGOTOmLR$10(L)GO TO ($00,$t0,_)0,330), IGOTn

100 LTYPE(L)m!Ir (LISID(L).EQ.LRSI_(L)) LTYPE(L)m_GO ?0 $_0

31o LTYPE(L)m_Ir (LISIO(L),EO,LRSID(L)) LTYPE(L)m_GO TO 3_0

_0 LTYPE(L)miIF (LIBID(L),EU,LRSTD(L)) LTYPE(L)m)GO TO 3_0

)30 LTYPE(L)m_I_ (LI$10(L).EQ.LR$1D(L)) LTYPE(L)m6

_aO CONTINUE3_0 CONTINUE

PULL OUTEP BOUNDARY IN FOR INITIIL GUE$_ Eft IN@_C NOT ZERO

$60

Ir (IN_C.GT.0)IF (INFAC.LT.0)IF (LISEG.GT.N68_) GO TODO QO0 LmLISEG_NB_EG

ItmLBt(L)I)mLS)(L)IGOTOmLBSlO(L)_0 TO (_60_380_60,_80))IF (IGOTO,EQ,I) JmlIF (I_OTO,IQ,)) JmJW&XDO 370 Imll,IE

ClN_Cm!.0/FLO_T(E**(INF_{-!))CIN_A_m_LOAT(IN_ACO)/AB_(FLOAT(TNFA_))

IGOTO

Page 73: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

67

370 Y(I,J)mY(I,J)*CINFACGO T_ _00

380 IW (IGOTO,_Om2) Iml

IF (IGOTn,_Q,_) ImI_AXDO ]_0 JmIleI2

w(I,J)mX[I,J)*CI_FAC

3QO Y(I,J)nY(I,J)*CINFAC

QO0 CONTINUE

INITIAL GUESS

_lO CALL GUE$$A (I_AX,JMAX,NDI_wXpY.XBMAX,WBMINpyRMAX,y_MINeYINFI_w_.NBIEGeLRIpLR2,LIIeLI2,LRSID,LIBIDeIGE$oIGEn)

QO_ IW (IPLOT.EUe_) CALL CORPLT {XpYjNDI_,NIJ'_WIw_UM_RtCIwC2wRJTIOp$1Z

IEe_COPY,LI_wTI,LINWT2eI$_IPI,ITKIP2,XPL_ToYPLnT,DTSTelPLTRe_LT$,LB$1D*LBIeLM2*LBDY,LR$1D_LI$1D,LRImLW_,LTIeLI2_LTYPE,_BTEG,N

TR_EG_LI$_G,J_AX_IM_X,XBI_XB_eYBI,YB_]

PRINT INITIAL DATA

wRITE (6#6_0) C1

wRITE (6ea6n} C2

wRITE(6_6TO) NDY_IMAX_jWAXmR(|)eITER_R(_)_R(])_RITE (_,A_O) NBDY

IF (NBDYeEQml) GO TO _aO

_0 WRITE (_0)60 TO .TO

_0 wRITE (km_go) NCO_¥,LINWTE,$1ZE_RATIOQT0 CONTINUE

IF (IWINTL.EQ.O) GO TO SO0wRIT( (_?_0)

WRITE (SmTQO)

DO _00 Jmi_jMAX

wRITE (_TSO) d

QAO wRITE (_?I0) (X(I,J)_ImI.IMA_)wRITE (_.760}

DO _0 JmlmJMAX

wRITE (a_?60) J

_o0 CONTINUE

ITERATIVE SOLUTION

C_LL 80R (RmW,YmlWAXBJMAX,ITER_IXER_IYER_IEND,NOI_IWEReNBOY_WACIC,RETA_RWI_LRI_LR_LII_LI_LTYPE_NR$EG,TWYR_IAIT,INFAC_INFACO_NO$_

_G_LIS_G_LBI_LB_L_SID,TACCmIEVmIDITK)

PRINT VINAL VALUES

I_ (IWFIN.NE.O) GO TO STOWRITE (5_6_0)

WRITE(6_6_O} CIwRITE(_.b_O) C_

W_ITE (_770)

O0 TO _0

wRIT[ (keT_O) ITER

Page 74: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

68

530 ,_ITE {6,8nnl

_QITE (6,_50) TXERCI),TXFR(2)eIYF_(1),IVF_(_)*mITE (_,7_0)

_0 550 JII,JMiX

,mITE (_,75o) J

550 _ITE (6,71n) Cx(Y,J)oI¢IoIMaX)

*_ITE (6e7_0)

Dn 560 JsleJ_X_RITE (b_75_) J

S_O ,_ITE (6,71e) (Y(I.J).ImI.I_AX)

_RITE (6,6Q0)570 TK (ZDISK.EU.O.n_.TDISK.EQ._) _P TO 6_

_RITE (10,q80) C1

wRITE (lO,gSO) C2

TF (IDISK.EQ.,) GO TO $80

*RITE(IO_620) I_AX,J_X,_aSEG,_'_$£G,L?SEG,_BDY_RITE(IO.qFI)TLSBT_CL),L_](L),LR2(L),LBnY_L_.LSE_rL),Lmt,N_SEG)

wRITE(IO.ga_)(LRST_(L),L_I(L),L_?(L),LIST_(L),LIIfLI,LI2(1),

tLTYPE(L),LBI,N@$EG)GO TO _0

580 _RITE(IO,_I) IMAX,J"_X5_ *_I?E(10eg83)[(XC_,l),Im1,I_AX),Jm1,J_iX),(CY(led)_lileI_al)_Jlle

tj_X)

600 COnTInUE

PLOT

IF (IPLOT.GT.O) _0 Tn 61nSTOP

610 CALL CORPLT (X,Y,NDI_,4tJ_RR1,NU"BR,C1,C_,RATIO,$IZE,NCOPY_LINWT1,LIIN_T_,ISKIPI,IB_IP_eXPLOTeYPLOT,DTST_TPLT_NPLT$,LBSIDeLBle_LB_,LSOYeL_$ID,LISIO,L_t,LH_,LII,LI_eLTYPEe_BBEG,NRSEGeLI$EG,JMAXe31_AX_X_t_XR_,Y_I_YR_)IF (_PLOT.GT._) CALL PLOT (O..O..g09)

STOP 010t

6ZO FORMAT (1615)

6]0 FORMAl {8F10.0)b_O FORMAT _IH1)

6S0 FORMAT(BA|O)660 FORMAT(_tXeSAtO)&TO FORMAT {/]TXe*BODY_FITTED COORDINATE SY_T_M*tt_IX,*TRA_FOR_ED 80D

IY. *,8AtOIt_IX_*FtELD PARAMETERS, NU_RER OF XI=LINE8 sw,Igt3RXe* N

_UMBER OR ETA-LINES • *,I_t/ItqX,* ITF_ATION PARAMETEmS! $OR ACCEL]ERATION PARAMETER • *,FS,St_ZX,* MAXI_u_ NUMBER OF ITERATIONS ALLO_wEO u *,I=/3_X,* ALLOWABLE ITERATIO_ ERROR NORMSl Xl *,E10,_/75SX_* Yl *,E|O,S)

bBO FORMAT {I_IX_*NO PLOTS DESIRED*)

650 FORMAT (/EIX,*PLOT PARAMETERS1 COPIES DESIRED • *I3/_?x,* LINE*,1*wEIGHT _ES_RED • *I3t_qxe*PLOT SIZE TN YoDIRECTIDN • *F§,]/3qX_*R|ATlO I *_F8,$)

?00 FORMAT (*0--- ERROR ---- IMAX TO0 LARGE*,IOX,*IMAXs*,TS_SXn*MAXI_UtM IB*,IS/t6X,*INCREASF NDIM IN OATA STATE.ENT AND*,* FIR8T DI_ENSl

_ON OP X,V_RETA,RXI_ACC,TACC_*/16X,eALSO*,* INCREASE nIMENSTON OF

SXPLOT AND YPLOT TO MAXIMUM OF*,* NDIM AND NDIMI PtUS _,*)710 FORMAT (_Xe10F11.S)?_0 FORMAT (*Omo- ERROR ..o= JMAX TOO LARGEteIOXetJMAXi*e_eSXeeMAXtMU

IM IS,,I_/t6X,*INCREASE NDIMt TN DATA STATEMENT AND*,,' SECOND DIMEN

b_1

662t665

b6_

6e7

67n_71

e73

675

67867_

68U

bBb68T668

68_

69t69_

6q3

69_b_66_7698

bq97O0

701

TO_?Oh_OT

?08

710T11

Tt|Tl$

TiT710715

Page 75: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

69

2SION OF X,Y,WETA,RXIewACCoTACC**IIbX,,ALSn,** INCREASE _IMENSION O T213F WPLOT AND YPLOT TO MAXIMUM OF*,m NDIM A_O NDIM| PLUS 2**) T22

?]0 FORMAT (/21We*INITIAL GUESSES FDW X AND Ye) 7237UO FORMAT (/_Xe]3(JM,)wq_p,XmARRAymSw_](|Ht)} 72QTSO FORMAT (SXw*JmeI_} 725T60 FORMAT (/_Xw35(tH,)egxetY.ARRAY,BXw_](IH_}) 726?TO FORMAT (/StW,*FINAL VALUES./) 727

T80 F_RMAT (2|Ww*ITERATION DIVERGE8,,) 728?gO F_RMAT (2tXw*ITERATION 18 CnNVERGING RLIT DOE8 _OT REACM ERROR TOLE 729

IRJNC[8 IN *I3e* ITERATIONS.*) 730

800 FORMAT (2|We*ITERATION CONVERGE$,,) 731

8tO FORMAT (/21Xw*INItIAL ITERATION ERROR _,_RM$1 Xl *wE|O.Se* YI _eE 7_2

tlO,Sw* AT ITERATE i |*/2IX**FINAL ITERATInN ERRQP,,, NORMS1 Xl 7_2*wElO,Sw* YI *eE|O,So* AT ITERATE #*,I_) 73Q

820 FORMAT (215,F10.0)830 FORMAT (2F|O.O) 7_5

736850 FORMAT (21Xo*LOCkTION OF MAXIMUM TTE_ATIO_I ERRORI Xl I=*I_p*,Jm*Z5 737

l/SOXe*Yl II*I_we J=*IS) T]_860 FORMAT (/21XweNUMBER OF BODIES TN FIELD 1.I5) 739870 FORMAT (*OUNIFORM ACCELERATION PARJMETER USED**) ?gO880 FORMAT (_15)890 FORMAT (61S) 7WI

7_2qO0 FORMAT (TFIO,Op2IS) 7_3q|o FORMAT (*O_w. ERROR ._._ NBSEG TOO LARGF*,IOX_*NBSEGIe_I_eSXe*MAXI 7_

IMUM IS*,I3/16X,*INCREASE MNRSEG IN _aTA 8TATEMEN T AND,o, DIMENSIO N TQ528 OF LB8IO_LBt,L_2,L_OY_L8EN,,) 7_6

q20 FOWMAT (*O*=w ERROR .-.= NRSEG TOO LARGEI,IOX_*NRSEGle_I$_§W_*MAXI ?atIMUM 18*_I3/IbX**INCREASE MNR8EG IN. DATA STATEMENT AND*_* DIMENSION TQ8

2S OF LRBID_LRI_LR2_LISIO_LII_LI2,LTYPE,,) TWqq30 FDRMAT (cO--BODY 8E_MENTS''*//$W,*L*_2W,*LB8IDe_QX_,LBI._X_.LB2,_ TSO

I$W_*LBOY*//(Ia_I?)) ?St9_0 FORMAT (*O--RE-EnTRANT 8EGMENTS''*I/$Xe*L*_2X,,L_SIO,,_X_,LR|,_X_ T52

I*LR2**2X_*LISIO*,_X,*LII*_X,*LI2,1/(I_,bI?)) 753qSO FORMAT (*OeeOUTER BOLINOARYw.,//3X_,RA_IU s I,_FI2.B_IOWe,|NITII L AN TSg

|GLE s**Ft_,813W_*ORIGIN AT X I*,FI! 8;; Y s*_Ftt B//]Xe*NUMBER TS_ZOF _OINT$ =*,IS,lOW,IS,* STEPS IN*,_ tA_ OF ?S6NMENT _NFINITY,,IOW_,]INITIAL STEP (LINEAR CASE) m*_I_) ?ST

_60 FORMAT (2IS_2F10,0) 7SBqTO FORMAT (*OINITIAL GUESS TVPEl*eI_) 7YqqO0 FORMAT( OAlO)q81FORMAT(SI_} 760982 FORMAT(TIg) 76!q83 FORMAT(SEI_,_) Yb2

Tb$9qo FORMAT (,OIMAXeJMAX_NBDYeITEReI_ESeIDISKelWIR_IWINTI__I_FIN_IGED I* 76_

I,lOIS)

1000 FORMAT (,OIPLOTelPLTReNCOPY_LINWTI_LINWT2eNUMSR=NUM_RIe, 766|*I|KIPI,ISKIP_ 1*,9IS) ?_T

|0|0 FORMAT {*ONBSE_eNRSE_ I*_I_) ?b81010 FORMAT (*OR(t)_R(2)_R(])_YINFIN,AINFIN,XOINF,YOINF_NINF I*/?F15.8, 76qtlS)

?70|030 FORMAT (*OIEV,IAIT_R(IO) 1*_2IS.FIS,8) f?!tOaO FORM.AT (*OINFAC,INFACO I*,_IS) T7210§0 FORMAT (*08IZE_RATIO_DIST_XB|_XB2_yBI_yB_,_TFt2,8) 77_1060 FORMAT (IXetT(IM*),* INPUT *e]O(1M*)) ?7_1070 FORMAT (tX,t]O(tH,))

7751080 FORMAT (*OSIMPLYwCONNECTED REGION*)

C IT6

END 77T?T8TTe780

Page 76: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

7O

8UHROUTTNE BNORY {X,y,IJ,TI,12,LBI_,R,A,XO_YO,_:TNF,N]

CC ********************* CIRCULAR OUTER BOUNDARY ***********************

C tt $ THIS ROLITINE CALCULATE8 NINF XeY COORDTNATE8 AROUND A CIRCLE OFC • RADIUS R AT EQUALLY 8PACED ANGULAR INCREHENT8 STARTING AT ANGLE AC * (POSITIVE COUNTERoCLOCKWISE FRO_ POSITIVE x-AXIS] ANO PROCEEDING

CLOCLOCK_ISE FROM THI8 &NGLEe

C *C i_,il**ililllli.i.,lllllll.li_i_lilil*_lil*illl'li**'lllli_ll**illll*

C_IMENSION X(Nol)w Y(N,1)DATA PI/_.tU1_9_65_91

KIsMIN0[II,I_)

KEmMAX0(II,12_ISENelIV (II.GT.IE) ISENI=I

IXMIININFDm.E.OtPI/FLOAT(IXMI}GO TO (I0,30,I0,$0], LSID

Ct*** BOTTOM _R TOP10 00 EO KIKteKE

ImIle(K-Kt]*IBENXtI,IJ)mR*COBtA)+XOy(I.IJ)IRI$1N(A}eYO

EO AskedGO TO SO

_0 O0 _0 KmKIoKE

C***t LEFT OR RIGHTJmlle(KmKl)ilBENX[IJ,J)mR*COS(A)+XOy(IJeJ]BRIBIN(A]eYO

_0 ksA÷OSO CONTINUE

RETURN

CEND

SUBROUTINE CORPLT (%,YwNDIM,NUNBR|P NUMBR'CI'C_pRATIOpBIZEwNCOPYwLIINWTI,LINWTEwlSKIPI,18KIPE,XPLOT,YPLOT.DISTeIPLTR'NPLT$tLBBIEO.LBI,LB2,LBOY_LRSID,LISID_LRt_L R_'LII_LI_'LTYP_'NBSEG_NRSEG_LISEG

$.JJMAX,IIMAX.XBIeXB_YBI_YB_]

CC **_ PLOT ROUTINE • PLOT8 COORDINATE 8YBTBM AND SEGMENT DIAGRAM e_mweC *C *********************************************************************

C DIMENSION LBBIO(1), LBt(1)e LBE(I]e LBOY(t), LRBIDCt]. LZ8IO(i]e LIRI(I), LRE(I), LIICI), LIE(t)e LTYPE(I]

DIMENSION X(NDIMel], Y(NDIMeI]_ XPLOT(I), YPLOT(I]* CI(I], C_(l)e

lkXISL(_)e XA(6), YA(6]OATA 8CAL /O.IIDATA 81 I0,08?S/DATA 8_ tO,l?S/

781?BE

'_8S786?ST?88789?eOTgt?BE793

79_T96?R??98TR980080180E80_BO_80S80_SOT80B809810811

817818819BEO

BEE8E$

B_SBEbBETSEB81$050

85785S

Page 77: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

71

CCC

DATA HA 11,01DATA Hg /Oe5 /

C*****ISYm2T

JMAWmNUMBRIMAXINUW_R|

HlmO.5*81M2si.S*81_3m0.S,8_H_ml.S,S2HSmO.2S,8!H6m2.0,81H?ml.$,8)IMAXMImIMAX.I

CC JXl8 M_NIMuM 8

C

I0

2o

AN_ $CkLE FACTON$

CALL MAXMTN _XeIMAX,JMAX,NOIMoXMAX,X_IN,IXMXe3XMXeIX_NejXMNelSKIp |I,I8KIPE)

CALL MAXM)N (y. IMAX,J.AX,NDT_,yMAxeyMTN.IX.X,JXMX,IXHN,JXMN,IBKIPIIoISKIP_)

WMAXmAMINI(W_AX,XR2)XMINIA_AX|(XMIN,XR|)

YMAXIA_IN|(YMAX,yR2)

YMINIAMAX|(YM_N,YR|)

X||XMIN

Y|mYMIN

AXIBL(2)mBIZ[IF (RATIO) 10,10,20

Y2m(YMAX-YMIN)IAXIBL(2)X2mY)

AWISL(I)m(XMAX-XMIN)IX2GO TO 30AXISLCI)mAXISL(2)W2m(xMAx-XMIN)IAWISL(I)Y2I(YMAX-YMIN)IAXISL(2)

SET UP PLOTTER

30 CONTINUE

NPLT|I2

LAB_L$

IF(IPLTR,E@,I.OR,IPLTR,EG,_) CALL LTNwT@IPLTR,LINWTI)CALL PLOT (,5,,_,-3)

CALL 8YMBOL(O,,.OOIw,08?S_CI,90_,80)CALL 8YWBOL(,3e,OOI,,OS?Sec_,qo,eSO)CALL PLOT (1..0.e-$)CALL PLOT (0..9'99.|)CALL PLOT (.Se.Se-))

PLOT LINES OF CONSTANT ETA

IFCIPLTR,EQ,[,O_,IPLTR,EG,2) CALL LINWT(IPL_R_LINWy2)DO TO Jm)_MAX_ISKIP)

WmO

O0 _0 Iml,IMAX,18KIPl

IF (Y(I_J),OT,YSI,OR,Y(I_J),LT,YSI) GO TO (0

8_3

8_5

8_n

_53

85_

869_70

_728_3

87S

87q

88288388_8aS886

8_8889

8q]eq_8q_8q_8qT

_qqqO0

Page 78: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

72

KIK÷IXPL_T(K)WX(I,J)YPLOT(K)aY(I,J)

_ CONTI_OExPLOT(Ke|)IX_XPLOTrK+E),X2yPL_TCKel)mYIyPLOT(KeE_sY2

50 CaLL LINE (XPLnTwYPLOT_KwI*O_Oe.OT}

PLOT LINE8 OF COhSTANT XI

b_

?0

On TO II],IMAXjISKIP]KmOOO 60 JmlwJMkX,lSKl p2

I; (X(I_J).GT,XBE,OR,W(IwJ},LT.WBI)IF (y(IeJ).GT,YBE,OR,Y(IpJ),LT,YBI)

xmKeIWPLDT(K)mX(I,J)yPLOT(K)mY(IpJ)CONTINUE

XPLOT(K_|}BX[XPLOT(Ke2}BX@yPLOT(K+_)mvlYPLOT(KeE)mY2

CaLL LINE (XPLOTpYPLOTpKRIpOeOp,O?)

CC SEGMENT CONFIGURATION nIAGRAMC

CALL PLOT (AWISL(1)*E,Ow[,O,-3)JMAXmJj_AXIMAXBIIMAX

CC****C

6nbO

BODY SEGMENT8 ****

00 100 LslwNBBEGOlBLBI(L)*SCALDEBLB2(L)i$CALIGOTOBLBBID(L)GO TO (&OegO_BOigO). IGOTOIf (LBBID(L),EQ,%} DSmBCAL

_OTTOM OR TOPIF (LBSlD(L},EQ,$) D]mJMAX*BCALLwTm-_I_ (L,GE,LIIEG) LWTI'I

IP(IPLTR.EQ.t.OR.IPLTR.EG.E}CALL PLOT (DtwO_,$)CALL PLOT (OioD]el)

IF(IPLIR.EQ,I,DR,IPLTR,EQ,E)IF (L88ID(L},EQ,I) MIwM_IF (LBBID(L),EQ,$) MuM208!MMIBIGN(MgwM)-_2t(I.O_BIGNHMM|BIGN(M]eM)CALL NUMBER (D[eMt_OSeM_B|

CAL.L LINWT(IPLTRwLWT}

CALL LIN_T{IPLTR_O)

(t,OeM)}*O.$

_FLOAT(LBt(L)},O.O_'t}_LOAT[LB_[L})eO,O_=t)

CALL LINWT(IPLTRe-I)CALL NUMBER (O|-Wt_O|eMell

IF[IPLTR,EQ'.|.OR.IPLTR.EQ.|}IF (L,LT.LIIE;] CALL NUMBER ((DteDE),O.S=M3,DSeMM.IEeFLOAT(LBDY(

IL)),O,O_e[)IF(LeGE,LIBEG)CALL BYMBOL((DteDI)_O_S-M$_DSeHM_B_IBY_OeO_=I]IF(IPLTR.EQ.i.OR.IPLTR.E_.2) CALL LINWT(IPLTR_O}

90190E905

905_0690?90P,q09OtO

915

915

911OrB9199Z.O

9E29;t$9Z_9ZS9Zb0/.?9Ze9Zq9ZO9],1

9],$

93SO$6

9]IB

9_0

9_Z

9_8

9St9'JE955

R_'J_Sb9S?eSe_)IH)_)bO

Page 79: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

73 '_

CALL PLOT (_].D3-HHH_2) 96]

CALL PLOT (D2pD$+Hww,]) 962CALL PLOT (D2_D].Hw_w2 }" 963GO TO £00 ¢b.

C**** LEFT OR RIGHT 9bS

90 IF (LBBID(L).EQ.2) O]w$CAL oh6

IF (LRBTDCL).EQ._) _]II_AX,BCIL gb7LwTx-2 9_B

¢b9IF (L.GE.LIBEG) LWTm.[ g70

IF(IPLT_.EQ,I,OR,IPLTR.EQ,2) CJll LIN_T(IPLTRoL_T) g71CALL PLUT (D].Dle_) gT_CALL PLOT (_3_npw2) g75

IF(IPLTRoEg. I.OR,IPLT_mEQ,2) CALL LINwT(IPLT_a_ ) Q7QIF (LBBTD(L),EQ.2) HI-H6 Q75IF (LB$1D(L)mEQ,_) waN6-8! g7b

wMmBIGN(HTww)'B2*(|'O+$TGN(l'_'w))*n'l q77HMHmBIGN(MS,H) g7_CALL _IJMBE_ (D_W_DtwBIeFLDATCLBI(L_),O,O,.I) 979CALL NUMBEP (D)+MeDP#SIjFLDAT(LR_(L)),O,Op.)) q_O

IF(IPLTR,EO,lo0_eIPLT_mEQ,@) CALt. LIN*TtTPLT_.I) 081IF {L.LTmLIBEG ) CALL NUMBER (_3÷HH_tDI÷O_)IOm_$2,FI..OAI(LRDY(I.)) q_2

l,O.O_-l)

IF(L,_E.LIBE_)CALL 8Y_BOL(O_÷WM,{OI÷O_)*O.S_82elSy,O._.I) g_I_(IPLTR,EQ,I.O_,TPL, TP,EO._) C_LL LTN_T{IPLTR,O) Q8_

CALL PL_T (D]÷HHH.OI,_) gB&CILL PLOT (_]-HHH_|e2) getCALL PLOT (n]+wwH.02,_) _8_CALL PL_T (D]-wHM,D2_2)

100 CONTINUE 9BgC ¢90

Cw*** RE_ENT_NT 8EGMENT_ ,*** gg|C _92

IF (NRBEGoEQ,O] GD TO 260 g9_DO 2§0 LBI_NRBEG 995

DIILR_(L)*BCAL gg6D_mLR?(L)*BCAL 997

IF(IPLTR,EQ, I,OR,IPLTR,EQ,)) C_LL LIN*T(IPLTR_O) gIA

IGOTOmLRBIO(L) ggg

GO TO (liO,l_O,llOel_O), IGOT_ 1000C**** BOTTOM OR TOP - FIRST OF PAIR 1001

lln IF (LRBIDLL),EQ,I) n3mBCAL _00_

IF (LRBID(L),E_.]) DBmJM_Xe$CAL 100_CALL PLOT (01_D]_$) [OOQCALL PLOT (D2_D3_2) [OOSGO TO 13o

C_*_* LEFT OR RIGHT - FIRST OF PAIR 1006[007

120 IF (LMBIO(L),EQ,_) D3o$CAL 1008IF (LRBIO(L),EQ,_) D3BIMAXm$C_L 100g

CALL PLOT (D$_DI,)) 1010C_LL PLOT (0],02,2)

150 D_mLII(L),BCAL 1011101_

D_mLI_(L)_BCAL 1015IGOTOeLIBIDtL)

_0 TO (laOelSO,lOO,l_O)_ IGOTO 101_C,m** BOTTOM OR TOP - BECOND OF PAIR 1015

laO IF (LIBID(L).EG.I) D6mBC_L lOlb1017

IF (LI81OtL),EQ,3) D6BJM_X*BCAL 101B

CALL PLOT.(D_D_$) 101gCALL PLOT COS_O6_) 10_0

Page 80: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

74

GO T_ lb0LEFT O_ RTG_T - _ECO_n OF PAI_

IF (LI$ID(L).EQ._) _blIMAX*SCALCILL PLQT (Dbm_Uw31CALL PLDT (nb,DS#2)

]hA TF(|PLTg,Eq,],OR,TPLTR,EQ,2) CALL L;N*T(IPLT_,_ 1

IGOTOILTYPE{L)GO TO (170_l_OpiQO,200e_lOw22_), IGOTe

C**** ONE 0_ BOTTOm, O_F _ TOPi?n XA(I)m(_t+_2)*O.S

yA(t)mn3Xi(2)mx*(t)yIc_)uVk(1)-H_XA(_)ITMAX*SCAL+HB

IF (2,0*D_,LT, FL_TfTM_x)*$CAL) XA(3)m-H8

¥A(_)NYA(_)

yA(Q)IJMAX_$CAL÷_8XAC_)uCD_÷D_)*O.5

xA(_)mX4(5)Yi(b)lO6

NAmbGO TO 23_

C**** _OT_ ON HOTTO_180 XA(l)m(nl*O2)*O.5

Yk(I)ID]

yA(_)IYAC1)-HQ

y_(3)lYk(_)

_kmQGO TO 2_0

C**** BOT_ ON TOPt_0 XA(1)m(nl+O_)*O,5

VA(1).O$XA(2)mXA([)Y_CZ)|VA(I)_HgXk(3)m(O_eO_)/O,_YI(_)IYA(_)

YA(_)mDb

N_N_

GO TO 2)0

C**** O_E ON LEFT_ ONE ON _IGHT200 X_(I)103

YA(|)I(D]_D2)*O,_

XA(E)mXA(t)-H8Y_(2)mYA(I)XA(])IXA(2)y_($)mJMAX*BCAL*H8IF (2.0,D2.LT.FLOAT(jH4X)*BC_L) YA())mm#8

XI({)mlMAXISCAL+_8

YA(_)mYA())

_PTTED LINES CON_EC TI_'G HE-E_THANT

lO)t

I0_$

I0_

IO_S

I0_61027

1028

I0_

I0$0

lO$tI0_

Io31

I05_

1015ln_6

10_7

1058tO)_

I0_0

I0_2

I0_1

lo_a

1o_6lO_T1o_8IOU_loso

1051I05_

IOS1105_1o_$

I056

I0_?1058

lOng1060lOet106_1061lOb_

lOb_1066

rob?

lOb_

lOb_

I070

I011107_1073107_

107_1076107?1018

10?_1080

Page 81: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

75

CCCC

C

XA(S)mXA(_)

YiCS)mCO,tO_),n.SXACb)aDb

Y*(6)mvA(S)_Am6

GO TO E30

_OTH O_ LEFT

Xa(l)mO3

YA(1)I@OI÷_E),n.SXA(E)mXA(1).M9Y*C2)mYACI)Xi(_)mXA(2)

YAC$)m(O,÷DS),n._Xa(_)mO6

YA(_)mYA(3)

GO TO E$O

80Tw ON RIGHTXA(1)mO$

YaC1)m(_leO2)eO.5Xi_2)uXA(l)÷M9Va(E)uY,(1)XaC3)mXaT2)

YAC$)m(Do+D_).O.5XA(_)m06YAC,)mva($)NAN_

PLOT DOTTED LINES

230 CALL PLOT CXACI)wYA(1).))DO EaO NIE,NA

E,O CALL PLOT (XA(N),Va(N),E)250 CONTINUE

TERMINATION SEQUENCE

E_,nCALL PLOT ($CALiKL_JT(IMAX)_/.Oj.2.Se.3_CALL NFRAMERETUR_

END

SUBROUTINE LINWT(IPLTR,IPEN)

******************** SETS PLOT LINE wEIGHT **************************t

;0 TO (IO.EO). IPLTR10 CaLL LI_EWT(IPEN)

RETURN

EO CILL PENSL (IPEN)R_TURNEND

1081

I0_

1083I08.

In_b

lOeb

I087

1o88

108qlOgO

I0@IIOq_

I09,

Inq5log6

10qT

IOqM

I0991100

II01

IIoE1103

110_

1105

1106

1107

1108

11o_

1110

1111

111_

111_

Ilia1115

1117

111_

1119

112011E1

11EElIE3

lIESllEb

lIE?

11_

11]0

11311112

1133

11_

1156

11371138

11$0

11_0

Page 82: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

76

_W_.CTIO_ E_ROW (v_IF,.vOLD.E_W_ILr. elFLDIJ FLmwlvER)

DTME_$IO_, TVEP(1)

_AXT_I_M Nnk _ OF ITEkIT_ C_A_GE ,**************m***

10

TIA_S{V_EW-V_Lb)

IF (T.LF.ERROL_I

IVER(1)uIFLn

IVE_(_)IJFLO

ERRO_IT

RETuR_F_WOwIEPWOL_

RETUW_

_o ?0 10

E_c)

C_

IE(IGE_.EQ.2.0N.IGE_.GE.51J,XwIIJWAX-|

I_XMIII_IX=I

C

C PROJECTION FROM BODY SEGMENTS

C

TGEBuO

Ie CIGES,NE,O) GO 10 )0TIIO,I*tIGESS-"]_RG_ITI*JMWM1

T_II,0/(EXP(ARG2)'I,O)ARG)ITI*IMWMI

TSII.O/(EX_(&RG$)-I.0)

DFACII,0neACCIl,OIK(IGED.EQ.$) DFACCIO.O

DO _0 JI_,JMWwtIF(IGES$,GE,5) GO TOFACIFLO&TCJ-I)/FLOATCjMXMt)

GO TO ?

_RGtITt*(J-t)FACI(EXP(ARGI]-I,O)=TZCONTINU_

DO 10 II_IMXMIT_(IGES$,GE,S) GO TO 8FkCCIFLOATCI-I}/FLOkT(INXMI)

II_7

115n

1151I15_

1153

1155

115_

tlS?

1159

1160

11_1

11_2

11_

1166

1167

11bq

1170

1171

117_1175

117_

117511761177

117q118011811182

1185

118=

118611BT118B

llBq

11901191

1195

11qS

11qq1_00

Page 83: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

77

10ZO

GO TO 98 ARGImTI*(I=I)

FACCI(EXP(kRGI)-I.O].T3g CONTINUE

X(ZeJ)m(X(Zel)e(XCZejMAX)=X(Zel))*FAC)*_FACe(CX(ZM&XeJ).X(Iej)l)*FJCCeX(teJ))wOFJCC

Y(ZwJ)m(Y(]et)etY(ZeJMAX)'Y(Ie]))*FACI*DFkCe(/y(]MAXej)=y(|wj)11*FACC+Y(|wJ])*OFkCC

CF (XGE$8,EO,R,OR.ZGESS,GE,S) GO TO 1_]F(DFACzEGeO*OmORmDFk_CmEO.O,O) GO TO 1_

X(%.J)mO.S.X(r.j)Y(IeJ)aO.S*Y(ZwJ)CONT|NUE

COkTZNUE

RE-ENTRkNT SEGMENT8

30 ZF (hR$EG.EO.O) GO TO t,OO0 15n LBL._RSEG

ZloLRI(L)tZmLRZ[L)ZlisZt+iZZE=Z2-iZGOTOaLRSZD(L)GO TO (_OebOe_OebO)w IGOTO

"0 re (LRSID(L).EO.t) JzlIF (LRSYD(L),EO,3) JzJ_kXOXmX(IE,J]=X(I1,J)OVlYtlZeJ]-V(IteJ)OXm_X/CIZ-%[]OYNDY/(12*II)

DO SO ]mll1,11ZDDXm(I-II],DXODYm(I*II)*DY

X(leJ)mX(llwJ]+ODXSO Y(I,J)IY(II,J),ODY

GO TO 80

60 IF (LRSXD(L).EO.2] ZmlIF (LRSID(L)mEQ._] TmZHAXDWmX(I,IZ)-W(I,II)DYmY(I,Ii)mY(I,II)OXIDX/(II-II)DYIDYI(_-X[)O0 70 JslIt,lt2

DDXm(J-II),OXDDYm(J=Zt)*DYXtI,J)mX(Z_It)÷O_X

70 Y(leJ)IV(Iolt)÷OOV80 IImLII(L)

I)mLII(L)lllmll+!IIi=IE-IIGOTOeLI|ID(L)GO TO (90oltOjgOwllO)e IGOTO

90 IF (L_$IDCL).Eg.I) JetIF (LI$_DCL).EG.3] JIJ_X

OX|DX#(_-]I)OYIDY#(]_||)

1_0112o2lZn3120_12051206lEO?12081209121n121112121213

1215121_1217121812191220

12221223122_12Z_122a12_7

1_291250121112321233123_1215

12371238123_12,012=112_E

12_5lZa_12_?

12So12S11_§2IZS$

12SS

1_$8I_So1260

Page 84: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

78

LINEAN PROJECTTO_ o IGE881

%F (IGES.NE.I) GO TO 170OFiCl|,OOFACCIi.O%e[%GEO,Eg.t] OekCCmO.O]V(TGEO,EQ,2) DFACIO.ODO lbO JxEeJMXM!

VACxVLO[T(j-i)/FLOkT(JHXM1]DO 150 %mE,%MXM!

FACCIFLOATC]-|)tFLOAT(]MX_I)X(I,j)x(XIT_tlefXIT,JMAX_=Xfl,I)),KkCI*DFAC*(_X(IHAXJJI=X(I,J]

I),FACC_X(twJ))*OFkCCy([eJIBIY(Iel)e(Y(IeJM&XI=Y¢I_I_] *FAC)*DVAC+((YflHAX°JI.Y(IeJ)

t],VACCeY(IpJ]]*DFACC%V(DVACoOT,O,OoOR,DFACC,GT,O.O) GO TO 1_0

x(%,J)mO,5*X(T,J]Y(%eJ]lO,_*Y(TwJ)

150 CONTTNUE160 CONTINUE

RETURN

NOMENT OR EXPONENTTAL PROJECTTON

1?o BNII, CIMAX÷JMAX)-_DNm$ORT(FLOAT((%_AX-I]**E*(J_AX-I]**2]5OMmtTABB(%GE$])/OMDO ZIO Jm|,JMXHt

O0 _|0 II2o_XH|$XBO_O|YmO,O|OlO.O8XOlO,OIYDIO,OIXNIO_OIf_lO,OtE_O_ODO 180 TIml,IMkX

|XllX+X(%Iel)eX[%_eJ"kX)|YISYeY(Zlel]eY(l_.J"AX)

lee!126212b3IEb_126_1_6612671268IR_q1270I_71I_721273IE7_1275127_127T1E7BIE7e1E801281128_1283IE8U1285128_128T128812891290

12_212g_12q_129S

l_gT

I$00

15o_13o3I]0_130513061_071308150_1$10I$II

1312I]I_

13151316

1318131_13_0

Page 85: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

79

180

lqO

DmIAB$CTI=I)I)ImTAB$(1-J)DEmlAB8CJM&X.J)OmD**ZOInSORTCD+DI**2)D2mS_RT(O_D_**2)_OnSDeDI÷D_SXDsSXDeX{TIet).DIeX(II_JMAX)._2SYOaSYOeYtIIe|)*()|÷Y(TIeJMjX).D_EImEXP(-DIeDM]EEuEXP[-DE*OM)SXMISXM÷X{II,I)*EIeXCIIpj_AW).E28YMBSYMeY(IIel}*EI÷Y(IIwjMAW),E?9EBSEeEtsE_CONTINUE

D0 190 JJn2eJMX_!8XmSXeX(teJJ)÷X(IMAXeJj)SYeSYeY(toJJ),YCIMkX_JJ)DmIABSCJJ=J)DIuIABS(I-I)D2eIIO$(IMAX-I}OLD**201mSQRTtOeDI,mE)O_mSQRT(Oe_2**2]SDISDeDIeO_

$X0mSXDeX[lejJ]*0teX(IMJX,jJ}.D28YOmBYDeY(I.JJ)*OI÷Y(IMAX.JJ),O?EIBEXP(eDI,DM)E2|EXP(wD2,0M)

SXMISXMeW(IoJJ)eEIeW(IMAXeJJ)tE)8YMISYMeY(|oJJ),EIeY(IMAX.JJ),E_SEB$EeEI÷E2CONTINUE

IF (IGESoEQ.3) GO TO ZOO

EXPONENTIAL PROJECTION - IGE$cO

TImI.O/$Ew(I.J)mTI*SxMY(IoJ)oTI*gYM

GO TO 210200 CONTINUE

ZIO

MOMENT PROJECTION - IGES= ] OR .

TIIt.O/BDIF (IGES.EG.$) TImTI/8N

X(I.J)u($D*SW-BXO)*TIY(IeJ]O(BO*SY=BYD]tTI

CONTINUERETURN

END

|UBROUTINE MAXMIN (XBIMAX.JMAXeNOIW.XMIWeXMIN.INXoJMXeIMNeJMNwIIKIteleIlwIPl)

132Z1323132.

13E613_7

13291330

1332

1533

1_3513_613371358133_13.0

13.313,,13.S13.613.713_813.9

135O135!13621353135"13551356135?13§8135913e01361

1363136_13bS13b_I$b7

13b_13701171137_1375137,I]?S

1377I$?|l]?e1300

Page 86: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

80

c **** TwI$ SU_ROoTIN_ CALCSJLATES TM_ _XI_;_ A_ MINIMUM VALUFS ******C **** (IF A T*O-_IWENSTnNAL DATA A_RAY. ****_*C *C , T_PLI? DATAI

C *C * Xm2-D _TA ARPAY _OSF MAXIMUM & _TNIMU_ IS T_ BE O£TERwINEnC • I_AXmLARG_SI VALIJF or ;IRST SUBSCRIPT nF X TO RE SCANNED

£ • JMAXsLAR_ES? VALUE _r SECO_JO SUR$CRIPT _F X 70 BF SCANNEDC * NDIMmIST DIME_$IOK' OK X

C * ISKIPIaSKIP PARAMETFR FOR |ST INDEX OF X (?ME l INDEX)

C * ISKIP2mSKIP PARAMETER FOR _ND I_OFX OF X (THE J IN_[X)

C .• OUTPUT OATAI

C *• _AXmMAXI_UM OF X ARRAY

C * I_X,J_XmI,J L(}CATIP_ OF W-AXC * W_TNmMINI_U, OF X ARRAY

C * I_N_J_kmI.J LOCATT_ OF X.INC *C *********************************************************************

10

X,AXsX(I.t)XMINIX(_I)I_XI|J_XI|

J_NBIDO 20 II|_IMAX_IBKIP|

O_ 20 jm]_JMAX,ISKI_I

IF (W(I_J).LT.XMAW) GO TO I0X"_XmXCI.J)IMXm|

JMXmJIF (X(I.J).GT.XMIN) GO TO 20X,INmW(I_J)IMNmlJMNmJCONTINUE

RETURN

ENO

SUBROUTINE _ARA (WWI_YXI,XETA_YETA,LACC,CFAC_RETA,RWI,CBI_CSJ,_ACCI.R_TeACCL.ACCLI.NDIM.I.J.I"ER.TACC_IEV)

**** C_EFFICIENT| AND VARIABLE ACCELERATION PARA_ETERB ON ************** RE-ENTRANT 8.EGMENT8 ********_*

DIMENSION RETA(NOIM,I)_ RWI(NDIW,I)_ *ACC(NDIM_I}_ R(|)_ T(|)DIWENSION TACC(NDIM_t)DIMEN810N IWER(1)REAL JACBS,JBAGINTEGER TACt

l_SE

1_861387118RI_891590

15_3I$9_119S1596

I$9_15_91_00

I_02l_O_l.Oa

I_06I_O?I_O8ISO9I_I0l_ll

I_I_I_I_I.IS

I_EO

1_1_$1_

l_mI_?la_8

la$ola$ll_1_33

1_$8I_

I_0

Page 87: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

BI

LOGICAL LACCCtt**t

UACC[Rj)nE.OICI.O,RqRT(I.0÷RJ**E))OJCC(RJ)m2.01(I.0÷$QRT(I.neRj**E]]ALFAsXETA**E+YETA**_GA_ImXX_**2*Y_**EAGI].O/(ALFA÷GAMA)JAC_8=(XXI*YETA-XETA*YXI)*tE*CFACJSAGmJAC_8*AG*O.O_2S

VARIABLE ACCELERATIO_ PARA,ETER

YF (LACC] GO TU t_OTE_IaJACBS*O.12581|-TEMI*RXICYwJ)_BeTEMI*RETI[Zej)81siSB(Bl]REmABB(R2]TIBALFA*QE-BI**2T2mGAHA**2-B2**2*TIm*B$(Tt)ATZmABS(T2]IF (TI,_EaOIO.AND.T_.GE,O.O) _0 TO BO_F (Tt,LT,O,O.AND.T_,LT._,O] GO Tn 90RJtBSGRTCAT1)*CSI*kGIF (TI,GE,O,O] GO TO IOTEMPwlmUkCC(RJI)TACC(I,J)IIOGO TO 20

10 TENP_lsOACC(RJ1)TACC(I.J)a20

EO RJEBSQRT(ATE)*CSJ_AGIF (TE.GE.O._) GO TO SnT_MPwESUACC(RJ2]TACC(I,J)BTACC(I,J),IGO TO _0

_0 T_MCwEBOkCC(RJE)TACC(IwJ)mTACC(I,J)÷E

O0 IF (IEV) $0,60e?0SO TEMPwmUACC($QRT(RjI**E_RJE_wE])

GO TO 10060 TEH_m(Rj|eTEMPW_e_J_eTEHP_E)I(RJ_eRJ2)

GO TO 100?0 TEMPWmO_CC($ORT(RJI**EeRjE**E))

GO TO 1o080 RJB(8_RT(ATI),CS_,SORT(kT_)_C_J_wk_

TEHP_BOACC[Rj)T_CCCI_J)m_GO TO 100

90 RJ_(8_RT(ATI)*CST,8_RT(AT_)*CSJ]*AGTEMPwmUaCC(RJ)T_CCCI_J)_!

I00 R(I|)mERROR(TEMP**w_CC(I.J].R(I_).I.J.IWER)wACC(_#j]_TEMP_

|10 CONTINUE

COEFFICIENTS

T(S]wJSkG*RETA(Z,J]T(O]mJ8kG*RXI(I,J]

I..1I..2

I_

la.9

Ia521.53

1.551.561.57l_Sm

l_eO

I.62I.65Ia6.

1.6bl.b7

1_69

I_711,72

l_T?I_78

I_80

1.821.8]

10851_86

1.881_89laeO1.91lace

l._O

l,e?10981O991500

Page 88: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

82

T(L)B,5*ALFA*AGT(2)B,5*_AMA*AGT_3)I,25*(XXI*XETA+YXT*YETA)*AGA_CLB*ACC(ItJ)*CCLImI,0oACCLR(12)RR(12)+ACCLRFTURN

I DPT(IOO)w IPT{|O0], JRT(IO0)INTEGER XIwETA,BLKoATYPDATA ZE_O/I,_E-tn/DkTA XI,ETAeBLKI6HXI o6HET&

C*****IF _NLN÷NPT,EQ,O) RETURN*RITE (6,200)IF {ITYP,EQ,O) *RITE (bw2_O)

IF (ITYP,N[,O) wRITE (6e270)IF (ATYPoEQ,ETA) wRITE (6o280]IF (ATYP,EQ,XI) *RITE (6_Z90)

SET (_P JMPLITUDE AND OECAY FACTOR

IF (NLN,NE,O) REaD (5,210)IF (NPT,NE,O] R_AO (S,220]IF (DEC,LT,ZERO) GO TO _0IF (NLN,EO,O) GO TO _0OO |O LBIwNLN

10 OLN(L)IOEC

20 IF (NPT,_O,O) GO TO _0DO 30 LBI,NPT

]O D_T(L)BDEC_0 CONTINU_

IF {NLN,EQ,O) GO TO 60DO 50 LmI_NLN

50 _LN(L)B_LN(L)*IMPF_C

_0 I_ (NPT,[Q,O) ;0 TO _0DO TO LBI_NPT

70 a_T(L]ma_TCL),aMPFAC80 CONTINUE

IF (NLN,N[,O) _RITE (6,_0)IF (NPT,NE,O) _RITE (6,_0)

GO TO _o

C_LCUL_T[ INHOMOGENEOU_ TEEM

DO 190 I|I_IMAXDO 190 JmI,JMAX

(JLN(L}_kLN(.L),OLN(L)_LB%,NL N)(I_TtL},JPT(L),_PT{L)e_T(L)_LB|,NPT)

(jLN(L),kLN(L},OLN(L),LBI_NLN)

150115021_u315o_15o5150615o?150815091510151115121513151_151515161517

1519I_O1521IS_15_$

1525152615_71528IS_153015$11532IS_$

153a153515_6IS)?15}8155_1_015_1

15_$

15w515_615_?

15501551

155_1556

155_155_1560

Page 89: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

83

9OC****

1uo150

POINTIFDO

160I70l_n190

CC PRINTC

IFC*****

RETURNC

ATT_ACTINNIF (ATYP,EQ,ETA] IjIJIF (ATYP,EQ,xI) IJmlT2m_mOIF (NLNmEOmO _ GO TO 100O0 90 LBIaNLN

TmAL_(L.]*EXP(-_LN(L)*IaHSfIJ-JLN(I ]5)IF (ITYP.NE._) G_ TO 90TmT*ISIG_(I,IJ-JL_J(L))

IF (IJ.EQ.JL_(L)) Tmh,O

T_mT_-TATTRACTION(NPTmEQ.O) GO TO I_0170 LsI,_JPT

ItmIPT{L)IF (ATYPaN_oETA) G[} TD t=nIlaJ-JPT(L)GO TO 150IImI-IRT(L)18NuISIG_'(I,II)IF (II.EQ.O) I$_.mOTe(I-IPT(L))**2÷(J-JPT(L))**2TxAPT(L}*EXP(-OPT(L)mSQRT(T))IF (ITYPaNEoh) GO TO 160TmT*IBN

IF (I._QoIPTCL)oANDoJaE_.JPT(L)} TxO.OT2mT2-TCONTINUE

RETA(IjJ)eT_CONTINUE

INHOUOGENEOUS TERM

(IRIT.NE.O) WRIT[ (_,250) {(I,J,RETA{I,j),TBI,IMAX),JmI,jMAX)

_00 FORMAT (*OEXPONENTTAL DECAY RMS.]210 FORMAT (I10,2FIOofi)220 FORMAT (2IS,IFIO.O)2]0 FORMAT (IOATTRACTION LINES*IIQW,*J*oITX,*AMP*olSW,*DECAYmt(ISe2F2O

1.8]]

2_0 FORMJT (tOATTRACTION POINTS*t/QXe*I*_X,*J*,I?XwtAMP*_ISX,*DE_AY*e1/(215,_F20,8))

_SO FORMAT (*O_HS*//b(]X,*I*,3X,*J*.6X,*R[TA -*)/(6(2I_,1E10,_* -*)))_&O FORMAT (* - ATTRACTION -*)

_?0 FORMAT (* - ATTRACTION TO CONVEY _IOE, RE_UL$10N TO CONCAVE -*)_80 FORMAT (*0--. ETa EQUATION RH8 e-at)290 FORMAT (*0--- Xl E_UATION RH8 -.-i)

END

SUBROUTINE 80R (ReX,Y,IMAWeJMAX.ITERelXER,IYEReIENO,NOIMe$wEReNBIDY_ACC,RETA,RXI,LRI,LR_,LIt,LI_,LTYP[,NRIEG_IWIR,IAIT,INRAC_INF_C_O_NBSEG_LIIEG,LBI,LB2,LBSIDeTACC_IEV_IOISK)

15o]1562

15o315h_150_15e6I_b7156_156915701571IS72157_157"15751576IS77IS7_157_15_0158115_215_3158_

15861S8T15_158915RO

159115_21595159.15_5159615RT159_159016001601160_1605160_160_16061607Ib00160_1610161116121615161_16151616161TI&18I&1916_0

Page 90: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

84

* LOGICAL COe, T_(_I_S I LACC - VArIAbLE ACCELFWAIIn_ PaRAUETER rilL n

. CO_veRG_ (TWRFLEVA_T IF LCONmT_LIE)

.

* LCrAC - AnDITTO_ eF I_Fn_nGE_r_i!$ TER_ COMPLETEDw

, L_C_ _ - CO_ST_T ACCELFkATIO_ PARAMETER.

* ACCEL_WATI_ _ PA_AmETE_ TYPE l I - ROT_ _V T_AGINARY {U_J_R_RFLAX)

* 2 - @OT_ EV REAL (OVER-RELAX)* 12 - XI EV T_AGINAWYw ETA EV REAL

* 21 - Xl Ev REAL, ETA _v I_AGINARY

nTwENSIO_ -ACC(NDT_,I), RETA(_DIM_I),DT_SIDN LRI(%]_ LR_(1)_ LBSID(1)

DOUBLE PRECISION AG

I_TEG_R ATYP,_TA,XI,TICCREAL JSAG,J_CR_

LOGICAL LACC,LCFAC,LCON_ATA XI,_?A/_Xl ,_wETA .'

n,TA PII$,I.ISq?_53591

IXFR(1), IY_R(11. T(5), LRI(

RXIt_DI_,i), TACC(_nIM,I)

_ACK(X,T,I,jeTI,12,JI,JE,A_AI_TE,T_]mAI*W(I,J)÷**(T(1)*(X(12,.I)ex(

111,J))+T(_)*(X(I,J_)÷X(T,JI))-T{3_*(X{I_,32)-X(12.JI)+X{II,JI)-X(I

21,J2))÷T(S)*T2÷T{_)*T1)

M*CKECW,T,I,J,II.I_,JI,J_,A,AI,T_.TI)mA_*X(T,J)÷A*(T(1)*CX(12,J)_XI(II,J))_T(?)*tW(I,J_)÷X(JI_JE))-Tt$1*tW(I;,JE)-X(JI-I,JE)÷X(JI+I,J

MACW3(X_T_I,J,II,T2,jI,j2_A,AI_T2.TI)mAI*X(I,J)_A*(T(q)*(X(12,J)÷WI{I$,J))*T(E)*(XfJ_,J_)÷X(I,JE)}-T(3)*(WtJI-I,J_)-X(I_,J2)*X(It,J_)

_-X(Jt*I,J2))+TCS)*T_+T(_)*T_)

MACK,(X,T,I,J,II,I_,JI,J2,A,AI_TE_TI)mAI*X(I,J)÷A*CT(1)*(X(12_J)÷X

t(I_,II))÷T(2)*(W(I,J2)+X(T,JI))-T(])*(W(I_,JE)-W(IE,JI)_X(I_,II.I)

I-X(I_,II-I))*T(S]*T2eT(_)*TI)

_ACKSCX,T,I,J,II,IE,JI,JE,A,At_TE,TI}mA_*X(I,J)÷A*(T(1)*(X(IE,II)÷

IX(12,J))÷T(2)*(X(I,J2)÷XtI,JI))-TCI)*(xfII,TI-I)-X(12,11*I)_X(IE_JEI)-X(12,J2))_TCS)*TE÷T(_)*TI)

UACC(RJ)mE.O/(I.0*SQRT(I.0÷Rj**2))

OACC(RJ)wE,O/(I,0÷SGRT(1,0-RJ**E))C*****

WRITE (6,630)

C

C READ COORDINATE ATTkACTIDN PARAMETER8 AND CALCULATEC INkOMOGENEOU8 TERMC

KOBIREA_ (§,610) ATYP,ITYP_NLNeN_T#DEC,AMPFAC

IF (ATY_.EG.ETA) CALL RH8 (R_IMAX_jMAW_NDTM_NLN_N¢T_ATYP_ITYP_D[CeIAMPFAC,_ETA]I_ (ATYPeEQ.XI) CALL RH8 (R_IMAXeJMAX,NOIMeNLNeNPTeATYPeITYPeDECeA

IM_FACeRXI)

READ (5_610) ATYP,ITYPeNLN_NPT_EC_AMPFACIF (ATYP,EU,ETA] CALL RH8 (R,IMAX_JMAX_N_M_NLW_NPT_ATYP_ITYP_O_C_

IAMPFAC,RETA)

IF (ATYP.EO.XI) CALL RHa (ReIMAXeJMAX,NOIMeNLN#NPTeATYP_ITYPeDECeA

16E2

16E3

IbES

16E6

16_?162816_9

16_0

163316_

1635

1636

163?

I_3_

16_o

16QI

1a_2

IM_

16_516_616.7

16_8Ib_q

16501651

165E1653

165a1655

165616571658

165.

1660

1661

166_

1665166_

1665

1666

1667

1668

166916701671

167E

1673167_1675I676

16T?1678

16791680

Page 91: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

CCC

1MPFICwBXI)

_EA_ (_p_qO) TFACpI_ITeEFAC

TNITXAL SETUP

IF(R(I).GToO,O) GO T_ _0IF (I_V) lOe_nl30

10 _RITE (6_6_0)GO TO _0

20 _RITE (6,650)GO TO _0

$0 _RITE (6,660)_0 CONTINUE

IF tIDIRK,EQ.2,0R,IDISK.EQ,3) GO TO 50;0 70 6O

Se REA_ (116720) LkEC,LCONwCFAC,LCFAC,IWCC.I!_,INCOONeCINFACp_eIEV,IFkC

IeEeAC,jWXMI,IMXMt,JMXPI,CSImCSJ,NPT,I_FkE,_INF,IENDREAD (11,730) tR(I)el=l,t])

REkD (It,7]O)((Xtloj),V(I,J),RVI(IpJ),_[Ik(I,J],wACC(Xpj),ymt,iMAlX),Jlt,JM&X)RE*IND tl

KOIK_|

IF (IENDeNE,3) G_ TO 100KOstGO ?0 80

60 le (IFACoEO.O) IFACIIWRITE (6ekO0) IFACeEFACEFACmAMINI(R(2),_($)),EFAC

IF {IFJC.GT.O) C_AC=I.O/_LOAT(2**(IFAC.i}}Ie (IKAC.LT.O) CwACmI.O/A_8(WLOAI('IW,C))W_ITE (6,670) CF_CIRCOUN_I

IF (IWR.GT.O) *RITE (66570)JMXMIIJM_X.IIMXMIIIMAXB_

JMXPIBJM_X÷I

CSJBCOS(PI/FLO_T(JMXM1))CSImCO$(PIIFLOkT(IMXMt))NPTm(IMAX_)wCJM_W._}

IF (NRSEG.EQ.O) GO ?0 7_

O0 70 LIIeNR_Ee70 NPTBNPTsLR_(L)-LRt(L).!7S IF (INFAC.Ee,O) INFACII

IF (INF&C.GT.O) CINFACBIeO/FLOAT(2mI(yNFAC.|))

IF (INFAC.LT.O) CINFACmFLOAT(INKACO)IAS_(FLOkT(INF,C))wRITE {6,710} CINeACINCOUNIt

IF (INFIC.L7.O} INCOUNmINFACOEINPmEFIC

SET UP ITERkTION

LCFACI,FALSE_I_ (IABS(IF_C).LE.I) LCFACI.TRUE.DO 90 ImI_IMAX

DO _0 Jlt,JM_X_0 *_CC(IeJ)=l,0

w_lTE (6,6_0)

1b8116821683168a168S166616871688168Q16901691

1_921693169U

1696

1697169_

169917001701

17021705

170_170S

1706

1707

170817UQ

1710171!

171_

1713

171_

171S

171617171718

1719

17_0

17_1

17_2

17_

17_

17_51726

17_7

17_8

17_9

1710

17]_

175_

173_175S

17]_17371738

1759

17#0

Page 92: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

86

80m YTERATZO_

100 IEh_sODO _50 XlXOwIT{R

XF (K.LE,2) LACCm.TRUE,IF {KmNEm_} GO TO I_0

LICC1,FALSE,7F (LCON) LACCtmTRLJE,

TF_.R(1)DO 11o yul,I_aX

O0 110 jm1,J_aX

I10 *aCC(I,J)=TE_120 R(_)m_,O

R(5)a_,OR(11)m0,0

R(1_)m0,0

C

C**** VTFLOC

C##WW

O0 E60 JJIE.jMXM!

JIJMXHIwjJ+2J_lIJ=tJPlmJ+lDO 260 ITII_,_HXMI

III_XHI-III+2

IPlmI+1

IF [I,G7,1) GO TO 130%_IzTMXMI

GO TO I_0

130 I_III=!

I_0 XXIIX(IPI,J)=X(T_I,J)YxIIY(IPI,J)-Y(IMIoJ)

XETAmX(IpJPl)=W(I,J"I)

Y[TAmY(IwJPI)°Y(I,JMI)

ALWAmXETA**)+Y[TI**)GJ_AmXXI**E+YII**E

AGIi,Ot(ALFAeGAMA)JACBSm(XXI,YETA=XETA*YXT)**Z*CFACjSAGmJACBB*AG*O,O6ZS

VARIABLE ACCELERATION PARAHETERIF (LACC] GO ?0 _)0TEHIIJACB8*O,I_SBIImT_I*RXI(_J)BEI-TEHI*RETk(I.J)BI_ABI(BI)

B_mABS(BE)Tlm_LFA¢*2-BI**2T)IGAM&i*2-BEiIEkTIBABB(Tf)ATIIAB$(TE)

IF (TI,GE,O,O,_ND,T_,G[,O_O] GO TqIF (TI.LT.O.OmAND.T_..LT.O,O) GO T_RJIII_RT(AT1)*C$%*AGIF (TI.GE.O.O) GO TO 1SOTE_P_I_UACC(RJI]TACC(I,J)_IOGO TO lbO

150 TE_PWtIOACC(RJi)7kCC[l,J)_ZO

1_0 RJEIiQRTCAT_)*CSJ*AG

EZO

17_I17_E17_$

17_517_617_711"817_91750175117_E1755175_

17_S

17S6

1757

1758I?S_1760

17611762_763176_

17e5

1766

1767

176817691770

1771

177_1773

177_177S17761777

177g

1779

17801781

178E1783178_17aS17861787

17_817891790

1791179_

1793

179_179S1791

17_7179817991800

Page 93: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

87

270

180lqO

EO0

EIO

E3O

_ao

_so

Z60¢C***,C

IF [TE.GE.n.O) _0 TO i?OTEMP*Emt.ACC(R,YE)TaCC(XoJ)uTACC(T,J).!GO TO 180TEMPw2uOACCCRJ2)TACC(IwJ)ITACCCItJ)+E

XF (X[V) 190.EOOpElOTF_PwmUACC($ORTCRJI**2+RJ2**_I)GO TO E_O

TE_Pwm(RJL*TEMPw1+RJ_ITE_P_)I(_jI+Rj_)GO TO E_OTEMPwmOACC(8_RT(RJ|**_eRj_**_))GO TO 2_0

RJm(SORT(ATI)*CSX$$ORT(ATP),CSJI,AGTEMP_IOACCCRJ)

TACC(I,J)u_GO TO E_ORJB(SORTCAT|)tESZeSQNT(AT_),C_J),AG

TE_P_uUACC(RJ]TACCCX,J)ml

R(I|)aERROR(TE_Pwe_ACCCIeJ)eRCI|)._.J,XwER)WACC[XeJ)mTE_P_CONTINUF

ITERATET(S)mJBAGtRETACTpj)T(_)wJ8AG*RXI(_,J)T(I]m,S*_LFA*AGT(_)mtStG_k.AGTf_)te_(XXZwXETAeYXTwYETA)wAG

ACCLmXACC(I.J)_CCLImI,O-ACCLR(I))mR(IE)+ACCL

TEMPXNHACK(X_T.I_J._MI.IPi,J_I.JPt,ACCL.ACCLI_XFTA.XXI)TEHPYIHACK(Y_T.I_J.IHt. IPieJ_i,JPI.ACCL.ACCL_.VETA.YXI)R(_)IERROR(TEMPX_X(Z_J)_Rf_)_I_J_TXER)R(S)mEHROR(T[MPY_Y(ZeJ),R())_T#J,)Y(R)X(I,J)mTEM_XY(Z.J)ITEMPY

IF (XtGT.I) GO TO 2_0X(_MAXej]mTEMPXY(IMAX,J)mTEMPYCONTINUE

REENTRANT SEGMENT8 ****

ONE

IF (NRSEGs[O.O) GO TO _00DO SqO LNIeNR|EG

IIoLRI(L)÷tX_|LRZ[L)-[ISmLXt(L}etXamLX=(L}=tIGOTO_LTYPE(L)GO TO (_?O.EqO,$tO.$30,3$O.$TO)_ON BOTTOM. ONE ON TOP00 180 JJ_Xt_IJZaX_-JJ+X!

XXIIX(IeI.I)*X(I-I_|)YXZtY(I#|et)eY(]e|,|)XETk_X(_e|]*X(Z.JMXMI]YETAEY(_)oY(|,JMXM|)

XGOTO

l_ot18o_1803180_1805180b18071_08tSOg18101811

1813

181S181b18171_18181q1_dO

18E218E3

18_S18E6teE?18E8182q18301831183E18_$183_t8$S183618371838183g18_0

18_E18_3184_18_S18_b18_T18_818_q1850

185_1853185_IBS5

18S?18S818Sg1860

Page 94: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

88

28o

290

300

C****3t0

SEo

c**** ONE

330

CALL PAPA (XXT,YXI,XETA,YETA,LACC,CFACp_FTA,_XIoCSI,CSjo_ACC 10b1t_.T.ACCL.ACCLt._IM.T.I._FReTaCCeIEV) 1092

tE_PXm_ACK(XaT,I_I,YoI,I÷I,J_XMlmPpiCCL,i_CLImXFTA,XXI) 1063TE_PYm_ACK(Y,ToTptwT-t;T_Iwj_X_|_wACCL,ACCLIJYETapVX_) 186_

_(S}xE_RO_tTEMPVeY(_,I)e_f_)eT;I,TYF_) 1866xtI_I)mTE_PX 10_TY(I_I)zTE_PY IRbO

X(_,J_AX)mIF_Px I_b9Y(I.J_AX)BTE_PV 1070CO_TINuE 1071

GO ?_ }90 1072ROT_ _ _nTTO_ 1_7_

_ 300 JJmIlo_2 107__mI_-JJ÷I! 107S

ITmT_-(_-II) 187b

XXIaX(?+I.t)-X(I-t.t] 1077YXIIY{_÷I,1)-Y(?-Iet) 107_XETAmX(I,2)-xtI_2) 107_

YETAuY(_,_)-Y{II,2) 1800

CILL PAPA CXX_,YX|,XETA,YETA,LACC,C_aC,_ETA,_XI,C$I,CSJvwA_C 10811._.TeACCL_ACCLI._DIM.TeteT_F_eTICC_EV) 1082

TE_PXIHACK2_X.T.YeleZ-IeI÷teI_.2.ACCL°aCCLI.XFT_eXXI) 108]TE_PYI_ACK_CY,T,I,I,I'IeI÷I,II_,ACCL,ACCLI,YETA_¥XI) 188__(_)zE_RO_CTEMPX.XCZel)_Rf_).I.I.ZX_) 180_

_(S)*E_ROR(TEHP¥,Y(T,1),_tS)e_.t,TYER1 1086X(IeI)wTE_PX 1887Y(Z.I)xTE_PY 1000X(II_I)mT[_PX 188qY(II,I)NTE_PY 1090CO_TI_U[ 1891

GO TO _90 189__OT_ ON TOP 1093

oO $20 JJsZt,12 189_

IsI2=JJ÷It 1095

IIBI_-(Z-II] 1896XXIIX(_.I,JMAX)-X(I-I,JMAX) 1897YXIxY(I*I,J_AX)-Y(I-I,J_AX) 1896XET/IX(II_J_XNI)-X(_.J_X_t) 1099YETAIY(II.jHXMt)=Y(I,JMX_I) 1900

CALL _ARA (XXI,YXIeXETAeYETA,LACC.CFAC,qETA_RXIeCBI,CSJewACC 19011,_,7,1CCL,ACCLI,NOIN,I,J_AX.IWE_eTACC,IEV} 190Z

TEMPXIHACK$(X,T,|,IMAX_I_IeY_t,_,JqXMt_ACCL,ACCLI_XETA,XXI) 1905TE_PYI_ACK$tY,T,I,I_AX,I*{,I*I,T_,J_XMI,ACCL,ACCLt_YETA_YXI) 190__(_)IERROR(TEMPX,X(IeJ_AX).R(_).I.JMAX,ZX_R) 190S

R(S)IERROR(TEHPY,Y(I,jNAX_,RtS),I,J_AX,_YER] 1906XCI_JMAX]ITEHPX 1907Y(I,J_AX)mTE_PY 1900X(I_J_AX]mTEHPX 1909¥(%%,jMAX]xTEMPY 1910CONTZNUE 1911

GO TO ]gO IgIZ

ON LEFT, ONE ON RI_T 191$

O0 I_O JJmIl,I_ 191_

JzIE-JJ¢Ii 1915xXIwX(_,J)-X(I_X_t,J) 191_

YXIIY(_,J)-Y{I.XM1,J) 1917XETA_X(l_J÷t]-X(l,J-l) 1918

YETAIV(t_Jel)-Y(I,J-I) 1919CALL PARA (XXIeYXI,XETA_YETAeLACC.CFAC,RETA,RXI,C$I,CSJ_WACC 19|0

Page 95: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

_9

3_0

$S0

360

370

];8039O

I'RwT'ACCL'ACCLI'_IMel'JP_*E_wTACC'IEV) 19_!TEMPXBHICK(XwTeI°JP_XMle_JeIP'T_IeACCLwACCLIwXETAeXXI) 1921TE_PYs_ACK{V'Te1'J_XM[_2PJ'IeJ_I'ACCL'ACCLI'YETAeYX_) 1923_(_)mERROR(TE_PXeX{IeJ)eRt_].I,JeTXER] 192_R(5)IE_ROR(TEMPYPY(|mJ)eR(_)°IeJeTYFR) 192SX(I,J]sTEMpx 1926Y{]ej)mTEMpY 19_?X(IMAX,J)sTEMPx 1928YfIMAXwJ}ITEMPy 1929CONTINUE |930

GO TO $90ROT_ ON LEFT |9$1

I912DO 360 JJxIl,I_ 1935JmI2-JJ*I! 193_

I_sr_'(J=It) 195SXXI=X(_.J)-X(2,I%) 1956YXIIY(E.J)mY{2jTI) 195?XETAmXCI,J÷t)-X(teJ.I) 19$8_[TAsYC1,Jet]-Y(leJ.l) 19$_CALL _ARA (XX_*YXIeXETAeYETAeLACC,CFACeRETA_RXIeC_%eCSJewACC [9_0

!,R,T,ACCL,ACCLIeNOI_teJeI_EReTACC_]EV) |9_|TEHPXIHACKU(XeT,IeJ_|_e2eJ-|eJ÷IeACCL_ACCLIeXETAeXXZ) 19_TEHPYmHACK_(YeT'teJeIIe2eJ'1eJe]'ACCLeACCLi*Y_TAeYXZ] 19_3R(_]sERROR(TE_PX_X(|_J)_{_],t,j,_XER] IRUa

X(I,J)ITE_PX 1R_6Y(I,J)ITEHPY 19_7X([_II)sTE_PX 19_8Y_I_ZI]mTE_PY 19_C_NTINUE 1_0

GO TO 390 _95!ROTH ON RIGHT [9S_

DO $80 JJsli,I2 tRS$JmTZ-JJ+I! 195_

Ilit_'[J'II) 19§SXXImX(I_XMI,II)-X(I_XM!_j] 1_§6YWIIY(IMXM|eII)eYCIMXMteJ) |_S?XETAxX(I_AX_JeI].X[_AX,J.!] leSSYETABY(ZMAX_Je!)=Y(IHAX_J.I] 1_9CALL _ARA (XXI;YXI_XETAeY_TA_LACC,C_AC_RETA_RXI,CS|_CSJ_WACC [_/0

I_R,T,ACCL.ACCL[_NDIN_INAX_J_IkER._TACC_ZEV) Ieb!TEMPX|HACKSCX_T_IMAX_JelI*IHXHI'J'IeJe|eACCLeACCL|eXETA_XXI) lgb_TEHPYIHACKS(Y_T'IMAX_JeII*IMX_I_J't_JeI_ACCL_ACCLIeYETA_YXZ) |96_Rf_)IERROR(TEMPXpX(_AXeJ]eR(_)'|H_eJe]XER} 1_6_R(S)IERROR(TENPY_V(IMAX_J)_R(S)e_NAXej_yER) [qiSX(I_AX,J)BTEMPX 1966Y(ZMAX,J)mTE_PV 1e6?XCI_AX,II)mTE_PX 1q66Y(I_AX_ZZ)sTE_PY l_b9CONTINUE 1970

CONTINUE 1_?|CONTINUE 1_11

STORE INITIAL ITERATION ERROR HORN|

R(IZ]PR(II)/FLOAT(NPT)ZV (K,GTs|) GO TO _10R(6)eR(_)R(?)IR(§)

1975le?_IST5197619171978[97S1$B0

Page 96: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

9O

C _AITE ITERATION ERROR NORM8 19811982

CUIO IF (IWIR.GT O) WRITE (6.§_0) W.R(_)._(S).R(II}.RCI2}.LACE.LCFIC_ 1983• 19@_

ILCON 198S

C 1986C CHECK TO SEE IF ITERATION I8 COMPLETE 1987CC,Wt* CHECK VARIABLE ACCELERATION PARAMETE_ FTELD C_VERGEhCE 1988

1980LACCmR(tl},LT,R(tO) 1990IF CLEON} LACCm,TRUE, 1991IF (LACE) R(II)eO,O

C*,** CHECK INTERMEOIA'TE FIELD CONVERGENCE REFO_E INEREABIN_ 19921993

C**** COORDINATE ATTRACTION 199_IF (LCF&C} GO T_ _0IF (R[_],GT,EVAC,OR,R(_),GT,EKAC) GO TO _20 1905

1996C**** INCREASE COORDINATE ATTRiCTION 10qT

R(U)xI,O 1998

LACCI,FAL$[, 1999IF (LEON} LACCm,TRUE,IV (IFAC.GT.O_ CFICuE,OICFAC 2000IF (IFACoLT,O) CFACICFACtVLOAT(IRCOUNel)/FLOAT(IWCOU_} _OOi

2002IRCOUNmlRCOUN÷! E00$XF (CFACmGT,I,0) CFkCml,0LCFACIABB(CPAC.1,0),LT.O.O00001 200__RITE (6e67_) CFAC 200_

U20 CONTINUE 2006C**** CHECK INTERMEDIATE FIELO CONVERGENCE REVORE _OVING 200T

Cew*m OUTER BOUNDARY 2008IF (INCOUNeGEeIABB(INFAC)) GO TO _30 2009

IF (R(_},LToEINFoAND, R(S)*LT*EINE) _ Tn _90 _OIO

• C**** CHECK F_ELO CONVERGENCE E011_30 IF (R(_},LT,R(2),ANOtR(_), LT,R(3)] _0 TO _9_ 201_

C**** PRI NT VARIABLE ACCELERATION PARAMETER FTELD AT 8TART OF ITERATION |01_201_

IF (IAIT.EQ.O) GO TO _SO 201_

IF (K.N[._} GO TO _SO _OZ6WRITE (69680) _OITDO _0 JSl,JMAW

wRITE (6,690) J 2018wRITE (6_700} (TACC(I_J)eWACC(I,J)* I_I_IMAx) 2019

20_0_0 CONTINUE 20_1_0 CONTINUE 2022

C 20_3C ITERATION 00E8 NOT CONVERGE 202.CC_*_* WRITE PARTIALLY CONVERGED 80LUT_ON TO DIBK _0_

i_ _RITE (1|_7|0) LACCeLCONeCFAC_LCFAC_IRCOUNeINCOUN_CINFAC_KeIEV*IFA 202&ZCeEFAC_JHXMI_IMXMI.JMXPteC|I_CBJ_NPT_INFAC_EINF_IEN O _027WRITE (II.?]0} (R(1).IBI.I3) 2028

WRITE (11_?)0) ((W(I_j)_y(I_J)_RXI(I.J).RETA(I.J)_wACC(I.J}.III.IM iO@q_030

IkX).Jn1_J_AX}

C**** PRINT VARIABLE ACCELERATION PARAMETER FIELD _0$1Z032

IF (IAIT.EG,O} GO TO _70 _033WRITE (6,680} 203uO0 _60 j_I_JMAW 205S

wRITE (6_690) JWRIT[ (6_700) (TACC(I_J)_WACC(I_J)_I|I_ IMAX_ _036

_60 CONTINUE 2037_70 CONTINUE _0)8

IF (R(6],GT,R(_),AND,R(T),GT,R(S)] GO TO _80 E039IENDIt E0_0

Page 97: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

91

RETUPNOAO IENDm2

WETU_N

ITERATION CONVE_GE8

Qgn IFNDI]

C**** MOVE OUTER BOUNDARYOINFACmCINFAC

IF (INCn(IN.GE,IAR$(INFAC)) GO Tn 550IF (INFAC.GT.O) CINFACn2.0*CINFAC

IF (INFJC.LT.O) CINFACmCI_FAC*FLOAT(I_COuN+I)/FLDAT(I_COUN}DINFACmCINFAC/OINFAC*RITE (6_710) CINFACI%COtJNmTNCOUN+_

00 S_O LmLISEG,NBSEGIImLBI(L)12mLB2(L)IGOTOmLBSID(L}

Gn TO (_00o520_S00_5_0)p IGOT_50n Ir (IGOTO,[Q,I) Jml

IW (I_OTO.[Q._) J|J_AXDO SIO Imlt,12

X(I,J)mX(I,j)*DINFACSI0 Y(IoJ)mY(IeJ}*DINFAC

GO TO SUO

$20 IF (IGOTO.EQ.2) Im!IF (IGOTO.EQ._) In|MAX00 S$0 JsIl,12

W(IeJ)IW(IaJ)*DINFACS$O Y(IoJ)uY(I_J)*OI_FAC_UO CONTINUE

IF(LCFAC) IFACmlKOml

IR(K.EO.ITER) GO TO _Y5GO TO Oo

C**** FINAL CONVERGENCE550 CONTINUE

ITERIK

C,i** PRINT VARIABLE ACCELERATION PARAMETER FIELDIF (IAIT.EQ.O) RETURN_RITE (6e6_0)DO _0 JI|$JMIX

_RIT[ (&_&90) J

wRITE (&,TO0} (TACC(I_J),_ACCfI,J%,IBI,IMAX}$60 CONTINUE

RETURN

S?O FORWAT t*|*#|SX,mITERATION ERROR NORMS*//}SO0 FORMAl (I_)[IS.S_F_O.S_SL|O)S_O FORMAT {IIS,IFlO.O,I_)

600 FORMAT {eO*#I_#* STEP8 IN ADDITION OF INMOMOGENEOU8 TERM. INTERMIEOI&TE CONVERGENCE FACTOR I*_F|_,_)

&20 FORMAT (*0----- MAXIMUM NORM8 OF ITERATE CHANGESI._OX.eLOGICAL CON|TROL_m//eOITER_TEs_$W_,X_NORMm_gX_,Y_NORMm#?X_eACCmNORM_?X,_AVG,A_CCmPARA**_bX_*LACC*_SX_ILCFACI_X_wLCONI )

&]O FOR.IT (*OLOGICAL CONTROLS I LACC - VARIABLE ACCELERATION*_, PARAMIETER FIELD CONVERGED (IRRELEVANT IF LCONITRUE)I//_OWtiLCFA C . AODI_TION OF INMOMOGENEOU_ TERM COMPLETEDe//_OW_,LCO N B UNIFORM ACCELER

20_!20_20_20_20_S_0_6Zoa?20.820_9_0502051_052Eos_20SU_05$_05__057

_05920602061

2o_E_o_$20b_20bS20b_EO_?EO_8EOb9_n?OZ071ZOT__o7__o?aE07S_O?&_077Ro/#_079EO#OE081_08Z2083_08_ZOeSZ086_08?_088_ose2090

_oel_o_1o93_o9_io_s_oeb_Oq?_058

ilO0

Page 98: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

92

65O

6?068O_qoTO0710?En730

ATION PA_A_ETER*//EnX)FORMAT (*OCOMPLEX EIGENVALUE P_CEDIJR¢ ! UN_EW°_ELAX*_FORMAT (*OC_MPLFX EZGE_VACUE DR_CEDU_F I _ETGWTE_ AVERAGE*}FOR.AT (,OCn-PLEx _TG_NVALUE PR_CEnURF I _VE_=_ELAX*)FORWAT {*Oi,FiS,R_* (IF I_HOMOGENEOU$ TEPK*)FORMAT (,OACCELERATIO_z PARA_ETER$*//}FORMAT (*Oj m*,I}/)FORMAT (IO(IX,*(t,I_,*]t,FT,_,IX))FORMJT (*0,.FI_.8.* OF OUTER BOUNDARY*}FURMAT(_LIOpEI6,B.LIO,21_,EI6,8/3T_,E_,B,_IS._I_,_/_I_,E1_,8'IS)

FDRMaT(_EI_._)

END

BUBROUTTNE PLOT(X,Y,I}CALL CALPLT(X,Y,I)RETUNNEND

BUBROUTINE _YMBOL(X*Y_M_TFXT, ANGLE_NC_p}CALL NOTATE(X_Y,M_TEXT_ANGLf_NCHAR)

RETURNEND

EIUEEIO_E1o_

EIO_

aI07EIO_EIo__11oa111EIIE

E_5E116E11?

EIIB

EI_O_IEI_I_

EI_EI_S

EIE8EIE9EI$0E131

_133EI__135EI_6EI_?

E_38Z13e

EI_I_I_E

Page 99: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

93

SampleCases

Page 100: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

96

Sample Case Output" Simply-Connected Region

ZMAX,J_AA,N_QY,ITE_#I_LS,10I_,InlR,L*INTL,I*PlN,IGE0 I dl

IPLOT,IPLTR,NCUPYeLI_*II,LI_T_,NUM_,N_MB_t,I$_I_I,I_KIP_ I

NB_EGeNH$EG I U Q

_(I},_(_},N(_),¥INFIN,AINFI_,XU1NF,YUI_FeNINF S

l,BO000OO0 .0_010000 .00O]O0_0 0,00000000

IEVpIAII,_(10) I o 0 0.0DOQ0000

I_FACeINFACQ 8 0 0

21 0 100 O L L 0 0 0

1 ] I 0 0 0 0 1 1

OmOOOOO000 O,O00OOOOO O,O0000000 0

SIZEFRArI0,OISTeXBI,XB_,YBL,YB_ B,0OO00000 0,0VO00000 10,00000000 0,00000000 0,OOO00O00 0,00000O0o ODD0000000

L_DY

INITIAL STEP {L|NEAW CA_[) • 1

$1MPLV-C0_NECTED NEGIUN

INITIAL GoES$ T_PEI 0

--BODY _EGMENT$--

L LB$1U Ldl L_

I I 1 _1

_ l _t

_ _I 1

=-OUTEN BUU_qDIRY= _

R4OIU@ • g=O0000000

0_IGl_ AT X • 0,0000000,)

N_BEH OF POINTS • 0

-1

-I

-1

ol

INITIAL ANGLE • 0o00g0000O

, Y • g.000O0000

I _TEPS I_ aTTAINmENT OF INFINITY

UNIFO_ _ ACCELERAI_U_ PArASiTE w U$_.

TEST CASE * BUOY-FITTED COORDINATE SYSTEM

SImPLY-CONNECTED REGION

BODY-FITTEO EOOR_INATE SYSTE_

T_&NSFOWMEQ UOOYt KEY _E&T _MAFX

F_ELU PARAMETERS, NUMBER UF XIJLINE_ • _I

N_MBEH OF ETa-LINkS • _I

ITERATION PANAMkTER$! SU_ ACCELEHAIION PARAMETER • l.O0gO0

MAXIMUM NUMBER OF ITE_ATION_ _LLO_ED • tOO

ALLO*ABLE ITERATION [NROR NON_I X| t|DOoOE*0J

Vl olOO00_-O$

NUMBER UF BODIES IN FIELQ : 1

PLOT PARd,ETC.5! CUPIE_ QL$1_EQ • 1

LINE_EIGMT OE$1_ED • O,

PLOT S_ZE _N YeOINECTION • _,000

RATIO • O.OO0

LOGICAL CUNTNU_S S LACC - VARIABLE ACCELERATION P_N_METER FIEL_ CUNVEWGEO (IMHELEVINT IF L{ONmTRUEJ

LCFAC - AUDITION UF _NM0_O_ENEOUS TER_ CU_PLETED

LC0_ - UNIFUH_ &CCELEHATION PARAMETER

Page 101: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

93

Sample Cases

Page 102: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

94 Sample Case Input: Simply-Connected Region

TEST CASE - BODY=FITTEOSIMpLy=CONNECTED REGIONKEY SEAT 5HAFT

CUOWDINATE SYSTEM

21 21 0 100

01 1 21 =1

1 21 o13 21 1 "l2 21 1 °1

le8 O,O00l 0,00010 0 0.00 0

8,0 0,0 I0,0

eel,S ,9g215

=,JIQ6! ,9@718

°o6_932 ,77715=,8@gOU ,55919

°,9563 ,@9257°I,

=,9563 -,29237=,8290_ =,b5919

=,b2932 =.77715°,37_61 ".92718

°|I

,37_bl =,92718o_@932 °,77715,8290_ =,55919

,9563 -,29_37

I,

,9563 o29237o8290_ .55919

,b@932 ,77715

,J7_61 ,92718o125 o99215

,125 ,98b,125 .978.125 .97.125 .962,125 ,95_

,I_5 o9Q6

,125 ,91b

,t25 .932,125 .9_eo125 ,92,125 ,91_,t25 .908o125 .903,1_5 .898

0 1 1 0 00 0 0 1 t

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0

Page 103: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

95

.125,125,125

,122

,125

,12,115011,1,09

cO0,Oh

,02

-,02=,0_=.Oh-,08=,09

",11=,115",12°,125°.125°,125=,125

=,125-,125

",125".1_5",125=.125

=,125

=,125".125".125

",125

".125°,125",I_5

"o125".125ETA

XI

1

,8q3,888.88U.88,877

,875,872,d7S,872.875,875

,875,8750675,875,875,075.872,875,872.875.875,875,875,872.875

m877.88m88_

,888

,89_.898

.90J,908

,92

t92_

,9_2,936.9_b.95_

,962

.97

,978.98b

l

10.00

100,0

0 0,00,00!

0 0,0

OoO

OoO

Page 104: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

96

Sample Case Output" Simply-Connected Region

t**t*t**t****m*mm INPUI ******************************

IMAX,JMAX,N_OY,ITER,IGES,IOISa,I_IR,I_INTL,I*FINelGEO ! _I

IPLOT,IPLTReNCUPVeLIN_IteLI_T_,N_M_,NUMBRt,IS_IPI,ISKIP_ I

I,_0000000 ,00010000 ,00010000 OmO000000O

IEv,laIT,R(IO) | 0 0 0,00000000

I_FAC,INFAC0 1 0 0

_I 0 IO0 0 1 ! 0 0 0

l ] 1 0 0 0 0 l 1

0,00000000 0.00000000 Q,00000000

$_ZEeRATLO#OIST_XBIf_B_rYBI,Y_2 8,OUO00000 O,OUOOOODO lO,O0000000 OmO0000000 O.OUOOO_O0 OtOOOOOOOO OmO0000000

L_OY

INITIAL STEP ILINEA_ CASE) •

SIMPLv-CONNECTE0 REGION

IN|TI&L GUESS TYPEt 0

*-BODY S_GMENT$--

L L_SIU LBI u_

1 I l _l

_ 21 I

--OU_ER _OU,WOaRY-°

RaOlU_ • O,O00000OO

OR_IN _T X • 0,00000000

NUMBER OF ROINTS • 0

-I

-I

-I

-I

INITIAL aN_Lk • 0e00gO0000

_ • Om00000000

I STEPS IN alT&IN_LNT OF INFINITY

unIFORM A_CELERATIU_ P&_AM_TE w U]_O,

TEST CASE - _OOY-_ITIE0 COUROINaTE STITEM

$1_PLY-C0NNECTED _EGION

UODY-FITT_ C00_INalE $YSTE_

TRANSFO_E_ UOOY, KEY SEAT S_FT

FIELO PAWA_ETEH$, NUMBER UF XI-L_N[$ • _|

NUMBER O_ ETa-LINES • _1

ITER_TION PaRAeETER$I SO_ ACCE_LMAIION PARAMETER • I,B0OO0

MAXIMUM NUMH_W 0F ITEWATION$ &LLO_LD • I00

ALLO_BLL ITLRaTION ERROR h0N_@l Xl ,I0000E-0_

YI mlOO00_'O_

nU_E_ oF UOOIE$ IN FIEUD I I

PLOT PARaMETeRS| COPIES _ESIREQ • 1

LINEmEIGMT DESIWED • O.

PLOT SIZE In Y-DIW_CTION • _00O

RaIIU • 0,O0Q

LOGICa& CONTRUL$ I LACC - VaRIaBLE aCCELERATiON PARAMETER FIELQ CONVEWG[D (I_R[LEVINT IF LCONITRUEI

LCFAC - A_DITION UF INMO_OGENEUUS TERM CU_GETE0

LCON - UNIFURM AC_EL_RaTION PaRkM[IER

Page 105: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

97

EXPONENTIAL UECAY _MS

o ATTrACTiON •

-°- Ela EGUATION RM$ ---

ATTRACTION L|NE$

J AM_ O_CAY

1 1O_0O000000 .U0100000

I 5TLP3 |N AOOITION UP ZNMOMOG[NEUU8 T[_M e

1,000U0000 OF INHOM0_ENLOU$ TE_

I,0000U000 UF 0UTb_ _OUNDJ_Y

----- MAXIMUM NOHM$ OF ITERkTE CHANGES

ITEHATEI

$

5b7

910Ll

13

1017

1819_021

2_

272_

_Q3O313235

3b37

3_39_U

_5_o

.77jb7bo01

.755_3E-01

._ESBbE_00:192_2E*00ml_070E_o0

_I09J_E÷00.81_BdE-01

75859_-01_7_32E-01W75@0E-01

299_bE-012700_E-01

.17_5_E-0119b_oE-ol

_70_bE-01

_3gE=o2

99U_-U210,0dE-Ol

.11177b-01

.710bbb-OdeSbbb_E-U2._1eSIE-02._}512E°02,265|_E_02

.21gl_E-02

mlg00W_02_l_0bSb-0_,|021_E-02

.Tbb_2E-0$

.b_99_E-O_

.2858iE=0J

,36811_-OJ

.270_gb-03

.18_I,E-03

.IwO_UE-0J

,gBbBB{-U_

,II059b-0_

,5507_E-0.

Y-NORM

.187_0E_00 0

.179_5b_00 0

.52_70E+OU 0

._2021E+00 0

.3e712L+0_ 0

.2177_+00 0

,_3q7_E+OO 0

.I,885E+00 0

.|,OSbE.00 0,gb_23E_Ol 0._8bTbEo01 0.55B_1E°01 0.57719_-01 0

.bIZ_Ob-Ol 0

.,52_E-01 0

.29517E-01 0m327._E-01 0._0b_0Eo01 0

._bT55Eo01 0

,22_90E-01 0.20057L-01 0_15_bqE_Ol 0

.1297bE'01 0

.10755E'01 0

._085bg-0_ 0

,_b27E-02 0

.328b/E-0_ 0,255_3L-02 0

.ITq,SE-02 0

.1055_E°0_ 0

.89375_-03 0

.B3blgb-03 0

.5_767_-0] 0

,.2585E°OJ 0

,361_7E-0_ Om

.3g2O_-0J 0

.3072bE-0J 0

._I)0oE=U_ 0

._bb87L-O_ 0,289dSE-OJ 0_Ig891E-0_ 0

.I_S/E-0_ 0,IU_b_E-O_ 0

.78_OOEo0_ 0

INTL_MEO|AI[ CONVENGENCE PAGTQR • 100,00000000

_VG,_CC

LOGIck_ CONTW06I

PA_A. _CC L_FAC _CONOOO00 T T T

00000 T T T8000O 1 l T8OOOO T T T

80000 T T T800QO T l T80000 T 1 T

80000 T T T80000 T l T80000 I T T80000 T T T

80000 T T T80000 T T T

80000 f i T80000 T T T8O0OO T T T80000 T T T

80000 T T TBOO00 T T T

80000 T T T80O00 T T T,80000 T T" T

80000 T T T80000 I T T80000 T T TBOO00 T T T

80000 T T T80000 T l T

_0000 T T T80000 T 1 TBOO00 T T TBOO00 T T T

1.80000 T T T

1.80000 I I T1_80000 T T Tl.BO000 T T T

1,80000 T T T1,80000 T T T

lm80000 T T TlmB0000 T T T1.80000 T T T

IMP0000 i T T1,80000 T T TImSO000 T T TlmSO000 1 I Tlm_O000 T l T

Page 106: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

98

TEST CA$_ - _O_YeF|ITED [QURO|NATk JYIIEM_IMPLv-CO_ECTEO REGION

FZNJL v*_uE|

%TE_ATZON CONV[NGESe

I_{T_AL [TE_AT_0N [RROR NUKMSI Xl ,77167E-0| Yl e|8730[_00 AT _TERATE IFINAL ITk#ATION [RHOR NURNSI Xl ,5507gE-0_ YI 178160[-0g AT _TERAT[ # 4bLuCATIO_ UF .AXI_U_ |Tb_ATION [HRORI Xl |x 5_JI 4

YI |x 17 Jm 5

*l#_**t****_ttQt*_tt_*Qt*t**l_**l XeAR_y *_Rttttatt*le*i/ttt_ttt/tttltl/tllt/ttlRl//tt//llllt¢Js !

_l_5_E_*]7_6iE_*b29_2E_u_82_t_*95b_E+_'_Et_|_9_b]_Et_e_829_att_mI6_]_{t_=*_74_|_t_O, ,37_1E*00 .b2932E÷O0 ,8290_E_00 _9_b30E_O0 .lO00OE+Ol m95650_00 ts_QO4[tOO i_l_[tO0 ,_7_k|[900

.IESOOE÷O0

-_1_+_-_e_5E*_-*_5_E*_u°_j_E*_-*7_8_5E*_8]59_*_*B_8_E_?_49_$_5_$_E_-_89E_-,_1931E-05 ,3128BE*00 .55130[*00 .Y25aTL+O0 ,82281E*00 .835_0E*00 ,7685ZE*00 ,63b61[*00 ,_tSSIE*O0 =ll71_[*O0

_i_500b+O0Jm $

-._970E-UQ ._EeO0 .qb_9_+O0 .bOTQdEeO0 mbT_gT_eO0 .bb_Sb_tO0 m_g_J|ke00 .Q_Q_EeO0 e_b||b(#O0 e_Q_||eOOm1_5OOb÷O0

-_leq2oE=U_ ,_Ob_gE*O0 ,_7l_bE÷O0 ,_7867EtOU ,5_1_8E.00 .508_E+00 mQSSb_E$O0 t$8|tSEfO0 _i9905_+Q0 ,_lbll|$O0,12500E_OOJ= 5

-,eU85_E-05 ,|55_5E*00 ,_781_E_0o ,3590JE_00 ,$9_3_E+00 ,_lb_E÷O0 ,36_0|L+00 ,$1592[_00 ,_07|[_00 ,|9933[t00

.12500E_00J= b

-,179J_E-05 ,11165E÷O0 ._057LE÷O0 ,_7151E+00 ,_ObbSEgUO ,31_71E÷00 ,]OIS_E÷O0 ,2752b[*00 e_$_SbE_O0 ,|870$[_00.I_bOOE+OO

Jm ?

_'_5_E÷_7_q3E+_-'_5_5E_-`_9_E+_-_2_2_E+_°_b_91_+_z_|_E*_*z1_9_Et_[_B_|

=_J_bEoU5 .855_qE-01 mlbOO_E*O0 ._1589E*00 ._50tSE*OO ._6_OE*O0 ._602_E*00 ,2Q_88E+O0 ._1S0_£_00 .1774|[*00

=l_500E+OO

-_5_E_1e95_E__E+_°_9_8_*_°'_97_E_'_775E÷_2_1_7_*_*_789S_13_8E_=_e9_y1Ee_1m_6_qSE-05 .bqOoSE-o! .IJOSBE*O0 .1789bE$00 ._11J7E_O0 ._775E900 ._97_E*00 .2tgb/E*O0 .1995bE+00 .16q5$[*00

J=

-_5_E*_ej_+_°_6_9E*_E_'_59_E_]_Et_°_8_7_E*_E_e_1_99_*_*5_e_Ee_|._9007E-05 .57097E-01 .1099JE*00 ._5_aJE*O0 .18_15E*00 .ZOO3aE*O0 ._0597E*00 .Zo_ogE_O0 .tete?[*oo .|t=sl[,oo._500E÷O0J= t_

_*_-`_5_j_E+_°'17_1_E_57bE_1_eB_+_°_78?_E*_6_*_t34$3_9_$_SE_1_e_|._,bgaE-o5 .qgJtq[-01 .9;SJSE-O! .[_233[*00 .10065E*00 .1787i[*00 .1868ZE*00 .tSS?;[*O0 .tTiiS[*O0 .;57J1[*00

.l_bOOb*O0J= 11

.=705_L-05 ._8_7r-0! ._25eJE-Ol .iibSbE*OO .laJOOE*O0 .IbII_E+O0 .1709aL*O0 .11_79E+00 .|bbgiEtO0 .l§_3eE900

.I_bOOE_O0J= 1_

°=_E*_t=79SE_`t588UE*_t6|e_E_°_t$7S_E*_e_eE_-_1_8_E_=*_|_E_-=73_e$Ee_|=e]77$_|ee_,7e007_-05 ,$77SIE*01 ,71082E-01 ,lOIBb[*O0 ,1_66JE*00 ,|_iSgE*O0 ,t_?S?|*O0 D|I|/?|90O ,|Slli[*_O ,J4794|_1t,I_SOOE*O0

Page 107: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

99

j= L_

-g_$8|2EeO5 .3]bb7E-O! ,6S]qbE=01 .93512E*0 .1167bE*O0 ,|5_40EtOO oleb|tEtO0 j|S|QO[*O0 ,|S|baE*O0 ,|4]q4|tOI

,i_OOE*O0J= I_

.l_bOO_*OOJ= l_

.t_bOOE_O0J= te

,7105_Lo05 ,_l_E-Ot ,50005L=01 ,7_a73E=O ,9_OeaEoo! ,10817E÷00 ,12063E_00 ".1_34E_00 ,t]aO6E*O0 ,15180E+00.t_5OOE*O0J# t7

.b_a7E-o_ ._JOObE-O! ._67b3b*_ .08010E-O ._eegTE*01 .IO_17E*O0 .tta_?E*O0 .lZ$S6E+O0 .1_9_6E*00 .1300_[+00

.t_5OOb*O0J= lO

_5_E_'1_E*_'_a_E_11_9E*_-_1_93_*_973a9E_1°_8_8_E_1*_59_-_aa_a_E_a6_E_

.a7_79E-05 ,_aeSE*oi ,ua_SqE-g] ,baotaE-0 ,8_egbE=01 ,_7379E*01 ,1093bE*00 ,ttOb_E*O0 ,_gZE+O0 ,IZ6OSE*O0

.1_500E*00

J= 19_+_Sj7_÷_1_$_*_*t_a_-'_E*_'9$_9E-_°_9_S_e_t°_6_9Ee_1-*_3_6E=_t=_a_5E=_|

.110]Ot-Ob ,_tqSeE-_i ._9_-0_ .b_EteE-Ot .7_86_E-01 .957bSE=O| .tO5EOE*O0 .ItiS_E_O0 .t_tOaE_O0 .1_5$8Ee00,l_bOOE_O0J= _0

-.11050[-Ob ._Ob_OE-O! ._lO,1E-Ot .bOTbOE=Ot .7el$_E-Ot .9133bE-0! .IO_E+O0 .ttt§_EgO0 .1176BE*00 ._Tk[*O0

,l_bOOE÷O0J= _

-_b_+_|_E+_*1_5_L÷_*|1_E*_-_1_+_e_9_E*_1_8_G_=_1_6_Ee_1_[e_1e*_

O, ,_O000Eo01 ,aOO_OE*01 ,eOOOOE-01 ,80000E-U! ,_O000E=01 ,tOOOOE_O0 ,IIO00E*O0 .11500E+00 ._O00E*O0.|_500E÷O0

,_9_15E*00 ,9_710E+0_ ,77715E*_0 ,55919E+OU ,_q_$7[÷000, _.29_$TE+OO-.sSqtqE+OOe,7171SE+OO-e_7|_E_O0..IO000E_OI..9_71_E÷OO-.77715E+OO-.55919E+OO-o_9_37E+O00. ._9_7E+00 .5591qE+00 .777_SE_00 .9_71_E_00

._9_|5[*00J.

._oOOE+O0 .9_7_oE+00 .8_b_gE÷O0 .bSO?OE+Og ._SbE+O0 ._9_lE+OOee|_O_SE+OO*e_90_E+OO°ebO_9_+O0_*7530_900-.St_OOE*OO*.7550_E+OO-.bO_90_+OO-.3_O]gEeOO*e_JO_E+O0 ._9_5[e00 ._18bt_eO0 .6_O?a[+O0 .8_b_[÷O0 .93707E900

,_860UE*O0J= 3

.97800E+00 ,95897EegO .85767E*O0 .7_515E_OU .55959[+00 ._Ug/_EeO0-.b_b75E+OO*._9_E*OO=.$_qJ_E*OO-.tgO_E+O0 .Sb511E-Ot .30989E+00

.q7800E÷O0

.97000E_00 .q$O_SE*OO .87507E*00 .77539E_00 .b_680E*O0 .a568_E$O0-.33_5_E÷OO*._8565E+OO=.ISt93E*O0 .3833_E-0[ ._5_bE÷O0 ._5901E+00

._7000E+O0J= 5.ge_oOE+O0 .gJ|8_L900 0_055E_00 .80abgt_OU .70_lbE_O0 .57_60E900

-,$t77eE-O! ,7_859E-o_ ,lt_E*u_ ,_608=E÷00 ,_13_E*00 ,57_83E*00.9_OOE+O0

,95_001900 ,q_bb_eO0,08_G[*O0 ei_||_)O0 i?_O/_eOO e/_i4_)O0,_$0_5[*00 ,_5l=lE*O0 ,$_7§0E*00 ,_ZTb_E*O0 .5587aE*00 ,bmtSSE_O0

._5_00[*00

,5b38=E-Ot-,IgOS?E_OO-,399_OE*OO-.$a_gSEgO0,51970E+00 ,?_5_[$00 ,8S770E900 ,95098E900

,ZS2OIE+O0 .38149EoOle,tS_O_E*OOo._OS?OE_O0,63696E_00 ,?75_?E+O0 .87370E*00 ,_3_OE+O0

,a_tO8E+O0 ,2bObOE+O0 ,1;3_7E*00 ,719SJEoO_,70_JIE+O0 ,80=73E+00 ,8_0$9E_00 ,93;_0|_00

,$_OSek*O0 .4_TeSEeoe ,)&7_4*00 ,&Se_O|+OO.71114|,0o .011101"00 ell|4&|*ti ,i|(Nk||itl

Page 108: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

i00

J= 7.qaeogE,0o .9_10oE*00 .88Z33E,O0.]gqagE_oo .atoJeE_o0 ._oa_?E*o0.gaeOoE,O0Jx 8,g_OOOk÷O0 ,9_5_£*_0 ,_81gqE_gU

.qJbOOE+O0

Jx g

,gJ_oOE_OO ,g1oo_EeO_ ,87q2qE÷O0.bI/77E_O0 ,56087L+00 ,_[E78E_O

,9J_OOEeO0

J= .10._2000E_O0 .gOQ85L÷QU .S??ZJE+Un,e3107L+O0 .O_llE_O ._S8_OL_OU

.q2bOOE_O0J= tt

=9_00U£$00 ,_ggg_EeOU .e7bt_E_u

.b7@qSk÷O0 ,b7rqgkeOO .bg_W[EeO0

.q_OOOEeO0J= L_

,g_ooL÷o0 ,_gb25E+OU ,_73|0£.00

.705g|E÷O0 ,710_UE_OO .7E3OOL_OU

,g|QOCE+O0Jx I_

.gOSOOk_O0 ,BeO_gL*O_ ,_71ZbE*O0

.7_38_£+00 ,7_7_L+00 .l_7abE*O0

.90_OOE_O0

J= la.qUJOOE_O0 ,_6667£÷OO ._bgoq£_O_

,7577TE÷00 ,TbOS_E_oU ,7_SqE_uu

.qO$OOE_gOJm tb

.7787_E÷00 ./80gQE*OU .787_BE_UO

J= |b

.Sg_OOE*Oo .87995E÷O0 .Sb/7_E_O0

.79757E*00 ,/gg_bE+UU ._OalbE_O0

._gJOUE_O0

.O|u7bE+O0 .SIoolE$O0 ,8lg70£÷00

,_8800E+00Jx _

.8_OOEeO0 .8751IE÷OO .8_TgbE_O0

._$07bE#O0 .8_tbbE*O0 .83_27E÷00,O_aOUE+OO

Jx |g

.86000E+00 .87JTgE_Og .8_q_,EeO0

_8_Sg_E÷OO ,8_QE_OU ,8QSl_Ee_O

.88000_*U0

J= 2u

._O050E÷O0 .8e0_5_0_ .SeleeE_gO

.8770vE#00

,81500E*O0 ,87_oOEeOg ,s7_ooEeo0

,830_]E*00

,83717L#ou

,ogasgL_oo

.8a136E÷O0

,e517_L÷O0

._aa_EE,O0

,bB687EtOO

.8ueS_E*O0

.7183_Ee00

._qBa2E+O0,7_25bE$OU

.8501LE+O0

.7_tOE#OU

.8btB3E_oO

,78tlJLeo0

,8b_TIE÷O0,7971qEgO0

,8bSggE_O0,8|LBSE÷UU

.OS_a9E÷O_

,825UqE$OO

,85_£_00

,_bSJq_$OO

,85085E_00

,802qgE÷OU

.87S00t*00,87500E_00

,7o7@e£*00,etZqTE,o0

,7_53E_0O.bb_7tE÷gO

,797_0E÷00,69B_OL÷_O

._O?O_E*O0

.7_bSbE_gO

.SLag7E_O0

.7=852L_00

.SZ175E*O0,76h_E÷O0

,8_778E*00

.78gqOE+_O

._3BE*O0,79egeE÷O0

m83877E$OO.8097%E+O0

.SaalYE÷O_,8_lbOE+O0

,8_beE*_O

,8)282E*00

,855a_E+O0,8_bSE_O0

.B_I53E+OO

.85_2bE*00

,QbQ7_E_O0

,87_00[*00,87500E*00

.i95|#E*00 .b_lTZ*OO ,S35_S[$00 ,IkiOSEeO0 ,41i30|$it

._qJ_E$O0 ,717$0E*00 ,l$OqTleO0 ,ll_$1keO0 ,$||_Olell

.72515E*O0 .beEebk*o0 .60aSaE_O0 .S$lTtEegO ,StT_aE_O0

.7_blTk*O_ ,7_beL*O0 ,85721E*00 ,881L_E*O0 ,qL_EeO0

,Ta8etE*O0 ,bg8eSL÷UO .6b|bgE*O0 .i|_7_E*O0 ,_868_E900.7_6_E_00 ,7eT_E*O0 ,8_1_3[*00 ,87g$OE*O0 ,91005E_00

,70683E÷O0 ,7@b35E*O0 ,b8885E*O0 ,eb8_aE+o0 ,eSllOEgO0,TbbBeE*O0 .80705L.00 ,8_35E$00 .871@5E_00 ,gO_gOEeO0

,7_tb_E*O0 ,7aB53E+O0 ,?L83EE#OO ,bq]qtE+O0 .b77%gEtO0.TBlb3E+O0 ,8l_gg£*O0 ,8_bSBE$O0 ,87517E$00 ,89997[_00

,Tq_lOE*O0 ,76705E*00 .7_@5qE900 ,7@$01E*00 ,71g3|EeOO,79_u8E*O0 ,82175E*00 ,8_8_E_00 ,87316E*00 .sq53oEeO0

,80_99E*00 ,7829_E*00 ,?e3aOEgO0 ,7_7_8£*00 ,757$a[_00,_0_97E_00 ,8@77qL_0 ,8S015[_00 ,87t_tE$O0 ,8909aE_00

,81_8LE*O0 ,7970lE÷00 ,78|17E_00 ,7_86]Ee00 ,760SkE#O0

,81_8LE+O0 ,8)_]eE+O0 ,85187E$00 mB_ST_ZeO0 ,IBb_]E_O0

,8_3q_EeO0 ,80q78E÷O0 ,7972_E#00 .7875@E$00 ,78094[_00

.83259E900 .821e3[*00 ,81_89E_00 ,80_40E*00 ,79%aTEgO0,_3@58E*OU .8_15E*00 ,sssq_EeO0 ,8_77_[÷00 ,87qqSE#O0

.SatOaE,O0 .83ESbL*O0 .8ab53E*O0 .81973E*00 .81bOaEgO0

.B_IOLE_O0 .8aqesE*O0 .B_BSOE*O0 .857_ke00 _877_EeO0

._ga|E+Og ,8q_bSb÷O0 ,838a_EeO0 ,83_qE*O0 .8516bE*00,8aq39E_O0 .855_1E*00 .8616EE900 .8eTq6E*O0 .8751_Ee00

.B5781E_O0 .85aa7E+oo .85087E*00 .8_818L$00 .Sab_gE$o0,_57_0E_00 ,8bt51E÷O0 ,86538EeO0 .8bq_][$O0 ,87$7qE_00

.8bb$$E÷O0 ._6a7aE_O0 .86300E*O0 .8b|6?E_O0 ,SbO8_E_O0

.8_$3E_00 .SbSO_E+O0 .8_986E*00 .STtS_E*O0 .87558E$00

.87500E*00 ,87S0_k*00 ,11S00|*00 ,17|00|*00 ,ll|OOleOO

.87S00E900 .87SOO[*O0 .B?SOO[*O0 ,iTSO0|$O0 ,IT|lOWell

Page 109: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

i01Sample Case Plot" Simply Connected Region

e!

!1 1

Page 110: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

102

Sample Case Input" Single-Body Field

T[$T CASE - BUOY-FITTED CUO_DINATE SYSTEM8INGLE _ODY I KA_A_-T_EFFTZ AIRFOILe _b PU_NT8

K-T AZRFOZL #127 20 1 200 0 1 1 0 0

1 J 1 0 0 0 0 ! l2I 1 _7 "1

1 _7 0

2 I 20 _ 1 20

1,8

8tO

O,OU01 0,0001 5tO 0,00 0 0.00 0

OtO 10.0 0,0 0,0,_9952_ -,000031

,_98625 omO01_02,_9606b ",002760rUSh293 -,00555_.

,4704b_ -,00850q,3901_8 -.01859112bq55_ "10299bbeI_2707 -e0_0790

-.03U802 =,0_8_53

=,187_72 -,05052_

-t3211_b "tO_SBq_.,_a36eb =,033739

",_SbSOb "tO165_6

-,50_7_b ,003820

"t_7110_ .026435o,39690_ ,0_8b_2ot287913 ,O_blOl

o.15375b tO75_qg-mOObb_ .07u531mlq_O_b .ObtUSE

t3_577_ .0_8262

._71990 ,011299

._67103 .006809

,ugb_19 ,0030_0.qq87?q tOO1_b

LTA 0 _ _ 0.01 I00,0 1.0

2 100.0 l,OI00,0 1.0

100.0 1.0

1 1 100.0 ltO

21 I 100.0 1.0XI 0 0 0 0,0

I 0 100.0

OtO

0.0

0.0 0.0

0.0 0,0

26

Page 111: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

Sample Case Output" Single-Body Field

103

W(I ) _ w (d}," ()), YL',f" I., AI_F I'., XU(_J" , YUI_F, NI',_ • :

I,_OOuJLJOd , U(),J t HJ(_V , UL) O | I)OU_) 5,,IUOULIUOU

|['Vw|All)_(|O) ! o !_ ,*, o U n(,,(l 0 t2 U

INI- AC, _,_F _C[ I 0 0

_0 1 d_)O 0 1 I _ n 0

1 ] 1 r; U I, u L 1

O.Ol10OO00 n ))._O00OOOU 6.UOUU_nOI, _0

INIIIAL STEP &LLNEA. L_bEJ = |

Page 112: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

104

LCFAC = A0_[T|UN uF %N_O_UGk_EUU_ 1E wM COMPLETED

LCO_ - U_IFOQM _CCE_ERA_IUN PAR_wETE_

EXPONENTIAL 0ECAY W_S

- ATTRACT[0N -

ATTRACT_UN L_NE_

j =Rp

L 100,0UU00_u_

2 10U,UUO01) 001)

$ L00,0U0(10"0"

LO0,O_O_O000

ATTR_TIO,_ PUINI_

I J AMp

1 1 lOOmO000_}O00

d7 I lOCi,OOn_O000

OECAY

L,O000000O

l,O_OOOOOu

L,OOOPOOOO

1,00000000

DkC_Y

l,OOoO_)OOo

1,00o000o0

ITbdArk XmNLJ _ YmN_RM

1 ,IQ0g_E÷()I ,_bbb2F#00 0,

,117geE÷Of ,LOb$2E_Ol O,

,5_5_bE_00 ,_19_E*00 0,

5 ,ETO25E*OO ,178RTE÷O0 0,

LPl

0

0

INTERMEDIATE CONVEWGENCE FACTUR •

ACC-NUR_

100,00000000

LUGICA _ CUNTRO_

AvG,_CC,PARA, LACE LCFAC _CUN

l,OUOOO I T t

LeOUO00 T T T

1,80000 T I T

1,80000 T T T

l,BO000 T T T

Page 113: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

b

I

8

9

IU

II

12

lb

20

_J

2_

,Jg

J5

Se

J7

3_

_o

_5

_r

_8

u9

5d

51

5a

555_

57

5_

5_

O0

03

e_

27q_ak*O0

_507_L÷00

_OOE_UO

I9O_gE+UU

15_O_k÷O0

.I1877E*00

.82_bbE=Ol

.lOl_3k*O0

.qStdSk-Olg_O0_E-OI

b_SqSE-ul

bO7qS_-01Ogu8OE°o1575]3E-of

58O55E-oI

51_78E-01

,57Jlek-Ol

,5_Iblt-ul

3808_E-ul

_J_Sbbk-Ol

,39_O5L-01

370J7E-ul

11689Eo01

5518bE-0_

25005(-021585b(-0_

,1057_E-0_qq_12t-o_750_Eo0_6q_J=E-U_5_780L-03

OJ7_E=OJ$9697E-0_JO_79E-OJ_$OJlk-O_17911E-03Ib377E-O5

,1750bL-O_1_81bE-03133_k-OJ

99_75E°0_.B115UE-u_

,I0581t°U_

,81793E-Om

,15720[_0_,10559E+00

,IbB88E_O0,taOOtt*OuolS_oE+O0

,llOl|[*OO

.L8500_÷00

.18o0_+00,Ie85bE+OO

.15_5qE_Oo

.I_50bE_0o

835JEE-OIeIZqlF-ol

76787E-01

7_oloE-ul

190_bE'Ul_800J7_'0_,759J2E-O1

,o777_E°ul,7?u_?E-01,o$51qf-Ol5_ddE-ol

aSu95EoO|

509_5E_01

50289E-01o2_oE-ol

JSP/SE-01

13118E-01

88q_lE-O_,bb_=lE-O_,SleSJi-u_

aqO_bE-OE

39505E-0_

_57q2E=O_I0755E_OZI0031_=02

77_geE-o3bo$1oE-o3

53b_OL-O_

.3538bE-03

,E_SOE-U_._3555L-_$

,15005E=05.150)5E-03

,lJO_OF-03

.12qqlE°03

.I(IoI_E-03

,93708E-0_

OiO,

O,

O,

O,U,O,

O,O,O,

O,O,0..O,O,

0..0..O,O,O,O.

O,0,.O,O,

O,0,,0..0..

O,O.O,O,O,O,

O,O,O,O,

O,0000

00

0

O,

O,0,.O,0,,

0.,O,O,

O,

1,800001,800001,800001,800001,800001,80000

1,80000,80000

80000

.80000

.80000

8000080000

80000800008000080000

80000

leSO0001,80000

1,80000

1,800001.800001,800001,80000

1,60000lmSO000

I,800001,80000

1,800001,800001,80000ImSO0001,60000

8000080006

,80000

.80000

,8000080000600006000060000

6000080000

1,800001,800001,800001,80000Im80000

1,800001,60000Im800001,600001,80000

1,80000

1,600001,800001.80000

1,60000

TTTtTT

TT

TT

tTT

TTTTT

rT

TTTT

TTTT

TI"TTTr

TTT

TTT

TT

TTTT

TTTTTT

T

TT

TTTT

;rTTrt

rTi"

ITtTI'Tl1T

TrT

TTTTT

rTTT

TI!T

TTI'!

T

IT

rTTTTT

TT1tT

"fTrTf

T

105+

TTTTTTTT

TT

TTTTTTTTT

TTTT

TTTr

TTTTTTT

T

TT

TTT

TT

TTTTTTTTTTT

TT

TTTTT

Page 114: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

106

_J_AL VALU£S

_lt_ATI_ CUn_LN_ES.

[_LTLAL ITE_ATIU_ E_NOR NONM$! XI eL_OQOt+01 Yt ,3b6b_E_UU AT _T_NATt • [

_l L= _5 Js t7

._9955£+00 .a_o_k_OU ._eUgL*U_I .a_o_gE_Oo =_70_OE_C .J_UISE÷O0 ._b955L_uO .I_£TtL_UO'eSaRU_E=U1"*I _TqTE+Og

=_8_5E+OO ,_g37_[+00 =_7tgqE÷O0 .O_710_.eOO ,ugbq_L÷O_ .qgSTSE+O0 .ovqbJE*Uo

.bOeO_E_O0 .50,30E+00 ._97_k÷d_ ._S[=$E+OU .uaO_EtUO .JbTaJEfO0 .EbOoBt+O0 01077bE_OO=.aO750E'01".l _Tb_EeO0_3e_U_*q3_95_+U_5_*(!U_5_7_÷_U-_=_7E_U_*=_ajE+u_9_5_E_=*_559E*__U_ ,13uO_f+O0

._eSeuE+dO ._7oltt*OO ,_513_L*UO ._8_15£*0_ ._98_E÷_tl .5050_L_00 ._Ob_It+O0

.5_dObttUO .51o_E*CL) .50ubSE+O_ .aOOTlE+O0 mgJ_95_$UO ._5_1E+00 .2JbSOE+O0 .qagllE'OioeS_b7k'Ul'e_OgOSE+OO

,_5_]_E_O0 ,_b_1_E_uO ._E*O0 ._855_E÷00 ,50Tb_E+O0 .5|7b_E÷O0 ,5_008L÷00

J= a.SaOOgE÷O0 .SJq_l_÷.lU .51797E+0_ m_SBUE+UO * gjUo_E÷uO .J_JOSE+O0 m_SJIL+UO .BJ_q_E'UI'eTgBq7EoOI'e£_T_E*O0

m_JgSE÷UO ,$S/_OE+_IU ._a_b_E÷O0 ,aq_7JEeO0 mSd_E_uO ,531UOE÷O0 ,SaOeqE*O0

J= 5

,51011b*O0 ,5619_E*00 ,55919k*00 ,_gBIaE_O0 ,a$$_ZL*O0 ,$$8qSE*OO ,_leO_[_O0 ,70BIbE-Oi" 858qSEoOI-,ZaOg_E*O0_*_1E*_b_E+_5_*_*_S_1_7_9E*_S_$_+__*_ 50_55E'01 ,95351E*01

,=$eaoE+Og ,$S$1aE*00 ,_eSe_E*uO ,S07ZSE+OO ,5_520E*00 ,Si_O(*O0 ,57017_*00

,el_55E+O0 ,eOl?6E+O0 ,57_5E*00 ,$Zi_tE+O0 ,=_78[+00 =$=OgOE*O0 ,_OBSSi+O0 ,Sb_8OE-Ol-,IOkTOk_OO=t_tTqSE*O0_*_1$_9_°*S_]__*_'_$_E*_*59_97E*_*_5_*_8_z_B_*_e ?qO0_£-Ot ,8191_Ee01

t_OgOE+O0 ._5888_+0U ._5qo7E*O0 .5_b_÷O0 .5799_E+00 .OOSe2E+O0 .b1_55_00

J= 7.b7078E_O0 .e570qt_O0 .b_OSE+UO .557b_E÷OO _blbqE_gO ._agtOE+O_ ._0_58E+00 ._O_9aL-ot-.l_bTbeOO-.30ag_E+O0

_5g58E+_5__j_+u_=_e_8_*_-__°_5b=_E+_a$53_E_z_7_E÷_ lOSagE+gO .bT_beE-01._tBE+O0 .$7u59[*00 ._BSa=E_O_ .57137E_00 .b_9_bE*O0 .ebtelEgO0 .b707Bk+O0

.7a77oE*O0 .TJO7eE+Oo .b_St_E÷O0 ,eOgbTE+O0 _OJb_E*O0 ,JbT_oL÷O0 ,EOagtk÷O0 .2_78E-Oio. IbbBBE÷_O-._S_g_E*O0-*51_B7_÷_-_e_$a_*73e3_E_7b_E_-_b9_E*_7_E_,_9_$E+_3_5b1E*_°' t3BIOE÷O0 ,51BS_E-01

,_$10_E_00 ,3_13_E+00 ,5_]_OE_O0 ,b_SSSE_O0 bgbO_E+O0 ,73b_b*O0 ,?Q770L_UOJ_ 9,_b_OE+O0 ,8_557E÷00 ,7bqq_E+OO ,bTqOqE_O0 55_JL*O0 ,J_E_O0 o_0957E900 ,_882|E*O_-o_OTSbE÷UO'e_t]O_EgO0

**5_b$BE+_7_1E_u_83E_5E÷_*_b_7E__E_7_8_*57E95_=_3B55_E*_= 177b_E+O0 ,_gbgE_Ot

,EJ_aBE*O0 ,a_letE÷o0 ,5761EE*O0 ,b9705E+o0 78_3qE÷00 ,83te3E*O0 ,_ab_OE+O0

Jm 10.qb95bE+O0 og_b_E+Ou ._77_1E*00 .76798E_O0 bt67_E+O0 ._33_7E÷00 ._18_E*UO'.tST$SE'Ot'* _SbISL+OO°*_B71_E_O0

_b9_+_*8_15_E+_°*_5_E_a_E+_U°'9aj_9E+_*B3_5_E*_b67_E+_=_9_E+_*_5_a_+_ ,1600_E-01,_9_E÷O0 ,Ublgb_eO0 ,b_]bSE900 ,TB79IE+O0 59110E+00 ,95175E_00 ,qb_SbEeO0

d8 t|,1141e&+01 ,1091eE+C| ,|010_E*01 ,_?090E*OO .70|Obb*O0 ,_$$E*00 ,=_151E_OOe,3_¢iiEeOl-,$1e/kk*OOo,b77=OE*O0

ee_O7SbEgOOe,geT_EgOO=_||OO)E_gl**ll]bSE+Ole*lO_15[*Oi'* _?O$OE*OO*_TBSe_E+OOe_$4B4_EeOO=_|_$OE_OO=*S_e_E*O_

Page 115: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

107

Jm I_

,ISVOgE÷OI ,I_7tOE÷OI ,117_8E+_1 olOlSIk_Ot ,8027tE_uO .5_357E_00 ,_891E_OO',bb61bE-Ot-,$_501E_OO.,eS_OTEtO0

._SJbSt÷O0 ,570_t÷uO ,_3152E+00 ,LO]SUL÷=JI °11_9_L+ul .1_19q[+01 et&OOVL÷VIJ: lJ

,15Jl_EsU] .la_JE÷Ol ,I_TuIL*_t .11805L+01 .gdO58E+O0 ,OI_bTE÷O0 ,_7091L_OOe.98_SNE.OI..aoglTE+OO.,BITO/E+O 0

,$_087E÷00 ,bb_ISE*,)V ,qSb_tL+O0 ,12051E+_I ,IJ_FJE+Ot ,I_972L+01 ,15_l_L÷glJ= I_

,l_Ot3_+Ol ,17502E+01 .l_O00k÷Ul ,I_O_E_UI ,IO7_E+_t ,70908E_0_ ,d9801_÷OO.,t_b87E_OO.,Sbg_L_UO.,q7_jE_O 0

,_J_b.E+UO =7_E_OU ,II074L+UI ,1_055E÷01 ,Ib_E_OI ,1_59qE*0_ _[80|Jt_VlJ= 15

.£1L59[÷0I .20o_E+_I ,[eq_t=E÷Ol ,lb_O5k_Ol ,IESO5L+_I ,SIg_lEfDO .3JO78Lf_O..182_bE$OO=,bgObJE$OO=.IIb_¥E+O |-'_5e85_-_7_*_-_7u_[*_'_8_-*_u_egE_-'_b_E÷_-'_5_5qE_'_1_ja_E_°'_57#_g_°_5_E_

.3o/O_E*O0 ,8bJ_SL+O0 ,12HT_E÷_! ,lbqS_k+Ol ,1911Vf÷g 1 ._gTU_E$01 ,21259E+OlJ= _o

,_51_9E+01 _aa_3t_jl .Z_t7_E_01 .1908aE+01 ,ta7_Ji_ut ,950JbE÷O0 ,_eqg_E_OO.=2JOgqE_OO=,B_5_bE.OO=.IjBBgE$01

,_O_5_L+O0 .90J51L*ou ,16_I_IL+0! ,l_J21E+ol m_SqJLful ._USISE+OI .?5lagL+Ol-

,_9_O_+UI ._9_+01 ,_o_TbL_Ol ,Z_551_01 ,17_V_k+dl .11Ub8_01 ,_IbISE÷_Oe,$O_O_E+OO-,t_OglE+Olwmlb59bE_OI

,_/OOL+O0 ,11_0E*_1 .17571E÷o1 ,_215UL+01 ,20b_E*Ol ,_90_L÷OI ._80bk*OlJ# te

,JSJllE+OI =JlJ%O_e_ I ,Jl$_+_l ,_bOagE÷(_l ,90_E*_I ,1_8t*01 ,=7010k+OO',$B$$SE*OO-,I_I79L+OI.,Ig_aOE_01-_$5j_+_=_j_E+J_-_a_u_-'j5qa9_C_-_j=$_*_-_j_E_-_9_E_=*_9_5_E_b__5_$_

,=9_O_E+O0 .[&_oSE+,ll _O_gbE+OI ._b825E+01 ,Jlb15E+Ol ,]aqlSE+ol ,]SJ77E_OtJ= l_

,q_J_L+01 ,_081lt÷Ol ,_7_01_+01 .JlSbSL÷Ol ,_aoa_E+Ol .Ib131E÷Ol ,53_lt_OOo,g8160E_oO-,laegaE_g1=,_]lJ_E$Ot

,5_b81E+uo ,15_75E_ol ,2_17h[_01 ,_1071_01 ,_/$_Ok+Ol ,_0_57E_01 e_O_E_OIJ= _O

,SOO00E÷O! ,asba_f*_l ,aa_7$k*bl ,_7_2eL*01 ,2baOSEegl ,17150E*01 ,bO_eBi,_O.,bO_b_EeOO.=17/$OieOl.,_BaO_keO |

,_O_bSE_ou ,17?JOE*ul ,_8.OJE*ul ,$7_ZbE*oi ,_a_7JE_OI ,_5_7E_01 eSOOOOE_O!

J= l

._7_E-O! ._6_L-OI ,ll_qE-Ot ,bSO_OL-O_ _JO_OOE-O_ ,l_bOE-O_.e_lOOgE.OaJ=

-,82590E-O1-.OOS_/E-dl-e_qqBbE.O! eO2bblEeO_ e_955_-_1 ,780_1E'01 ,lO]bOe+O0 ,|17TiE÷a0 t11952_00 elO995E_O0,_Ib_lt-Ot .079_E-Ol ._.b_t-ul ._61bOt-Ol elO_bgE-OI ,T3_OOL.O_-e]bSaTE.Oj

_v_°_='_5_°_-_j_8_°u_-_3q_U_1_75_1E=_99a_8E_-_97_E÷00='_$_9_$_0=e_a_aE+0_==_]_2UE÷_-,ll_2bL+_O-,87_b2E-O1-,aJoOli.Ul .saaa_t-o_ ,b125_k-OI ,10719E÷00 ,laOSlE*O0 ,15979E÷00 =lO=l_E_go ,155aOE$O0

.lJblJEfoo .logo_E+no .8052qL-01 ,55_bgE-OI.J_9OqE-Oi ,150ubL-Ol-,qO737L-O_J= a

-`_95E_-_d_9ZaF-u_-_5_E-_-'_b_=_59_f_-'_9_'1_7_='18_3_1_E÷_='_8_5_E_ 0

",IS7_7E+Oo-,I1e_OE*OO-,_$L.01 ,lOaOSE-Ol ,7889_E-OL ,I_IJ/E÷OO el?gOqL#O0 ,_O]91kfO0 e_IlOSE÷O0 ,_033_E#00,le$_k+O0 ,15_5_k÷o0 =IZ_57LgO0 ,SbgObE-O[ ,55_0E-_1 ._bO_3L-Ol-.1_oqBE_O_J= 5

"._Ola_E*OO-.l_79_E÷OO-.7_qJ1E.01 .1_2aSko01 ,qeO2qL-01 .171_bE_O0 ,Z_aSSE_O0 .2SSqtE_O0 ,4_k_Tk_O0 ._OSTE_O0,_JgleE_O0 ._07bOE$Ou .lO77bE_gO ,l_a/SE_Og ,elaSek-oI ,JgOOOE-Ot-,Z_71aL-OZ

Page 116: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

108

Jm b

J= 7

-.3_t_k÷OO_e_3ObOE_OO-.I|_bbEe_O .I573b_-01 .l_5_gEeO0 ._59_9E÷00 .]_7egEeoo ._057_E+00 ._3301E÷O0 ._3_,_EeO0

,_07bSE_O0 ,$bE75E÷O0 ,_O_UlE÷O0 ,E3tb/E÷OU ,15_gbE_UO ,75_59EoOL°o_7_O_b°O_J=

oe39b]_E_OO'.ES_I|E÷OO-.t_OOLE÷uO .17323E-0_ .17585E+UO .31381E÷00 ._E518E÷O0 .5013eE+00 .5_077b+00 ._SEbE_O0.bt855E+O0 .aOS_tE_O0 .Sgt$SE÷O0 .JOEEbE_O0 .203b_L*_O .g_eqgk-Ot=.bObiOL-O_J= g

.._8_80E_OO..3_tS/E_OOo. Jhqb,E_O0 .i8778E-01 .20eJSE_o0 ._1593L+OU .51377Le00 .bt|3_E_O0 .bbS_gE_gO .o7e_E_O0.baS_aE_o0 .58eo3E+O0 ._goEJE_O0 .J8575E_O0 .2etEBE_O0 .t_85eE÷og-.7a55aE-o_

J. I0

-.58_E_OO.._O_bE÷OO-.EO_OO ._O07gL=Ot ._35L_÷00 _7_E÷O0 ._55JE÷UO .7JTBtE_O0 .80887E_VO ._E_25E+O0e?ggObEeO0 e/_ogOLeO0 .o|9_EeO0 ._Jg_EeOO e3_gJb[eUO .IeEBqE÷OOo. SeTStE-0_J= _t

o.bgSEBE_OO=.ag_gE+00-._aBOE_O0 .EIteSE-Ot ._SOEeE_O .5_95uE+00 .7330bE+00 .88_qTE*OO .9_507[÷00 .JOv_SE_01

.gTa7_E÷O0 .Sg_oSE*o0 .I_u2E+Oo .599=_E+00 .aOqOaE÷O0 .EO_a_E÷OO=.10_5_L=O!

..853_JEeOO-.58aoab+OO-._g_57E÷o0 ._oT_E-_t .j3578_÷00 .b_St_E*o0 .SbgbaE_O0 .IO559E+0_ .l_boSE÷gt .12100E÷0|.t_BOiE÷oi .to_7E_o_ .g3EBBE+00 .I_555E÷0u .50aaeE÷00 ._5157E_OO-.tlSI_E°01J= 1_

oe99_oSE+OO..eqSISE+OO..$=gOJE÷UO ._631E-Ot =JgJJS[foO .1_670E+0_ .lOZq_L+O! .1_5_0L+01 m|_g_gE*Ot ._aSO_E+01.l_2l_E_Ol .1311gE÷01 .IIJE7E÷OI .aqbZTE+O0 .bIb75E÷O0 ._O883E*OO-.I_bOOE'O!J= 1_

=.11791EeOt-mS_50ek_OO-.qlbOlb÷O0 ._£751F-01 .aOO58L+O0 .SbT_SE÷O0 .1_]eaE+0_ .tq859L÷o_ .tbhlOE+gl .17_a3E_01,170§5E*0| .iS80|ktO_ .13beOE+_I .lOBtBEeOt ,75008E_00 .$771et_OO-.l]$bObogtJ= t_

.,i_O0_EeOt.e980_TE+OO-,ag_=gEeO0 ,Z_TJE-01 ,S]_$$EeO0 .10_1_E$01 ,ta3_EeOt =t?eOgE+Ot etSTSOE_! ,_Oe_EeOt

e_g_|TEe01 el_qTqEeO| .;b_q_EeO! .t)13_E#O| .qOBqtE*O0 ._58_3E_OO-._J70bE-OtJs ie

-.tb6_E_O|..tt_gE÷_l=._qOb7EeO0 ._OqbgE-Ul .e3170E+O0 .|20_SE_O! .leq72E÷Ol .2085_E÷01 .2_ue_t÷O! ._05_E_Ol._aaOeE_Ot .2275aE÷01 .leO33E+vt .tSO3;E_ot .10906E+01 .5568OE_OOo.1_aObE-OtJ= 17

°*12_q2E_9_E_a_E_g_E_°*_gg_'_7_7E_1_*E9_9_E_g_7E÷_7b_q_q_E$_

o.197_$E_Olo.t3825E+O_-.?UuOqE÷Ou .185qBE-O_ .7=O_E+O0 .talbSE_O_ .200$tE+g! ,Ee/O7E÷01 .278bqL_ut ._g_TOE+Ot._9t_qE+ot ._7_5_E+01 .23815E÷Ot .lqOSbE÷Ot .15_5_E_01 .67_57E÷OU-.tEEg_E-U!

-_55E+OI*elb_bE+O|-.83_72E_OO .l_Sg_E_nl .8_O$SE÷OO .lebgbEeOl .2_g7LeOl .29_7_L_01 .J3lO_beOl ._g7_E$Ol.3_80_E_OL .32021E_01 .28577[÷u1 .22qE1E_01 .15gBSE_Ot .81061E*OO=.ggSe_E-O_Jm |9

.m_TOTOEeO|_.|gSJOE+Ol-elOO_|E÷O! .8b_OSk_O_ .101goEeo! .|9_90E+0! ,280_2E+0| .3_98E+0_ .Jg_OE+gl .¢_b57EeO_

,aIi_SE÷O$ .3¢0_bE+01 ._q287E*O! .27_bSE_Ol .lg_7Ot*O_ .g88)_E+OO-.oO_IOEeOEJ= 20

oeJ$I§eE+OI_mEJ_3bE_OIo. LIqOeE_OI .SO55gEot2 .llgbbE*Ol ,_32_eE+OI .3315eL_01 .UltagE_Oi .aOlSlE+gl ,age)iE+01

._geIiE_01 ._6751E+Ot ._tL_gE+01 ,33156E_01 .2323oE_01 ,1196bE_010,

Page 117: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

109Sample Case Plot: Single-Body Field

oo7

!71

Page 118: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

ii0

Sample Case Input" Double-Body Field

TEST CASE - _UDY-FITTEO COU_DINATE SYSTEM

OOU_Lb BUOY I TwU KARMAN-IR_FFIZ AI_FUXL@, _b POINTS ON LACH

K-T AINFO[L-FLA_ #I2 2O0 0 1 1 0 0

I 0 0 10 0 I I

o9 20

I 32

I I

I 56

3 l

2 I

b9 -I

a8 "209 0

_2 I _8 5b

_0 a 1 20

1.8 0,00oi o,0o01 510 OtO omo

0 0 0,00 0

8.0 0,0 I0,0 0.0 OmO 0,0,8081W7 -,Ib_W_8.807780 -.1626_1,8070bl ".Ib2bO_,80_591 ",Ib19_9

,800795 -,160050

,78_14_ -,15279_,75abl_ -,1_0182,721_b_ -,I_170

,68_09 ",I001_0

.b53090 ",087505

,bZ_771 -,OOqT_,bO_O09 -,05U319

.59_bO_ -,0_765

.59163W -,036352

,601308 -,035389

,b201_8 ",OSgSSb,b_5928 -,0_9100

,b76123 -,00W_78,708095 -,oe315e,739231 -,lO_OT3

,7670qb -,12_998

,789_2L o,I_353

,803001 ",15655_

,807858 ",IOl3g_

,8081_/ -,lb_039,_995_ =,0U0031

,U980_3 -,001_02

,_gbosb -,O0_TbO,_e293 -,00555Z

,_70WOq -,008509,390_8 -,ulSSql

,12_707 -,0_0790

-,03_802 -,O_bW5_

-,187_72 ",05052_

-,32114o -,0_559_

-,_2388o -,0337_

-,_8_bO0 =,OlbS_b

-,502720 ,0038_0-,_/1102 ,02b_5

-,396903 ,O_8ba_-,281g15 ,UOblOI

-,15315e ,01b_99

0,0

0,0

b8

Page 119: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

iii

_.TA

XI

o,005b,4 ,07_5_!

i282_51 10_14_8/395770 ,0_8202,_71990 ,0112q_,_87.10_ oO0_Oq,_gbU19 .OO_O_O

0 _ _ 0.0

! 100,0 1o01oO.o 1.ol(lO,O 1,0

1.00.0 1,0

22 I I00,0 1,0

48 1 l')O.O 1,00 0 0 0.0

3 0 100,0 1,0

10,0

0,0

Page 120: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

112

Sample Case Output: Double-Body Field

[_AXeJMAX_N_0Y,ITLH,LGt_,IOISa,I_I_,L_INTL_*_I_#IGt_ ; eq

|PLOTwIPLT_,NCUPYwLL_nTImL]_T2t_M_wNUMH_X,IG_IPIaL_IP2 I

H(|)$H(d],R(5),Y|_FI',,A[NFI_mXOI_F,Y_]NF,NIwF ;

I,_0000000 ,_O01000V ,OOUIUO_O 5,UOO_OUO_

IEV,i*IT,N{tOJ I o 0 v,OUOuOOOU

INFAC_INFACO I U U

20 d 2ou u I I U U U

I $ I 0 0 I0 O I I

O,OOOOuOuO O,O0000000 O,O000_OVO O0

14IIIAL ;NbLE • O,QOOO0090

, V • u,O000OO00

| STEPb IN AITAIN_tNT UF INF|N|TT INITIAL STEP ¢LINLAM CASE) • I

INITiaL GUEG$ TYPE! 0

--BODY 5_6_NT$--

L L_SIU L@I LB2 L_DV

1 L I lu -I

2 1 56 e_ "I

--HE-ENT_aNT SE_ENT$--

L LRSIU LRI L_2 L[SI_

1 I I. _2 1

2 2 1 do

--OUTER _OUNUAHY--

WA_IU_ • 5100000000

O_IGIN IT X • O$OOOUO000

UNIFOR_ ACCtLERaIIO_ _WA_EIE_ USEU,

Lll LI2

_8 56

! 20

5IZE_aIIO_OIST_X_I,XHd,VHI,YH2 O,uuOOOUOU O_nOOOOvOo lO,O0000000 o,noooouno O,OOO00000 O,O00000OQ OtOOOOOOOO

Page 121: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

n3

t_u_Y-FLrlED CUU"_Ir_ATL SY$IL_

F_PONEIWTI_L uLCAY _M5

- ATT_ACIIO_ -

ATI_ACT_Q r, LI_ES

J A_P UECAY

I IOOO,OgOUUOOh |.O[]UUUOUO

lO0_,OOO[_Or#uo ],O00UO_vO

lO00.O0_)i_uO_O L.OI_UOOOUO

]O00_OOUO_IO_O L.O_U(IOOo_

AII_ACIIO_ _uINIS

I J _MV

_ I III}O,¢vuu_OuO

._50uOOr}O OF [_U'_I,_F_EUU5 lL_

],ddu_lOOO{} UP t_r_w _Oi_i.oA_y

"---- _AXII_UM %U_8 Ilk Ill'AlL t_A_h$

1,O0(1UUUOU 0

l.ObodUUOV ,}

I ,l_gO?L+')l

" ,91_ImL+QU

5 ,/lO_u_*i,n

7 .5_ob_t÷U_,

l_@OOE÷dO h.

15_lt*Oo h.

l_@O_E÷bl O.

2_5_L*VU O.

IbV_3K*,}v O.

1 7_b_ _UU O.

la/_7f*Ou O,

Igw_dE*vW O.

_vUlE*O0 O.

]NI_w_EuI_T£ CO_vbwbLNCL FACT_W • |OO.OUOUUgUU

LO@IC_L COMTHO_

4V_.aCC.VA.A. L_CC LCFAC LCON

L,OOOUU T F T

L,OOOO_ r F T

L,@OOuO r k T

I.@O000 T F T

I,_OOVO l F T

I.@QOOO { _ T

l,@O0_O T _ T

1.8_000 T _ T

l,SO000 I F T

Page 122: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

114

I0

II

Ib

Ib

II

Io

Ig

_u

2_

_9

3t

_5

_g

_S

ub

_7

bo

bl

b_

b_

55

_m

b7

b6

59

.£Oo_St*OO

._IOWSE_Uu

,_lf_lh_uu

.I_5£E_OU

,1807_k_OU

.17_I_*OU

.Ib_l£E÷)_

,Ib#blk+OO

,IWTboh÷O0

,I_7EeOu

.13_/l{*OU

olSw_I[¢O_

,l_bbE_O

,_305t-01

,/351;_E-JI

,boJ3_'dl

,bb55_-ol

,_75_5E-01

._B_qsk-Ol

.,97_)E-OL

,51_5E-01

.b_TwTE-_I

.5oSgIl-O_

,3b3W_E'vl

.310b/k'Ol

175_11"01

.hOOd0000 (}[

od ._5_q_h-OL

Ol .29blSL-UL

o_ .2_lq@k-Ol

_3 .179b_E'-dl

oO ,dl_OqC-ul

o_ tO_ME-HI

_g lO_53L-OL

/0 lO_lb_.-I1

fl IOl7_C'O|

/_ 1006bE'Of

73 gHOS_-Od

,31W_bL-itl

,_l_bqL'Ol

.d_OT_-ul

,d_65d[-O1

• _I IV_L-uL

./')_ _oF -U |

,l_w_Ot'dl

,i_OOl'Ol

,ISOo_F'oI

,lOblOE'Ol

O,

O,

O,

O.

O,

O,

O,

O,

O,

O,

O,

o_

O,

O,

O,

0

0

0

0

O

0

0

0

0

0

0

0

0

0

0

0

O,

o e

0 t

(I,

O,

o

O,

O,

O,

O,

O,

O,

F)t

O,

O,

Oe

O.

O.

O.

O.

O.

O.

O.

O.

U.

O.

O.

O.

O.

1,80000

le80000

1,_0000

l,_OOOO

1,_0000

1,_000

l,OOOO0

1,80000

1,6V000

1,80000

1,80000

1,80000

1.80000

[,BOO00

t.80000

l,_O00n

1._0000

1,_0000

l,SOOOO

I.BUO00

I,_0000

1,8_000

1,_0000

1,80000

ImBOOOO

1,80000

1,80000

1,80000

l,OOOOO

lt_OOUO

1.80000

l,_OOgO

i.SO000

l.OOOO0

1._0000

1.80000

1,BUOQO

1,80000

1.80uO0

i,_O000

1._0000

l._O000

I,BOOOu

l,_O000

1,80000

1,_0000

1.80000

1,8_OOO

L,_QO00

1,800_0

1,8_000

1,80000

l,@UO00

I,_OOuO

I,_O00U

|e_UoOO

l.eOOUO

l._gOOO

1,80{)OC

L_QOOO

t,_OOOO

l,_OOO

Page 123: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

I,_guOuOOO OP

rb

to

I/

/'J

_o

H_

_9

9_

q_

_o

_9

oo

ul

u_

I)b

u!

Od

Iu

IL

IE

1o

lZ

19

lSll,m_-i_

IuT$TE-u

73(JI)_-(}_

,Ol$_lL'Od

,55_51_-02

mJ_lOL-Od

,_#i_ot*U?

=d_Ol_-Od

,705bTE-vd

miShSb_'U_

_lb_d_-Od

i_q2lE-d2

tl_7_-nd

I0_57_-02

o;501E-o3

o_$_dE-OS

bTb_iE-O)

7_83L-o$

,73dSut-u$

72bqlE-O_

o55_70E-0_

,Ul9_SL-Oj

120b_7_-li5

,172_L-03

,1_3786-05

,151_£-d3

,1170_L-03

.#q_2u_-Uu

.05/I_E-OU

.51q58_'0#

.0707q_-0_

)d_WfiJl

,d_l_/f"Jl

. /_0<116 -Ii

I]_/l_b'lJl

.ld_l_K'c) l

_#$170L'ud

,O09_lL'Od

,OOk7J_U£

)5_bOqE-U_

,_3dOfiE-O2

,3_bdoE-_

.3nOb_f-O_

,dl15_L-nd

dlO_qE°od

ll,_]O_'Od

995_)9b -_

9_du_h-u_

bel2#_-O$

_$u_bE-05

Ol_nok-_$

7750oE-0_

7)j77L-O$

517t5_=0)

aooTSh-O_

UlEIIEoO_

3q_13E-oJ

31out_-o_

17_0d_-05

15bSbE-O_

15u31[-u3

lOd_/L°u3

17ddlt-O_

1o7u_£-o$

151056-0$

O_bquE'O_

Oi

O,

o)

FIe

0 •

O)

t) •

O)

(l)

De

rl

(l

h

0

0

0

0

0

U)

O.

O.

O,

O.

O.

Oo

L))

O)

C)=

O)

O.

O=

O=

O)

O.

O)

O.

O.

O.

O.

Oo

O.

Oo

O.

C).

O,

O.

O.

O.

O.

O.

O.

O.

0)

O)

O)

(1)

O,

O)

O.

O.

O)

O)

O)

,O000n

,80000

,8bOUO

8UUUO

,O00011

filIUUU

,HOOUO

8uO00

_uO00

,SuO00

_uOuO

_O00n

80000

8000_

_uOOn

_UO00

_0000

80000

_0000

80000

80000

1,80000

1,80000

1,80000

I,SUUO0

I,OUOUO

1,80000

1i8V000

1i80_00

1,80000

1,80000

I,80000

1,80000

1,80000

1,00000

I,_O000

1080000

IiOvUO0

1,80000

1,80000

1.00000

L,80000

Ii80000

1.80000

1,_0000

1,80000

1,80000

1.80000

1,80000

I,80000

1,80000

1,80000

1,80000

I,80000

1,80000

1,80000

lmSO000

1,80000

1.80000

1,80000

1,80000

1,80000

1.80000

1.80000

I,80000

1,80000

115

Page 124: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

116

Page 125: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

117

J= 8

,9_eOYE_O0 .9|Oq7E_OO .gu$7bE*O0 ,_bbTE_Ou ,8b_97E*uO ,8_IqqE*O0 .81S11E+00 ,TaS8_Eeo0 ,7_b6LeO0 ,72_|3|e00

.e_gloE+oo ._557_E+no ._22S_k+uU .5896bE_OU ,SSTOqE*oO ,_2_b3E+O0 ._918BE+00 14S6_bEeO0 i_1300[eO0 i_|_|_|eO@

,5_]_JE*O0 ,577_1E*0_ ,_119eE*00 ,_5?E÷OU ,bTbl_E*O0 ,?Ob91E+O0 ,7)707_*00 ,?llS_|900 ,7q$04_900 ,l_[eO0

.TII|IE*O0 b7/_gL*no _T_eL+O0 .Sg_g_E*ou .SbS_3E÷O0 tbl"_SE+O0

-.b_|_E÷O0- b|g_Etou- bbB3Ot_OO-,bg_g_b+OO-_7OOb7_eOO-.bB|g7[eO0.

.b_ligE+O0 57gO7L÷OO _$bT_uO .bbSb,b+O0 .705_bE+O0 ./_t_O0

,gOS_OE_O0 9_O_Leh_ _b|enkeoo egbg_5 LeO0 egS_b|EeUO ,9glJlE*OOJ= 10

,9$1_&keO0 ,93096E*00 o9_609(9g0

8619eE*O0 ,8EBeB[*O0 .79_10E*00 ,7557_[+00

_7]b_E+uO ._7_$E_OU ,]BOggE*O0 ,3)1_8E+00

E_BBBE*UO ,$591bE+00 _SE+gO ,479_EeO0

7797_E*00 ,81,_7E*00 ,8_bgSk+O0 ,B?7_bEeO0

ggs_$_O0 ,qg_3|E_O0 ,gUBS]E+O0

e] o7_gL+d ] elllb_f+r) I .IO_b_L+UI .[O_[_Ul .gg/u{E*O0 .9b_7bkeO0 .g$osgk+O0 eBR_O_EgO0 e850b"_*O0 eSO@b|EtO0

.TbO_beO0 .T]3uJ_÷O0 .bbJ_qE+UO .bt_b_E+OU .b_O7EeUO ,bO9OSE+O_ ."$_5L*00 .3_7_gE+O0 .$$TbOE*O0 ._7eS_[+O0

._075,E*00 .135uOE*uO _5e_E_E_*_73b_ui_*_E_5_q_+_17_*3_8t_E+_U_*_9I7SE+_e57B7BEe_ 0

"."o_87E+OO=.E_L*_O*.leq_JE*OO-.BOg_bE._] .23575E-U1 .1EE_SE+O0 ._[_bE+O0 ,_9967Ee00 ._78_0E+00 ._50SSEeO0

.bllJoE*O0 .57g_lk÷O0 .e3TolL*_O ._quqsb+O0 .7_t6_E*O0 .IBg_BE+GU .8J,O_E+O0 .87598E+O0 .gl_87L+O0 .9506_Ee00

.9_goE+O0 .tOll_E*,)I .IO_SbE÷01 .10553L*0! .10100E*01 .10196E*01 .10838E+0! .lO_2eE+O! .1U75qE÷01J= li

.11gaOL+or .[tO01L*Ol .II_C_E*OI .llJaaE+Ol .l1031E*oI lObbTL*O! .10_56E*01 .qBOETE_O0

,e_2qE÷OO _7bS_JE+O_ ,?OuE_E÷UO ,b"_EeOU ,5/IbbE+O0 5107_E÷00 ,"_t_7E+gO .36930b_O0

.15J|gE÷O0 .qe/2J_'Ot-._385gE-ut-etSBSJE+OO-=_JoOOEeO0= _JSbSEeOO.=a_SbOEeOO.=sj3aOEeOO=

"=/_a7E*Oo-._a$oT_÷oo-,_8oOdE*ou**go955E_ou-,91300E_uo. 895BTE_OO.,SbB_SEeOO=,BOIBS[eO0.

"*5_I_E+_O**qJOT_E+OO=._I7u/C+OO*.EO_SE+OO*.BB_TE.Ot _b_gE_O| ,I_g_TE+O0 ,_JU57EeO0

,_gggJE*O0 ,b7e_t_en_ ,bb_dS[*O¢l .?_11b_+OO ,7850JE+00 8_SBSE+OO ,gOtgJEegO ,qS_BBEeOO

.lO_b*Ol ,It|tOt+J] ,I]4O_E÷U] ,11e_$¢*01 ,II60bE*UI ,11978E+01 ,t_o_gE_ol ,tEUIbE*OIJ= 1#

.lJ=89L,01 .13JJlL*ol .13lulL+o]

.vuuI7E,o0 ._70_*00 .ToESoE÷ou

,b_qTbEsUIs._gbSOE*oI=,I55bOE÷OU*

,_771_L+00 .5701_h*0_ ,bb_gOE÷O0

,|E[I_E+Ot .l_bJtf+U! .i_Sfllt÷Ol

J= 13

IE8OIL+Ol

08_7gE+OU

_b3?_t+ug-

10egEE*OI-

7501UE+O0

131b,b*O1

,lbqldt+l) l ,Lbdg_L+O| ,L5_IE*oI ,l_bFZE*Ol ,l"_SE*Ol ,137JSE÷OI

.]OlgOE*Ul ,g_Lu_E*OO ._Jg_E÷_" ,7_78E90_ ,_SE*O0 5_7gOEeO0

"*_bUl6E'Ol**lbl_dteOU=eES_O_L+O_=.qOOTbLeOOo.b_Ob_t*O0. bb|88E÷O0=

"*ll_O7E+Ol_.l_oT_E+Ol*.l_ggE÷_I-,l_7)$b+Ol-,l_lbbE+Ol.,l_5_$Ee01_

=,_25E+UU*.7705qE+O_-._E_SE+OO-,bO7b_E÷O_-,Je85UE.O0= _27alE÷OO-

,_3E+UO .57UO_E*O_ ,OeSbOE+{}O .TgSo_E+O0 tse/gbE÷OO _9_3E+00

_lJ_gO_*Ol .l_]gt*O] .laOOU[*Ol .15017b+Ol .15_87E÷0| .15a68E*OI

,IIoOEL*OI

-_lJbl_L+O0_

**I$958E#01=

.lbe_OE+Ol

J= tb

._lO_bE÷Ol

,lSJbdE÷Ol

-.]/O_IE+UI-

"._ludt*ul-

,_b_6_L*O0

.179t0E*01

9511_E+00 ,87BbSEeO0

Eg_lTieO0 ,_lbSt[*O0

e_b_"E*OO-.711OOE$o0

7_79bE*OO-,e3qITE+O0

10016E+01 .lO,50E*Ol

l|9_OEeOl

1_OJSE*01 .IEOO/E*OI .l_5_OE*Ol ,10980E+ol ,IO_9Ob_O! =975b|EeO0

bgaOgb+O0 .b_OlgE÷OU .a_I_EeUU ,3a_OEeOO ,_SUO_EeUO ,155_E900

JlEg7E÷uU-,_BIglE*_O.,5_EbgE÷OO.,bg_O7EeOO.,TB85_EeOOe,87_$$EeO0

IoT_uL÷_l',lOSSJE÷OI'.IOIB_E*UI*tqb_I_E*OO-.SBB_3E*OO.,799_BEeO0

_lbgSE+uO-.VEOS_E-OI .JObOSL-Ol .1_970E÷00 .Eea_SE*O0 .]7373[e00

8_77gE*00 .gl_O_*o0 .ge_l_E*O0 .10501E+01 .11097E+01 .11e$_E*Ol

I_$ZBE#Ul _lJSlbE*Ol ,lJb_E+Ol ,II_7_EeO] =l_qEeOl

.l_lb_t*O1 .1_503E*01 11789t*01 .11glTE*01

,_gBBb*O0 .]183eE_O0 8OJb_E*O0 .BSeI_E=OI

70878L*OU-,B7907E*O0- qOO_JEeOO=,|OTO_Ee01

tEEISLeOI_,IIO_|E÷O|= IOBS_E+OI_99_OIE+O0

8b$SbE-o! ,5_97bE-O| tBg_E+O0 .$_|$OEeO0

tOB37E_O| ,llb6_E_O! I_ISE*OI ,l$Oq$E*01

tbSbO[+Ol .Ib561EeOl 15a7ZE*OI

15E_IL*OI .t=_$_E+O1 .llbelt*gl =l_bll[+O!

_JOI_E*UO .29131E*00 .lbEbli*O0 .91976E=0_

gB_O7E_OO-,IIOSgEtOI=el_lbSE+Ul.,I31$eEeOI

la77_E+OI-.IWIbBEeOi-tI356_E*Ql=,l_B@Ee01

E_BIOE÷OO-t65_79E=01 ,9_059E=0_ _5_EeO0

llggbE*Ol .15039E*01 .IJgglE*OI ,laB_aEeOl

leO_b*ol ,tBO55EeOl ,1796ak*01

1770_+01 ,I7_bTE+ul ,17UubE+01 ,1_5_E+_I ,159_E+01

IUb_IE_01 ,g38ubE*uu ,_18_E+ou .bg_7_E÷UO .Sb_3OE+OU

dedb7E*l)oo.,_eg_L,OOo.57397E,uO-.71bO_E÷O0. 855_JE,OO-

I_u_E*oI-,1505OE÷Ulo,15_ObE+oI-,151aJL*OI- 151ba_÷Ol=

5575gE+00 .?UOSOEeUU _BJbbTEeO0 ,gb55JLeUO IOB_bE*01

leE_eE+Ol .lb_uE*dL .[l_09L*Ol ,17bbOE*_l 17gO_E*01

_Od3bL*01 ._U_81L÷Ul ,[_9_eE*_t ,19JB_L*Ot ,18o51E+01 ,1780_[*0t =lb_Ee01 ,15779Ee01 ,lablgE_Ol

1EOSbE÷_l .I=)_E_E*Ot ,91a_uL*O0 ./bCU_k*UO ,hOOk,EgO0 =aJ_qEeO0 tE6b?_E*O0 ,q_807E*Ol=,7q_75E=O|

1_j_[+_l°*t_d$_E*u[°*i8S1_E+_l**_8bb_E*_|-_18j_E_1°*1795_E*_1**1?$_8E+_1=*1_8L+_1=*1S_8eEe_|

l_/_9t*_1-*_1lh_÷_-*gbQ55E_I)u**77_t*_u,*5_b9E*_-*a_E_9E÷Q_=*z1_]_E*_'*_$?9E=_! ,|bTe_EgO0

5_50bE*O0 .71051[*u0 .8789WE*00 .10JguE*01 .11910E*01 tl]$3OEeO1 .l_e47[eO_ .ISBS?Eegl el_9_$|eO|

leT_+n! .19bliP*u! ._0107t*01 ._0570E*01 ._08eSE*01 ._IOB_E*O! ._l&_IE+01 ._lOSeEeO!

Page 126: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

118

.1555_E÷01 .I_90_E÷OI IE1ob[+O! .IO_3/LfOI ._$_OL÷UO .bUb10[+O0

e._O_OaE+Ol.._lo_SE¢Olo _2165_¢OI'._USOE+OI'm_b_IL+01". _3_b_÷01°

._7150_+d0 ._9719_÷_U III_5_+0_ .91_7qE+OU .II175L+01 .l_ubqE÷Ol

._uoT_L+01 .217/IF+,_I d271_E*Vl _2_qqOE+Ol .L_IO_E÷O! ,2_5_7E÷01

Jm 17

._quSut÷Ol ._2_IE+01 ._70OE+_t ._80q_E+Ol ._7227L*01

,1_$5E+01 .lb_ObE*01 ,1_r_b_E+oI .II/qSE+Ol ._quqO_¢VO

.,bObOIL+OO.,_IT_t+IIU-,IOb_E+OI',I_OI_L¢OI'*IS_BbL+OI"

.,_lOOk,O1.,2u_SlF+ul-.le_oSLiOl-,10_13tfO_-,t_OSh¢01"

.IfIioE+O0 m_b_EcL) U .b9767_+O" mgNI57L+OU .IL_b_E+01

,_gO_h+01 ,_5_ISE+_L ._bS_gL+Ol ._75_bL+Ol ._S_5_E+01

J# I0

..£/5jqE+dt.,_bb_VE+Ol-._J_L*Ol"

,2)87_L-01 ,$_$qgt+Ub .ObO_L*O0

,_7oToh÷Ol ,_q47oL+Oi ,310qTt÷ol

3_5_bL*OI ,$L_97E+Ut

I_b50_*01 .IOb_IE+Ut

EO_tOL+O1-,I_ISOE+OI.mlS_oE÷OI-,I_37bL+Ul',9_OO_E+O0"

_lOZO_+Ou ,l_71_E÷01 ,15_IOL÷Ok ,|8_71L+01 ,2097_E+01

)2_7_L+0i ,))_7E+01 ._,_bOk+Ol ,)qeUet¢01 ,]508eE+Ol

ZO995E+01 ,le825E+01 ,leS_lk¢01 .|/Q_SE+Oi

_58E+00 .25679E+O0 ._7091L-OI-mlB_I7E+O0

15590L*Ol.,171b_E¢Oi-,1_bbg_÷_1..l_TelE¢01

_lSg_E÷Ol-.2119bE¢Ot-._O_55k+Ol-.IgOB_E+01

b_OIbE÷OO-,$91_SE+OO-.17191E¢O0 ,5_/E_O!

1_8_$L+01 ,IbSOJE¢OI .teO$_t+01 ,Ig_ze_¢01

_b10_L+Ol ._IOE+_I ._3_8_E¢01 ._|BBbL+Ot .ZOI_JE¢01

70_9E+00 ,_5_77t¢00 ,_O080E+UO'mb_SOOE'Ot'._||OSE+O0

27_50L+Ol=,_b7blL+Oi-,2599_E+Ol-,2_ilE+OI'm_)_50EeO|

11,69E+OI-.BQ_|_L+OO-.b_ITgE+OO-._b559E+OO'e97$O7E_Ol

I_IVE+OI .IbS$Ob+Ol .tSb1$E¢01 ._US,_E¢OI ._IIEvO|

_900E_Ol ._9_E*Ot ._eSZ_E÷OI ._gu_L+U1

o_I_I_E+OI ._969_01 ,279_7Et01 _59_qL+01 ,_$_E+OI

,76857t+O0 ,_e_77E_O0 ,Ib_Slt+O0" tSb7_i+OOo._771E÷O0

_81_TE+Ol-e_q/bqk¢01

$07_6L*UZ-,_q_7bE_01

,blb_7_÷OO-m_qT_E_O0

_U5E+O! ,dSb_|E+Ol

)50qqE¢OI

=,bg/_OL-Ol-,bu_lgEoLll-,q_70%E'Ol"

-,l1090E-O_-,510OOL-_q-,luO_Oto_"

.OU_N_L'Vl ,_7_9_L-OL ._O#t-vl

._Sq31f+01 ,_SF*O[ ,19073E+01 .lbb_5_¢Ol ,1_08bE+01 tS_qgEfO0 ,_69UIE+O0 tgt_l_E-Ol-,_OTBb_eOO_tbbSOgE¢O0

.,$80HOE+OI.._9_31E¢oIo._O_IL¢Ut-,_O7_OE+OI°,_O_OTL¢OI',_Obg_L÷OI'. uOlll_¢Ol°'$9|b$_÷Ol''$FBS_*O|='$b_t|t¢O|

._01_E+OI o_+01 ,%6_OE+o1 ._8076E+_;1 ,_9_9_L¢01 o_05b_E+Ol ,_I_5_E*UI ,U1781E+01 ,_1872E¢01

J= _0

,50OBOE+01 ,_91_7E+,)l ._Ol_9h+Ol ,_OOglc+Ol ¢_bO_t+Ol caaTbSE+Ol ma_51I_+Ol .)9901E+01 ,_0950E+01 ,))ee5E+Ol

¢_UlJ_E+Ol m2_z_+oi ._z87_+01 .l_Oh_h+ol ,t_bU3E¢bl .g1875E+O0 m_Ol$UL+OO'_5OSqbEel_t,_bl_g+OOtmql_7_E¢O0

-,,OlJ_E+OO-.OO_bbE'l_ ,_OI_"L+_ .91_7_L+00 ,I_6b3L+U[ .I$O_EL+Ol ,_Z87L+ul ,?b$_k+Ol ,$Ol_t¢el .3_085E¢01

.$OwSoL+dl .$_901E+I_I ._51tL+O[ ._u/b_t+.)1 ._OO_E÷UI =_80glE+Ol ._gl_OE+OI ._9787E¢01 .SOOOOEeOl

IOIg_C+oO.,1OOObL+OOo,15_IgE+OO.,t_OISL+gO.,I_I7E+OO-.1UbI_E+O0. _7505L-0|

_ibOot.O_..SiS_OE.O_..85UgOh. O_..18591L.Oto._ggbbEoOl-¢_OTgOLmOl. _8_5_E_0|

IbbZbF'i) l ._8_UOt'O£ .2ba35L-Ol ..Sb_i'_| .bb1OIE'01 .7529gE'UI T_5]IEeO$

llLq_L-Ol .08ugk,E-O_ t_O_OOEo02 ,l_bOL-b_-.3tUOOE-o_-,llbgB_-Ot-,19_OgE-01

_770_-OI-,_e_I_[L-VI-._$_2L'O|'m_5_VL'OI'.3985bE'OI',_97uOE'Ul',O_70E'O|

|aj_Sh¢O_-i1_obbE+O_-tlbgal_.+OO=.lelJgkeOO=m|b_O_E+OO=e IO_a_E+gO

.,$_05b[.ol.._OOL_.ol.,Z95_bE.Ol.tZglgl_.ol-,Jl_OLoOl-._53E-01" q3obTL'Ol"mS_gE'Ol',blV 8qL=Ol',O70_eE'01

=,bl_/_.Ol..OL_OU|_=(t|=e_5_g_E._|-._d_.(l| ¢_7_51E=0_ m£St|_E'O1 bl#_OL°UI ,807_EE'Ot ,9|SUbLo01 9_000Eo01

.,?_eTOL.Oko.g_71t-Ol-.]ll_E÷tlc-,[d_bbt+_o',l_l_gE+uO',|_d_SE+O0" 1575_i¢O0_.160q6EeOO'.[_$_|b+UO

Page 127: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

119

J= J

-*t_l_E*_-*Lu8B_E_0_-'9_jaE-_1°'8_97[°_1°_8|8_9E°u1=_76_t8E*_1='7_8a_L=_°'b59e9Ee_1°*b1$1_E=_t=*S_985|=_|

-,e_55_E-ot-,7_bg_E-O]-.5et5eE-OI-._752bE.Ot o77551Eo0_ ,_3_1_-0! ,73088E-Ot ,q_b97E-Oi ,IOTOSE_O0 ,loqBIE_O0,IOJgJL*O0 .91d/IE-Ot ./bq7_E=Ot .e_tSOE-Ol .bOb_E-Ol ,a_3bE-Ot ,35b72L-Ot 30090E-01 ._OE=OI ,IBT|iE*01

,13_9_L-01 .O_15_L-O_ _]87a_q_]_q_*_e_a1_°_*_E_E_6_j__2_*_[_y6E_5a_aE_*,b_7J¢_)l-,_oI/gE-_1=,995_SE-o1-,l_7_bLeou-,_aBE÷gt)-,laqoEE÷oo**tS_BOLeoo. 159aoE_og-elOaOgEeO0

".lobi_¢+OO',llJ)JL+(_'.llqJ_)E_uO'.tSJgOE+OOo.loog_h÷UO=mt_/50E÷O0. I_aBIE+UO= 17817EIOO*mlOSbgE+OO-elSbS_E+O0".I_I_+O_-,l_il_E÷Oo-,t_oa_L*oo-,llo7eE*oo-,lO_e_E+Oo-,95IeSE.Ol. 898_$E=OI.mBa501E.OI.m7969_EoOl_,Ti_9?E_01

",/£l/tL'Ol'.l_O"bL'Ol-,og_elL-ul-.70_75E-()l-,7_90L.Ol.,iS_5L.01. BStBSL-O)- 9_b_TE-OIo,99177E-U1-_tO_E_O0",_99_5L-Ot-,_e|_E-_t-,_O._TL-ol-.J_obtE.01 .9_705Eo0_ ,51|bSE-01 B50_JE-O! 10903E_00 ,1_05E*00 ,l_7_qE_O0

.J_3J£EfOO ,11$07L÷00 ,9_l_5L*Ol ,85919E-ol ,TgO_JE-O| ,ba_lNE-Ol 565JSE-Ol ,aqlsaE.Ol ,aSa_SL-01 ._7$7_E-01

.$15d_E-Ol ,_ollqE-Ol ._II/IE-CI ,lb_83L-Ol ,lle_$L-Ol ,b65_OE-O_ IO0_E=O_=eB_575E*O_-e_UOgBE_Ol.e]_B]E=OI"._O'ioL'lll-.o_8oJL-ql-._75_OE-Ol-.lOS_L*OO-,t_tb_E+OO.,t_57JE.O0. l=TbSE*OO-,157bbE_OOo,te615E*O0

J=

,_h_gE_uO ,IJ_5_L+oO ,I_/gE÷OO .IlJqqE÷OO .IO_O_E÷u_ .qllubE=01 .8_SU_E=01 .7_885E-0| ,bTb|_L-Ot ,eO75_E-01

J= o

**l_qllE_OO-

,l_gt_O0

-.15_oEoul-J= 7

°._olOJE+OO-._S_blE+ou-._abgaE+OO=._3_7OE_O0-

*.1961_E÷oO*.19755L÷_,O-.lg_blE+OO-.£Ot_L_OO-

,2_61JE_O0 ._7oTE+OV ._115E÷00 ._t_L_OO

J=

199_OL*Oo-,IO60_E÷OO=,I78_SE÷OU-.IO90_E_UOo

R_;_bL-Ol ,75q[lE-Ot ,bSb_SE=O| ,oOg6OE-ot

3"3o_'Ol*,5"?_/E-OI=,7550_E-OI-,90150E=01=

lbObOL_O0- I5_O£E*gO-.I_ObgE_OO-.l_I_BE*OO-mI$71BE_O01=5_0E*00- 15131E_OO-mlSeSOE*OO-.tbOIbE÷OO.=I5877E_O0

70_oE-OI IlegOE*uO ,tSII7E_O0 .17_b3L*O0 ,IB_83E*O0l_k÷OO t_17E*uO ,11_95E_00 ,IObSBE*O0 .98_99E_015_5_0Eo01 _80_E-01 ,31337E-O1 ,178_5E-01 ._19Z_E_O_

110_5L_00- I_5_E+OO-,I53_7E_OO-.I7013E_O0

tesoeEo_t ,b_tbE-O[ ,t$855EeOO ,18_97E*00_lO_E+UO .[9811E+00 ,18751E÷00 ,tl_b9E+O0lO7[tL_OO ,95111E-01 .8_1_7L-01 ,68_5qEeOi79a_oL=UL-,lo$99E+oo=,l_810L*oO=,lS|3aE_O0=

_bE*_*_F+_*j_a_E*v_=_19q9_-_$_8E_$_99_E_]_98_=_8E÷_U=

,_l115k+Ov ._leSOE*OU ._180eE÷Ou .31£2_F*_0 .JO$O?E_uO .£9191E÷00 ,2797bE÷00 ,2b7_OE*O0

,_e97E*O0 ,_lonOL*O0 .20_E*O0 .1888YE*00 .]7qdbL*oO .15_SqL+O0 .1_1_E_00 .t_beE+O0,5_/_IE-OI ,_217E-01 .15.e_E-oj-.29127L.OI.,5919_E_OI.._9591E.OI..I19_JE÷OO.eI_9_E_OOe

",tO_gE÷OO-._I_bL_<_V-,_b97/_E+O0o _3blLtOu-,_IlelL_vO-,_$bgBE*OO-.36869L_OOo.]77]BE_OU.,

-,_l[5_*,)O-._ogl_r_O-.tJO_JE*uO- 5511JE-01 ,28_9TE-o| ,1117_E*00 .190_8E*00 _bOISE_O0

.tO_E_O0 ./_O_?E-O_ oJg_$E-ut JJbb$_'_',JaO_=E-Ot-,7_O?lE-Ol-,tlOlOE*O0- l_767E÷O0=,J= to

"._1838E÷OOo,53_L_O_o,5_U_UL+O(_*,555bIE+OO.,SbO7_E_O,..SOelSE÷O0= 570_IE_OO..5?_IbE_O0 =

,.9017E_00 ,.O707E*0_ ,"_;OE*uu ._17_B[*O0 ,$8_37E*gO ,]$957E$00 $_775E_00 ,_$77E*00

,I/_SIL,O0 .155_L*00 ,ql_RE-01 .aS_5]E=Olo.19a97E-O_**a_]OE.01. 9785eE.ol=,]a551Ego0 =

5_BSE-gl ,_aSOaE=0117356L*00

$_OSE*OO-,]_bS|E$O0

_8558E_OO-,_6|gSE$O0

ZSaSOE*O0 ,_a177E_O0

17798E_UO

J92_6E*OO**aOa_OE$O0

J59_TE+OO-,J_lbSE_O0318_7E÷00 ,]617_EeO0

!O_01E*00 ,|]qbSE÷O018a_?E*05

_?98_k÷OO=,_OOBOE_O0

a_959E_OO-,$850bE_O0

S490aE÷O0 ,5107_E_00_S757[*00 ,_1914E*00

Page 128: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

120

Ja II

._/llOE+Ou .oa_TbFfLl_ ._I=_E4_(; .5_IlJF÷U_ .5_8L+_0 .SDb_OE*OO ._0_95L*00 .=19JSEfqO ._7_ObL#90 ._I_E*O0

J= I_

..q_dSaE_OO..j_j_bE,_v.._O_gL_(141-._Ob_gt-nl .uoOJb_-U1 .1/_JgE_OU ._gb_*O_ ._l_51E+Og .5_90E_gO .OI_5_E_OOo/gJqbt+O0 ./;ei,oE+JL. o@_b_F*ut= ,_TNg_t_,)ti .@Itb£L+O0 oqJlblE*O0 .g_bJL÷UO =gJ970E_O0 .gbOI_E÷_O ,91_85E÷00

.o8_19L*00 .6b_9_L*_O .51795E+_0 .SI7_OL÷OO ._5_5£E_00,08_7=E+0_ 08580_)E÷00 ._jO_L÷_L= .7b_StE+OU .T_/_OE÷UO.J_Ob_E+O{} eJlb_hEi_U .EN_F_E+O0 .170b|E*U_ t_99_Ee_] .18qUlP°OI'.58bblE'Ut'.t$550fiOO'._IIlTE#gO

J:' tJ

.OJ$_E*O0 .92otgf*_d .LU_qSE*ut o1U087_*01 IIIeOL+_I .l15_k*Ol _l17qgt÷Ul .tlSIgE*Ol .ll_lak*_1 .IIe_IE*OI

.11_%2E+OI .III_*_I .IL_7_SF*OI .li]_b_÷Ol q;_E+vO .91_8E÷00 tS_b_SE*gO .7_SUlE*Og .b9950_*gO .O191_EeO0

.I_71_+J1 .t,tb_L*_t .tJ7_qE÷ul .l_lqlE+01 .12b/_L+UI .llS_bt÷Ol .llOblE#Ol .lOl9_E+Ol .9_577L#_0 ._b_|_*O0

.721_E*dO .b115_*00 ._qT_+U_l .J_OFiE+_d ._0110_÷00 .l$9_+0U .17bUgE-OI-.IO_bbE÷OU'._612_O

J= 15

_'£_b_-_jId=_°'b£b%_£_°_uu-_81_E_-'_t_*_-_g_l_1_q_E_-_ l_O_ek÷ul.'laOSOE÷O!

..lI_JoE,OO..5_q7_÷Ob.._%7qlL÷(=I'-.t_U6|E*C_ ,5_75E-ul ,_58J_E*O_ ,_5_75E_00 .baSg_E*O0 m_77JL_O0 .999_E$00

.11519E*ut .t_Ol_L÷Ol ,l_L+ul .15_O_L_Ul .Io_£$_*_I .170bJE+OI .1701_b*01 .179BBb÷O| .IBt_EeOI .IB_O_EeO_

.180_9E÷01 .17;5_t÷Ol .l_ll_÷ul .lo7_Ot*Ol .IO01_E*Ot .lbl_gt+Ol .l_et*_1 .t_lq_*Ol .I_057_*_I .|0_$9E#01

J= 1o

-._2LelE*UI..£1610F*L.I-._OPIO_*_l'._qq_I$*UI'.I_SE+OI'.17519E*Ot =

,tJb_oE*Ot ,15J_TE*oI ,logeSL÷Ol .t_379E+_l ,19_?bE*U1 ,_05b_E*Ol._5_VE_OI ._Obl_*ul ,_Iov7E*_ ,_U977_+01 ._OITBL+Pl .19_E+Ol

.l_OIL+Ol ,IOSObE*O] ,90_O_E*_Io ,7_bSbE÷O0 ,5_lb_L+_O ,_5_90E*00

128blE*_l-,lab72E*Ol-,15Tq2E_gl=

2_bSIL+_l=.2_TllEfOlom_2?lOE*OtoIbO_bE÷OI-.l_8_E+Ol-.I_570L+Ul=5_38L*_0 ,7_q7_00 ,geb_2i_UO

_l$_E÷Ol ,91_qgE_01 .2_TE*OttBtt_*_l ,tbeSOE_01 ,15517E_UI

lo_UlL*OO=,_q771EoUlo,_IUq_+O0

1710_E_01

_521E*01

10e13E÷01

I171_E_01

_38b_*01

1aua_E_01

Page 129: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

121

Jm 1_

-_oo_+u_W__7_E_1_+_i_1_9_+_5_t+_°_b_+_2_839_t_- 25093L+Ol-o25171E_01

°_?_5k_8?$2_1°_j_1_e_-_j1_-_]_$9_+u_°_3_+_°_3357b_°_]j_+_° 5_6eSk+01-,_35_£*01

_$_$_+v_j1T6j_3_$_?_+_29_+u_27$_5_+U_53_5_°_j1eU_*_E_ 1811_[_U1-,1550_£_0!

,l_9_b_+Ot ,_lS_bL*O! ,_3917£*01 ,_077£+01 ,_198bL+Ol ,290]0£+01 ,_0995L÷01 ,_O?_k_Ol $_855E+01 ,_]$_0£+01,3S_27k÷U! ,_l_[.,l I ,$_O_IE+uJ ,_?SalE+Ol ,$I_7L+01 ,3_111_÷01 ,_8701L+01 ,_7UIUL+OI gbO97L_U1 ,_2ge_t_01,_UOgOL÷Ol .l%_$_k+Ok ,15bUIh+Ol ,149Plk*Ol ,IOIIbL+QI .?_13£+00 ,.£HbgL÷uO ,13kbOE+n_.,loblOL+OO

",lUglSh+ol-,l12u_ +bl-,/_b_Ok÷OO-,$h159£fOO ,_7_9L-UI ,_l_gTk+O0 ,?ggS_+O0 ,llTbWE_Ol 15_5E+01 ,IBgblE+O|

,_$1_t÷Ol ,45uo3_+ul ,_8_8tk*Ol ,$1_IL÷OI ,_U_l£_ol ,_bbOu_+01 ,_12_IL_01 ,_e_89L+Ol _977bE*Ol ,_OblO[+O|

Js 20

",Jgg_lE+Ol',w_Siif÷Ol-,=_lS_k+O1-,a_b2ak*Ol°,_SUqlE_Ul.,WR1,g£+Ol. ugTBTkeol',50000Efol-mw@l_lE÷O1.,aqIag£+01

.ug787£+01 ,50000£+UI ..97e?E*01 ,_9_UgL_O| ,_8091L+0| ,_bb_£+01 Q_758£+01 ,Q_511£_01 .39q01£÷01 ._bgb_£_Ol

Page 130: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

122

Sample Case Plot: Double-Body Field

Page 131: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

123

VII. INSTRUCTIONS FOR USE - SCALE FACTORS

After a coordinate system has been generated, the "scale factors" for

use in the solution in any partial differential equation transformed to the

rectangular transformed plane are generated and written on a disk file by

the main program FATCAT with its subroutine ABG, MXM , PARAI, PARA2, PARA3,

and WRDATA. Instructions for use are included in the listing of FATCAT.

Core must be set to zero at load time.

Dimensions. The standard program allows a maximum field size of 70 _ lines

and 60 n lines and requires a core size of 201,000 words for the Langley

Research Center's CDC 6000 Series Computer System.

Input Parameters. Explanation found with the sample test data, and program

listing.

Files. This program requires 2 essential files:

TAPE i - input tape - generated as TAPE10 by Program TOMCAT.

TAPEIO - disk on which the factors are to be written.

Page 132: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

124

Scale Factors

Program FATCAT

Page 133: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

125

PROGRAM FATCAT(I_PUT.OUTPUT,TARFSmINPUT,TAPF6m_LITPUT,IIAREIOwTkPEt)

r *******,** _I$EI$SlPBI _TATE 2=D COORDINATE TRANSFORMATION *******_**

C * CDnRDI_aTE SYSTE M "SCALE FACTDRE*I ALPwA,B_TA,RAMAeSIGMA,TAUeC * JAC_HTAN,DXIDWI,[)XlbETA,C * I)YIOXI, AND DY/DETAC *

C *********************************************************************C

DIMENSIO_ CI(8)wC2(8).LBSID(b),LMI(6),Ln_f6],LEDY(6}, LRS_DI(6), LRI(6), LRZ(6), LISID(6). LI](_), II2(6), LTYPE(_), LSEN(6)_ATA NDIM,NDIMteNDIMX 170e_0,70/

_*****C

C

C *C *C *C *C *C *C *C *C *C *

C *C *

C *C *C *

C *

C *C *C *C *C *

C *C *C *C *C *C *C *C *C *C *C *C *C *C *C *

THE COORDINATE @VSTEw IS REAO _R_M nTSKCTAPEt] IN THE $_[• DRW*T USEO BY TO_CAT TO *RITE ON _ISK. THE SCALE F_CTC.R8kRF WRITTFN ON DISK(TAPE|O] IN ONE OF THF FOLLOWING FONM_T8,SP_CIFIEO BY IFORM,

*** FORMAT _1 (IFORMmt) ***

_RIT[(tO,t} c]

_RITE(tO,t) IM_X,J_W.N_SEG,NWSEG,LISE_,NBDY.RITE(IO,_) (LnSID(L],LB_(L].L_2(L)_L_Yt' },LEEN(L} ,

I LmI,NBEEG}w_ITE(tO,I) (L_BID(L),L_I(L).LRE(L),I_I_ID(L).LIt(L),LIZ(L),

I LTYPE(L),LmI,NR8EG)DO 2 jBIIJMAX-2

2 *RITE(tO,I) ((CtN,T,J),Nml.IO).IB_.IM_X-2)DO _ Jmt_

$ WRITE(IO,I) ((CB(N,I_j)_NII_|O)_m_wM_XO(IMAX,JM_X}

THE _RR_Y C CONTAINS THE F_CTOR$ FROM THE _ECOND POINT TO THEPENULTIMATE POINT_ ON SECOND ROW TO THE PENULTIMATE ROW,THE *RRkY C_ CONTAIN8 THE FACTORS ON THE RECT_NGULkR B_UNDkRY,JmI,2,3,_ IN CS CORRE8RONDINS, RESPECTIVELY, TO THE SOTTOM,

LEFT, TOPe RIGHT SIDES, ON EiCH SIDE THE POINT8 RUN FROM 1 TOEITHER IM_X OR jMAXe A_ _PPROPRI_TE,

*** FORMkT _E (IFOWMI|) ***

*RITE(tO,l) C1WRITE(IO,I] C2_RITE(tOwt) IM&X,JMAX,NBEEG,NREEG,LIEEG,NBDV*RITE(tO,l) (LB$ID(L),LBt(L)_LB_(L}eLBOYtL)_LSEN(L]e

I LBI,NBOEO).RITE¢tO_t) tLR8ID(L),LRt(L].LRZ(L)_LIEID(L]eLIt(L)eLIE(L),

| LTYPE(L]_LlleNREEO}DO _ JmI,jMkWwRITE(IOn1) ((C(N_I_J)_NBI,IO)_IBI_IMAX)

THE JRRAY C CONTAIN8 THE FACTORS FROM THE FIR|T POINT TO TMELAST POINT_ ON THE FIR*T.ROW TO THE L_ET RO_,

!Z3

?

9tO

13ta_St6$11819_0

_6=7Z8Z930

]IS

]8]9aO

llll=S

=7

a9SOSt

S_SIISSt6

S_

Page 134: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

126

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

t

* qll I JACORIAN

* NO2 I ALPHA* Nm3 t B_TA, Nm_ I GAMMA, Nm_ t SIGMA

* NB_ | TAU* NmT I DXIDXI

* Nm8 l DXlDETA

, Nm9 l DYIDXI

t Nm10 I.DYIDETA

t

tit w_

T_E FACTORS CORREBRON_ TO TMF TNnEx _ AS FOLLL)*SI

*** CARD l IwRTIjI_RTE,IFOR_ - FORmAT(SIS]

IWRTI - I0 DONeT PRINT COORDINATE SYSTE M FRO_ _HICH

, FACTORS ARE CALCULATFD,

t )0 PRINT COnRDINATE SYSTEM,t* T_T2 - m0 _DNWT PRINT FACTOW$,

* >0 PRINT FACTORS.e

t IFORM - FILE STORAGE FORMAT CONTWOL, {SEE AMOVE)t

READ INPUT DATA

_RITEC6eISO)

N|m|REWINO NI

READ C5,110] I_RTt,T_RTE,IFOR __RITE (_ISO) IWRT%,IWRTE,IFDRM

IF (IFORM.LT.I,OR.IFORM.GT.2) _RITE (6,%70}

IF (IFORM,LT,|,OR,IFORM,GT*_} STOP |

READ COORDINATE SYSTEM

REAO (NI,IOI] C|

READ (NI_IOi) C_REAn (Ni,IIO) IMAX,JMAX,NRSEG,NR8_G,LISEG,NRDY

ITEST|IMAX-_

JTE$TmjMAX*2IF (IFORM,EQ,|) ITESTmlMAX

IF (IFORM,EU,_) JTE$TBJMAXIF (ITEBT.GT.NDIM) WRITE tbeL]O]

IF (JTEST,GT,NDIM1) wRITE (6_IQO)IF (ITEST.GT,NDIM.OR.JTE8T,GT,NDIMt) STOP

IF (MAXOCIMAX,JMAX).GT,NDIMX) WRITE (b_160)

IF (MAXO(IM&X,JMAX).GTtNDIMX) 8TOP ]READ (N|_IO2]fLBSID(L),LRI[L]_LB_(L),LBDYfL}_LSENfL)_t. mt_NB$EG)

READfNI_tO])(LRBID(L),LRI(L)_LR_(L).LT8IDtL),LII(L),LIE(L),tLTYPE(L)_LIt,NRSEG)READ(NI,IO_)((X(I,J}_ImleIMAX)e.TmI_JMAX)_f(Y(IeJ),ImI_IMAW]_

1Jmt.JMAX)

_2(}3

bS6b

_7

70

7!

7_

73

7_

75

76TT

7879

8O

82

B5

_S6

8788

89

90

9_

95

9_

g_

9?

99

IO0

101

_021U_

iOQ

IUS

SOb

lOS109

_0

li)

Page 135: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

127

PRINT LAREL

_ITE (b,lO0) Cl_ITE (B,lnn) C2_ITE f6,120) IM_XeJ_JX

CALCt,LATE FACTORS

jMxMImj_AX.I

M_IHWm-AXn(I-Axpj_AW)I_X_2mT_AX-)j_XM2IjMAX-p

CALL ABG (C,_,Yp*D_,I_AW,JUAX,?_X_le.IpY_I,T_,_T2,_$E_rLISEGwCB,LBIST_,LH_.L_,LB_V,LR_T_,LQI_LP2,L.I$1_,LII.LI2,LTYPF,LBF_NDI_X,NR_E_G,_iDIMI)

PWIK,T X A_r_ V FIELr)$

IF (I_RTI.EQ.O) GO T{} 10CALL *_T* (X,I_aw,J_AX_I,2,_DI_}

*WITE F_CTOW$ T_ nISK

*** FORMal It ***

_R

WR

ILT

3n _ROO

_0

ITE(IO,IOt) C!ITE(IO_IOi) C_ITE[IO.110] I_AX,J_AX,NBBEG,NRSEG,LISEG.NRDY

ITEttO_IO2)(LB$1_{L},LRt(L)_LR_(L},LBnYtL_LSEN(L),Lm_NB_EG )ITE(tO_IOI}tLR$1DtL),LRt(L),LRE(L),LI_I_(L),LII(L},LI2(L},YPE(L)_LIt.NRSEG}_0 Jmt_JMXM_

ITE(IO_IOQ} ((C(N,I,J)_NII_IO)_Imt_IwWM_}_0 Jm1._

_ITE(IO_IOQ)((CB(N,I.J)_mI_IO)_III;MDIMX]STO_ 01o1

*** FORMAT _E ***

So _RITE(tO,t01) C1*RITE(IO,tOI] CE

_RITE(t_,110) IMkXeJMAX,NBSEG,NRBEG,LIIEG,NBDY

wRITE(IOe_O2](LB$1D(L)eLRI(L),LRE(L)eLH_Y(L)eLSEN(L),LmI,NBBEG]_RITE(IOetO_](LR$1_(L}eLR_(L)eLR_(L)eLI$I_(L]eLII(L)eLIE(L),

ILTYPE(L)_LmI#NRSEG)DO 60 JJ|I,JMXM_

DO 60 IIat,I_XM2DO 60 NIt,tO

JJJIJ_XMI-JJIIISlMWMI-IIJIJMAX-JJIBIMAX-II

bO C(N_I_J)mC(N,III,JJJ]O0 70 IBI,IM_X

DO 70 NII_IOC(N,I,I)ICB(N,I_I}

l_t

tE$

125tea12?1E8

15!I12

_36137

139t_oI_II_2

I_?

t/4(;

150151152

155

15T

IS9leot61

leS

le?

169

17017!I72

t?S

I??t?O17e180

Page 136: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

128

70 C(N.I.jMAX)uCB(_.I.$)00 80 Jz2.JMXMI

DO FO _uI.10C(N,I,J)mC_(_',J,2)

BO C(N,IMAX,J)mCB(N,Jp_)DO gO JmlpjMA_

90 *RITE(IO,IO_) ((CCNeT,J)w_II_IOIeIBIeT _AXI

STOP OlO_

100 F_RMAT(lXeBAIO)lOl FORMAT(BAIO)102 FORMAT(SIS)10] FORMAT(TIS)

10_ FnRMAT(_[16,8)110 FORMAT (1hiS)

120 FORMAT (*OFTELD I IMAX meuIUeSXe*J MAX meet_)

130 FORMAT (*O=-e.- ERROR m'--'*o|OW_*IwAX Ton LARGE. I_CREASE*o* _DI"

I AND FIRST OIMENBION nF XeY A_JD SECOhn DI_E_JSTON OFew* C .*}

|QO FORMAT (*O.--o- ERROR --.--*,IOX,*JMAX TO_ LARGE. INCREASE*ee N_I M

11 AND SECOND DI_[_BION OF XeY A_O THIRD*w* OIMENSTO_ OF C. ,)ISO FORMAT {*OINPU] I Iw_TIu*wI2,SW,*IwRT_B*,I2,SX,*IFORMu*pI_)|hO FORMAT (*O-o-w- _RROR --.--*w|OXe*MAXTMU_ OF IMAX AND JMAX MUSTew*

I NOT BE GREATER T_AN SECOND DIM_N$10N OF _B. TNC_FASE THIS*,* DIME

2NBION*/_ ANO NDIMX IN DATA BTAT_M_NT**)

170 FORMAT (*Om_w-- _RRO_ -----*._OX_*IFOR_ _U_T BE 1 _R 2.*)I_0 FORMAT(tM|/I)

END

_UBAOUTIN[ ABG (CF,X_Y_NDIM,IMAX_jMAX_I_XWI,JMXWI_IWNT2.NRS[G_

ILIgEG_C,LB_ID,LBI,LB2,LROY_LRSI_LRI,IR_,LI$10,LII,LI_,LTYPE_2LBEN_NOIMX_NB_EG_NDIM|)

DIMENSION W(NDIM_I), Y(NDIM_I)o CF(IO._IW,NDIMI)_ C(tO,NDIMX_)_IMENBION LBBID(1)_ LBI(1)_ LB_([), LBDY(1)_ LRBIO(I)_ LRt(1)o LR2

1(I), iIBID(t}, LIt(1)_ LIZ(I}_ LTYPE(1), L§EN(1)DIMENSION FAC(IO}_ 81D[(_)INTEGER FAC_SID[

DATA FAC /6HJACOBN_bNALPNk ,&MB_TA ,6MGAMMA ,6NSIGMA ,bMTAU

ItNX,Xl ebHX,ETA _6NY.XI _bHY,ETA /DATA 8|DE/bNBOTTOM_bHLEFT ,6HTOP #6MRIGHT t

C*****O0 TO _60

CC**_* BODY 8EGMENTB **_*C

tO DO 100 L_i_NBBEGIIzH,.BI(L)I|BLB_(L)I$lIitil_el|-l

]86

IgO

IV3

195

]Q?19819g200

202_0320,2O5206;_072O82O9_I_211

213

21S

21821q

_23

_ZT2Z__Zq_$0Z31

23_Z$5

Z37

Page 137: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

129

ZGOTOmLRSID(L)Gn TO (2n,_,6n,Bo), IGOTO

C**w* BOTTOM

PO CALL PARA_ (X,Y,II,I,NDIM,XXI,YXT,IIpI,TIeI,IeII÷_,I,XETA,yFTA,III,I.It.2,II,3,1,),B[TA,GAMA,IGOTC,JCb,JLP_AI

JmlImllJCx!TeaT1C(I,IC,JC)mJCBC(2,IC,JC)xALP_C(_,ICe,|C)BBETAC(_,IC,JC)mGAMAC(5,IC,JC]xSIGC(_,IC,JC)BTAUC(7,1CIJC)BWXIC(_,ICpJC)mX_TAC(9,1C,JC}mYXIC(IO,IC,JC)mYETACALL PARA3 (X,Y,12,I,NDTM,XXI,YXT,IE,I,T2-I,I,12=2,I,XETk,YFTA,I

I_,I,I_,E*IEw3w'I.IeRETAeGAMAeIG_TO,JCReALPMA)

ICmIEC(l,IC,JC]wJCSC(2,1C,JC]mALPMAC(),IC,JC)mBETAC(_,IC,JC)mGAMACt5,TC,JC)mSIGC(6,IC,JC)ITAUC(7,IC,JC]IWXIC(8,IC,JC)mXFTAC(9,IC ,JC)BVxIC(IOwIC,JC)BYET*DO $0 Iml),I_

CALL _R_$ (W,Y,I,I,N_IM,WXT,YWI,I-I,I,O,O,I÷I,I,W(T_,YETA,I,II,Y,2,1,),O,I,BETA,GAM_,IGOTO,JCR,_LPH_)

C(t,IC,JC)=JCSC(),IC,JC)m_L)M*C($,IC,JC)mBET_C(_IC_JC)mG_MAC(),IC_JC)m$1GC(b,IC,JC)mYAUC(?,IC,JC)mXwIC(i,IC,JC)mXETAC(I,IC,JC)mYwIC(IO,IC,JC)mYETA

)0 CONTINUE

;0 TO 1ooC**** LEVT

_0 CALL PARk3 (X,Y,I,II,NDTW,XXI.YXI_I,II,),II.],II,XET_.YETI_I_II,tl,II+I,I,II,_,I,I,BETA,gaMa,IGOTO,JCB,aL_a)

JmllJCm_

ICml!C(I,IC,JC)mJCBC(E,IC,JC)mAL_MAC($,IC,JC)mBEYk

Page 138: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

130

C(5,1CeJC)mBIGC(6,1CjJC)mTAL!C(T,ICeJC)mWXlC(8,ICeJC)mXETAc(geIc,JC)IYXTC(iO,IC,JC)mYEYACALL PARA) (XeY,I,12,_OTM,XWI,v_I,I_T?,)wT2,),IP,WETA,YET*,I,12,

II,I_-I,IaI_-_,Io-I,_ETI,GA_A,IGOTO,JC_,ALPHA)Jml2ICml2C(I,IC,JC)mJCBCCZ,IC_JC)mAL?_AC($_ICeJC)mRETAC(_,IC,JC)mGA"AC(),ICeJC)mSIGC(6,1C,JC)mTAUC(?_ICwJC)mXXIC(i,IC,JC)mXETIC(IelCeJC)mYXlC(iOolC_JC)mYETADO 50 Iml],l_

CALL ;ARA3 CX,YwI.Iw_DI"_XXT,YXI,I,T,),Y,3_I,XETA,YFTA,I,I-I,nI,O,I,_I,L,O,flETI,GA_A,TGOTOeJCB./LP_A)

ICm!C(I,ICwJC)mJCRC(),IC,JC)IALP.AC(),ICfJC)mBETAC(_,ICeJC)mGAMAC(l,IC,JC)m$1GC(b,ICeJC)mTAUC(7,1CoJC)mXXlC(8,1C,JC)mXiTAC(I,IC,JC)mYXl

C(IO,IC,JC)mYEYA50 COnTInUE

GO ?o lOOC**** TOP

bO CALL PARk) fX,Y,II,JHAX_OIHeXXT,YX),TI,JMAX,ZI+IoJ_AW,IIe2,JMAXIeX[TA,YETA,ZlwjMAX,TIeJMAX-I,II,jMAX-_eI,-IpBETA,GA_A,IGO?OejCBeAL_PHA)

JmdMAXImllJCm$ICmllC(I_IC,JC)IJCBC(),IC,JC)mALP_C(3,1C_JC)mBETAC(_,IC_JC)mGA_A

C(),IC_JC)mSlGC(b,IC_JC)mTAUC(?_IC_JC)mXXIC(8_IC,JC)nXETAC(_IC_JC)mYXIC(iO,IC,JC)mYETA

CALL PARA) (X_Y_I2_j"AXeNDI_XXY_YXI.y2_jMAX,I_ml,J.AX_I_.2eJ_AXI_XETA_YETA,I2,JMAX,I_,JMAXeI,T2wJMAX-_,-I,-I_RETA,GAHA_TGOTO,JCB_A2LPHA)

l_Z2ICml)C(I,IC,JC)mJCO

3ol)0230)

$ OS

)&o7)08];0(;_10311)12

$16_&l'r

$21

$Z(43Z5

_0

)&_(¢)(;5

_50_St

)STSSe

Sbo

Page 139: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

131

CC2,1_,JC)nALP_A 361

CC],T_,JC)n_ETA ]62

C(S,IrwJC)mSIG ]b_C(6,1CojC)mTAU 365

_C7,1CwJC)mXx! 366CC_,IC,JC)mWETA 367CCl. IC.JC)mYxl ]&AC(IO,IC,JC)mYFTA ]6g

nO ?o ImI3,T_ 370

CALL PAPA3 CW.Y.I.J_AX.NDIk'.XXImYWT.I-I.j_AWeO.O.I+L.J_AXmXETA 371I'YFTA.I.JHAX.I..Y"AW=I.I.J_AX').O.-I._FTA.CA,A.IGO_OmJC_.ALpHA) 37)

ICm! 373C(I,IC,JC)mJC_ 37.C(2,!C,JC)xALPHA ]75C(],ICwJC)mRETA )76C(,.IC.JC)mGAMA _77C(5'IC'JClm$1G 378

C(6.1C.JC)miAiJ 37Q

[(7.1C.JC)mXWI 3_0

CCA,IC,JC)mX_T¢ ]81CCQ,IC,JC)mYwI 3_2CCiAelCwJC)mYEIA 38)

?0 CONTINUE 38.GO TO 100 3_5

C**** WIGwT _8680 CALL PA_A$ (W,y_IMAX,IIw_DIM,WXI,YWT,I.AW,II,IMAx. ImlI,IMAX._I) 387

I'XETA'Y_TA'I_IX'II'I_AX'II+|'IMAX'II÷P,'I'I,B_TA,_AMA,IGOTO_JCB_IL )882_A_ 38_

ImlWAX )gO

Jml! Sgl

jCm. 39_

ICmll ]93C(I.IC.JC)mJC_ 3_

C().IC.JC)m_LPWA Sg)C(3.1C.JC)mBETA Sg_

C(QmlCmJC)IGAM* 311C(S.IC.JC)m$1G ]9_C(6,1C,JC)mT_U 399C(?,IC,JC)mWXI _00

C(8_IC.JC)mWET_ "01

C(9,IC_JC)mYXI _02

CaLL PaRA3 (WmY_IMAW_I2mND|M_XXI_YXI_IMAX_I)_IMAX_ImI2_IMAX._#I_ _00

I'XETA,YETA,IMAX_I?,IMAX,12. L,IMAX.I_._,.I,.I,RETA,GAMA,IGOTO_JC_,_ _OS2L_M_) _06

JmI_ _0_

ICml_ ,08

C(I.ICmJC)mJCB _0_

C(|_IC,JC)IALPMA _10

C($,IC,JC)mBE?_ _II

C(_,IC,JC)mGAMA _1)

CtS.IC_JC)mBIG _1)

C(6,IC,JC)m_AU _1_

C(?,IC_JC)mXWI UIS

C(8,IC,JC)mXET_ _16

C(9_IC_JC)mYX! _17C(IOmlC_JC)mYEIA _IM

CALL PARA] (X,YeIMAXeleND_MmXXIeyxIeIMAX_ImIMAX_IeleIMkX_eIeX U_O

Page 140: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

132

|ETA,yE?AeIMAW,I.Io0,0,1wAW,T*tI-I,0,HFTA,_A_A,IGOTn,JC_,AL pwA)

ICmY

C(I,ICIJC)mJCR

C(_IC_JC)mALPHA

C($,ICeJC)mMFTA

C(_,ICeJC)mGA"A

C(5wlCpJC)m$1G

C(aw|CpJC)mTAU

C(?elC_JC)mXXlC(_elCoJC)mX_TA

C(qwlC_JC)mYWI

C(IOwlCwJC)mYFTA

CONTINU_

CONTINUEQ0

I00

CC**** REENTRANT SEGMENTS ****

C

IF (NR$_G,EQ,0) GO TO 2"5DO 2_0 LmI,N_SEG

I_mLRI(L)÷I

16mL_ZCL)-II)mLII(L)_I

l_mLl)(t)-IIGUTOmLTYRE(L)

GO TO CllOwl)OillO_l?OelqOi210), IGOTO

C_*_ ONE ON BOTTOMp ONE 0_ TOP

tlO O0 I)0 lell,l&jml

XXll(X(l+l,l)-X(l-t_t))*O,5

YXlm(Y(I_I,I)-Y(I-I,I))*O,5XETAm(X(I,))-X(I,jwX"I))*O,)

YETAm(Y(I,2)-Y(IeJMX'I))*O,5

IlmI-II_sI÷l

JImjMXM!

J292CALL PaRAI (XXI$,VXISelE,J,TIeJ,XEIA),YETIB,I,J2,T,JI*XXlETI,Y

IXIETA,I_IJ2,12,JI,II,JI,II,J2,X,Y,I,j°NnlM}CALL PaRI2 (wxIwYWI_WETa,YETa,WXIS,YxI$,xETaS,Y_TIS_XXI_Ta,Yx!

IETa,ALPHA_@AMA,BFTA,IIG_TAU,jCB,I,J_N_I_)JCglICm!

C(I,IC,JC}mJCB

C(2,IC_JC)IAL)HAC(3,%C_JC)mBET*

C(§,IC_JC)I$IG

C(tmlC,JC)mTAU

C(?,I{,JC)mWWI

C(i_lC_JC)mXET_C(q_IC_JC)mYX!

120 CONTINUEGO TO _10

C**** BOTH 0N BOTTOM130 00 1_0 Iml$,l_

jol

II_li-(I-I_)

XXle(l(I*l,l)-l(I-l,l})*O,5Yllm{V(l$1,l}-V(I-l,l))_O,_

u21

"35_3b

_5(1

_SE_53

_55

_Sb_57

_5_q_sq

_b2

_e I]_bb

_bq_70

_7'__Te_7q

Page 141: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

133

C**** BOTw150 DO

160

Ct*e_

170

XETAm(x(T,E)-X(TI,E))*O,5

Y_TAu(v{I,E)=Y(II,2))*O,5IlmI-I

12ml*i

JIull

J2=ECJLL PARAI {XXTS,YXI8,IE,J,TI,J,X_TAS,VETA$,I,J2,J1,J2,XxIETA,

IYWIETA,12,J2,JI"I,J2,JI+I,J2wII,J2,X,Y,T,JaNDI_)

CaLL Dt_a2 (XXI,YXI,XETA,YETa,wXI$,YXI$,XFTAS_YFTa$,XXIETA,YxI

IETA,ALPWJ,GAMA,BETA,_IG,TAU,JC_,I,JeN_I_)

JCB1IC,I

C(I,IC,JC)IJC8

CC_eIC,JC}sALRMAC(3,1C,JC}xBETA

C(_,IC_JC)BGAMA

C(5,1C,JC)mSIG

C(_jIC,JC)BTAU

C(7,IC,JC)wXxI

C(8,IC,JC)mWETAC(9pICtJC)BYXIC(IOwICeJC)mY[TACONTINUE

GO TO 2_0ON TOP

I_0 Tml_,I6JBJMAX

IImI_-(I-15)

XXIm(X(I÷!wJMAX)-X(I-IeJMAX))*O,5

YXIm(Y(I÷ItJMAX)-Y(I-IpJMAX)}*O,5

W_TAm(X(IIwJMXMI)-X(I.jMXMI))*O,5

YETAI(Y(ITeJWXM%}-Y(IwjMXW|))*O,5IlmI-I

12mI*!

JIwll

J2IJMXMI

CALL PARAI (XWI_eYXI_fI_wJwII,JwX[TASeYETA$1JteJ2,1pJ2,XXIETA,

CaLL PARA_ (XXI_YXI,XFTA,YETa_XXI8,YXT$_XETA$,YETI$,XWIETA,YXI

IET_ALPW_,GAMA,BET_w_IG_TAU_JCB,I_J,NDIM)JC=]ICuI

C(1,1C_JC)_JC_C(E,ICeJC}mALP_AC(3,IC_JC)mBET*C(_,IC_JC}wG_MIC(5,ICwJC]_SIGC(6_IC,JC}uTAU

C(?,IC_JC)mXXI

C(8_IC_JC}BXETA

C(q,IC,JC)wYX!C(IO,IC,JC)mVETA

CONTINU[

GO TO E30ONE ON LE_T_ ONE ON RIGMT

DO I_0 JwlS,I_

Iml

XXIm(XC_,J)-X(IMXMIwJ))*O,S

YXII(Y(_J)-Y(IMXMI_J))*O,S

XETAw(X(I,J*I)-X(I,J-I))*O,5

_S5

/_B¢;

Q92_'{;3

_gq50050150250_SOU50550_507

50q$10511512

515

515

511

S_O

S_5

5_?5ZSS_q5}0

531

SWO

Page 142: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

134

180

1oo

2OO

C**t*ZlO

YETAm(Y(t,J*I)-Y(IjJ-i})*O.5I1mIMXW1IEmEJtmJ-%J2mJ*!CALL PARAI (XXISeYXIS,IE,J,I1,j,XFTAS,YETAS,I,j2,I,JIeXXIFTA,V

lXIETA,I2eJ2_I2eJl,ItwJ1PIlwJ21X,YeI,J,NnI')CALL PA_A2 (XXIsYXIeXETAwYETAoXXI_eYXTS,XETASjYFTASeXXIETAeYXI

IETAeALP_A,GA_A,BETAo$1G,TAU,jCB,I.J,_nI")JCm_ICmJC(IeICpJC)mJCBC(2eICwJC)eALP_AC($oIC,jC)m_ETAC(_elCwJC)mGA_A

C(S_ICpJC)m$1GC(6eICeJC)mTAUC(?eICfJC)sXXIC(8,IC,JC)mWET*C(,.IC.JC)mYXIC(IO_IC.JC)mYETACONTINUE

GO TO 2]0BOTM ON LEFT

DO _00 JoIS,16In!IIoIW-(J-15)

wXIu(X(_,J)-x(2,1T))*O.SYXID(Y(2pJ)-Y(_,II))*O.SXETkmfX(lwJ+1)-X(leJ-l))*O.qYETAmCY(I.J+I)-Y(I_J-I))*OeSIImll12m2

JlmJ-IJZtJ*iCALL PARA1 (WXI8,YXlS,I2,J,12,11_WET_9_VETAS,I,J2,I,JI,XXIETA,

tYXIETkeI2eJ2,1_,JIel)_II+leI2elIoleX,V_I,J,NDIM)CALL PIRA_ (XXI,YXI_XETA,YETA_XXI_,YWIS,X_TA$.YETA$_XWIETA,YXI

1ETA,AL_MA_GAMA_BETA.$IG_TAU_JCB_I_J,NDIM)JCm_ICmJC(I.IC.JC)mJCBC().IC_JC)mAL)HAC(),IC,JC)mBETAC(_.IC.JC)BGAMaC(S.IC_JC)mSIGC(_.IC_JC)ITAUC(?.IC.JC)mXWIC(O,IC,JC)mXETAc(g_Ic,JC)oYXIC(IO_IC_JC)BYETACONTINUE

60 TO _$0BOTW ON RIGHT

DO 210 JmIS,%6ImIMAXIImIQ-(J-IS)

XXII(X(IMXMI,II}-X(IMXMI_J)),O.SYXII(Y(IMXMI_II)-Y(IMXMt_j)),O._XET_m(X(IMAX,J.I)-X(I_AX_J.t)),OmS

5u25_3

5_55_6

5_c_55055155_55355_555556557

559SbO

563SbtacS6S1_6b56756856c_57O571572

575576S7T$7857O'580

50358_58S5865675_8S_959O$91Sgi_$93$9_595$9_

59_$9Ob00

Page 143: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

135

vFTAs_Y(I_AX'J÷I)=Y(I_AX*J'I))eA,5 601It=IT _OETEsT_X_I _03

JlsJ=1 bU_

j2sj+! b05

CALL PA_AI (WXIS,VXI$,I_,II.12,j,yETAA,YETAS,I,JE,I,JI,WXIETA. 606IYXIFTA'IE'II'I*I2'II+I'I2'JI'I_'J2'W'Y'T"TI_I_) bO?

CALL P_Rj_ (XXI,YWI,XETJ,YE?A,XXIS_YWT$,WFTA$_yETA_oXXIETA,YXI b08IETAeALPWAeBAMAw_TAwSTGeTAUwJC_'I'JeN_I_) 60q

JCmQ blOICmJ ell

C(IelC.JC)mJCB 61ECCE,IC,JC)mALPMA 61)CC3,1C,JC)mBETA elQC(_,IC,JK)mGa,a 615

C(5,1C,JC)mBIG bibC(b,lC,JC)mTAU bit

C(TeICeJC)sXXI bl_C(R,TC,jC)mX_TA blg

C(Q,IC,JC)mYXT 620C(IOpICpJC)mY_TA 621

2_0 C_TINLJE 6E2

E]n CONTINUE 6E32_0 C_TINUE _

_a5 DO _6 _ml,lO 6_TF_ • C(_,I_I) * _(_,I,_) 626C(N,I_I) m TEM 6_7

C(N.Io_) • TE_ 628

?_M I C(NmJMAX,_) ÷ Cf_.I_3) _q

C(N,I,]) m TE _ 6}1

TE _ • C(_IWAW,]) ÷ C(N*JMAXeU) 63EC(N,IWIW_$) • T_M b33C(_JM_X,_) • TE_ 63_

C(_.l,_) • TE_ b}6

_A CONTINUE 6_

I_ (I_RT_,EQ,O) GO Th 2QO 63RwRITE (b,330) 6WOnn E_O Jml,_ 6_1

_RITE (6,3_0] SIDE(J) _E

I_ (J,EO.1) IM_XWi • IM_X b_$IF (JmEQ,)) I_aXWI s IMAX 6_IFCJ.EQ.E) IMAXXI • JMkX 6_IF(J.EQ._] l_axx! • JMaX 6W&

25h _RITE(b,IEO) FkC(N),(C(N,I,J).ImI_I_AWWI] b_8

GO TO 290 b_eC 6S0

C**** FIELD **** 6§1C 65_

_bO CONTINUE 6§)O0 _TO Jm_IJMXM| 6S_

JCmJ-I 655JMlmJ-t 6§6JPlmJ+[ 6)?DO E?O ImE,IWXMI &S8

ICml-l b§eIPlml+I bbO

Page 144: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

136

_70C

*_ITEC

_BO

EgO

IPlmI-1WETAICXCIpJPl}-XCT,JMI))*Oo_

VfTAmCYCIojPl)mYCIpJ_I))t_),5

XXlmCX(I_1,J)=X(IM1_J))*O,5YXIm(Y(IPIeJ)-Y(IMIeJ))*O,5

ALP_AmXETA**2eYETA**2HETAmXXI*XETA+YXI*YFTA

GA_&mXXI*m2+vWI**2JCHmX_ImYETA-_ETA*YXIXXI_mX(IP1,J)-2,0*X(l,J)÷X(i_l,J)

yXISmY(IPI_j)-2,0*Y(IwJ)+Y(TMI,J)

WETA$mw(I,JPl}-2,0*X(TwJ)÷XfI,J_I_YETASmY(I,JPl)-_,O*Y(TpJ)+YtI,JMII

XXIETAmO,ES,CXCIPIPjpl)-X(IWI,JPII-WCTPI,J_I)+x(I_oJMI))

yWIETAmO,_,(Y(IPI,JPl)-Y(IMIwJPl)-Y(TP|pJMI)+Y_I"I*JU%))

DXmALPHA,XXI$.E,O,FFTA*XWIETA+GA_a*_ETA$

DYmALPWA,yxI$.2,0,@ETA*YxIETA+G_*YFTAB

8IGm(DX*VXI=DY*WXI)/JCBTAUm(DY*X_TA-DW*y_TA)IJ_R

ABSJmAHS(JC8)

CF(I,IC_JC)mjCBCFCE_IC,JC)BAL.PHA

CF($_IC_JC]mBET_

CF(_IC_JC)mGAMA

CF(I_IC,JC)m81C

CF(_IC_JC)mTAu

CF(7elC_JC)mXWI

CF(M,IC,JC)mXETA

CF(I_IC,JC)mYXlCF(IO_IC_JC)mYETA

CONTINUE

KACTOR$ TO PRINTER

I_ (IWRT_,EQ,O) GO TO I0

wRITE [b,)O0)

JWxwEmJMAX-2

IWXM2mIWkX-2

00 280 jmlmJMXM2JJmJ÷l

wRITE (b,$10) JJDO 280 Nml_lO

wRITE (_$20) FAC(N),(CW(N_I,J),ImI,I"XMEI

GO TO tOCONTINUERETURN

C$00 FORMkT (*0---- SCALE FACTORS ---=*)

_10 FORMAT (// * J m*_I)/)$20 FORMAT (*O*mA_t/(SEt_,8))$]0 FORMAT (// * BOUNOkRYm)]aO FORMAT (//2H *_A6)

CEND

fUNCTION _MWMN (NO_Te_,AWeI,J,IXeJX)

_b5_e,h¢",b ?e_bP_hoqb70

672_73_7_

e,75_7_hT?e,78_7q/_8t)

e_BE

(',B_

_8L&

e_8?

_.SR

bee

ag_

bgT

6(]B

?On

?0%

7O2

?03

?0/4

707

708

TlO

?11

?I$Tl(&

?I?

Tie

'V_O

Page 145: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

137

G_ T0 {|0_20)e NOPT

10 IF _A,LT,AX) GO TO _n

GO TO 3hEO IF (A.GT.AX) GO Tn ._30 AMX_N=A

TXu!jXBj_ETUR_

.0 A_X_NIAX

RETIJRN

E_'O

SUBROUTTNE PARAI (XI,Yt,lt,J1,IP,j2,X_,Y_,T3,J3,1",J",X12jYt2,15,JIS*I_,J6,I?,J7,I8,J_,X,Y,Iwj,NDI_

*4*44,44********444 _ECONP OEWlV_T_V_S ,4,44,4*****4***4,44**44,4****

*********************************************************************

_IMEN$_ON X(NDIM_I)_ Y(ND_M_I)

XIBX{It,JI}-2.0*Xt_,j)÷X(_E,jE)vluY{II.JI)=E.O*Y(I.j)÷Y(TZ_J2)X_BX(T3_J3)-2.0*X{I.J)÷X(T,.J_)Y2BY(I3,J3)-_.O*Y{T,j)eY(;_,J_]XIEmO.2S*(X(TS,J_5-X(T_j6)+X(I?,JT)-X(TS,j8]]Y_2IO.ES4(YCIS_J_)-Y(T_J_)eY(I?_JT_-Y(TS_J8))RETURN

ENO

BUBROUTTNE PARA_ (XXI_YXI_XETA_YETA_XXIS,VXZS,XETAS_YETAS_XX_ETA_YIX_ETA_ALPWA_GAMA_BETA_SIG_TAU_jCB_j,NDZM}

C

C *C *********************************************************************C

RE_L JCB

ALPHAIXETA*I_eYETA**EBETA_XX_*XETA_YXI*¥ETAGAMAmXXI**_eYX%**_JCBIXXZ*YETAeXETA*YXZDXIALPHA*XX_8_,O*RETA*XX_ETAeG_MA_XETA$

?E!12E723

?E6

7Eq73073173E

7_6

?38"/)9

?#3

7_6

751

?$3

?557_6

?58759

76t?eET63

?iS

T68

?70771??l

??e

780

Page 146: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

138

DYmALP_A,YXI$=2,0*R[?A*YXIETA$GA_A*YETA_$1Gi(DX*YWI-DY*WWT)/JCBTAUm(_YeX_TA-DW*YETA)IJC_HETU_N

END

Ct_t_

IF (KI.EQ.O) GO TO 10xXIm.O,5*(X(I],J_)-_,O*X(I2,J_)*],O*X(II,JI_)*KIYXII-O,S*(Y(I$_J])-_.O*Y(I2,J2)÷_,O*Y(II,,II))*KIGO TO _o

to XXlmO.S*(x(13,J])-x(It,Jt)}vxImO,S*(v(1),J$)-Y(If,Jt))

_0 I_ (_.EQ,O) _0 TO _0WETAm-O,S*(W(I_,j_)-_.O*X(IS,JS}÷3,0*x(I_,J_))*K_YETAm.O,5*(Y(16,J_)-_,O*Y(IS,JS)*$,O*v(T,,J_))*K2GO TO _0

$0 XETAmO,S*(X(Ib,Jb)-W(I_,J_))YETAmOeS_(Y(16,Jb)-Y(IQ,JQ))

QO CONTINUE

ALPMAmXETA**2$YETA**_

BETAmWXI*XETA_YXI*Y[T_

G_MAmXXI**_$YXI**_JCBmXWI*YETA-XETA*YXIRETURN

END

*_t6H** YAR#_MRAY **/

OIMENSION CODE(_]

OIMENSION X(NDI_,I)DATA COOE/bH*_ XAR,&HRk v

C_

WRITE (b,ZO} (COOZ(1),Imlt,I_)00 10 Jst,JMAW

wRITE (6,]0) JI0 _RIT[ (6,aO} (w(I,J),ImIeIMAX)

_ETU_N¢

T8]7B2783

?B578_'78778878¢_

T917_2793

7W57c_7g?

79___Or)8olBo2803SOc_8uSSub80T80B80__10811_41_813

815

817

81982082182_82.3B2._.8Z_82e8ZT8i_8

83083183Zal,]85a

836e$?838

8wO

Page 147: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

139

_u FO_AT ft_I,2OXp2A6//)

_ _0 _^T (_X,1_11.5)

8_S

8_7

8S3

Page 148: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

140

SAMPLE CASE INPUT: SINGLE-BODY FIELD

Input for Program FATCAT requires only one card and is described beginningat line number 76 in FATCAT listing. For the sample case computed:

1 1 2

Disk file 1 needed as input is TAPE I0 saved from the TOMCAT program.

Page 149: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

Sample Case Output: Single-Body Field

141

INPUT I ]M_TIm 1 ZxHT2m ] 1FO_Ma 2

lEST CaSE ° 80DY-_ITfE_ CO0_OI_ATE SYSTEM

@XN_LE UOOY I KA_Mk_-T_EFFTZ AIRFOILa _6 PUINT$

F|EL_ I X_kA • _7 JMAX • _0

Po'- @CALL F4CTOHS *-*-

J • 2.

JkCO_N

.I055021JL-OJ .2_[_|33TE-0_ .5797632_t-03 .lb_2259@E-02 .36@17J_1[-0_ 1557qS_87EsO_ 1@787_787[-02 .@q7OSbOqEeO_

.bI_OS$b7E-02 .uSllu_BeL-02 .25_0_57E-02 .g_BJb)SIE-O$ .@$_7$qOE-O} .13q337_2[-02 .307121@0[_02 ._TqlO_$1EmO_

.b0_7520E-U2 .b57_b@B,E-02 .@[email protected]_ .5|_qTJ22E-0_ .3_O_9_@OE-O_ .157$5155E_0_ .5_@|SqSOE-03 e_|qSBT_|eO]

.10507133E=0]

ALPMA

.t3_esl0eE-03 .270_Tq_oE-03 .59_J_O79E.05 .taaEi0aaE-02 .lqea557?E-g_ .R_BeEs_OE=O2 ._]@_o0oat=02 ,_b3975[_0_

.lqJ73959E*02 .2159_bB2E-O2 .2_269@bE-02 .217_qBbOE-02 .1908_055E-0_ .l_lgB2_2E.O_ .Sa77_735E.03 ._bq_q?87_-O$

BETk

.l_6qlq0_E*0_ ,bS]qOJlOE-O$ .2207_bqqE*03 ._86bT_0|E_0_ **_7830160[-05 -_805q_0_E-0@ _._5_q_OqL_O3 _m@_17_75_0$

GAMMA

.201_26_E-01 .1_12212_E*0! .75_qOl_lL°02 .2718530_E-0_ ._3_780[-02 ._ooqit_?E-O_ .9_$_880E.0_ .|51170q$[_0_

e_qBbq22@E'01 ._@_I_5_E-OI .203_6530E-01 .155@Ol_tE-Oi 0918_56@2[-0_ e33150531EeO_ .T@O@_qSeEeO$ ._17_5_$_Eu0$

,83_15@6bE-0_

$]G_a

-.[2965._OE-O_ ml_O73@?_E_O@ ._125@177E-05 .3_078_5bE-0_ .17|,ql_bE-O3 e@_,_$qq]E_O$ .@|q7B@bZ[*O$ .bbblbq_@[_O$

._Oq75@7@E-03 .27551002E-03 .@7$_llqSE-O_ .1_17002_E-0_ ._$[2qO_@E-05 ._b_b@_27E-O_ .127_bS08[_05 .31OS$@_@EeO$

._q$@_q0BE-03 mS@3@3IqTE-03 _52_q_q_E-O_ .352@_)1_E-0) .[_qT@TbOE-O3 ._95_35qSE-0@ ._97155_E-05 .l][email protected]_bE*Oe

TAU

-.Jbq57JO@[-O@ -.92_V_7_E-O@ .75115305L-08 .@077qqqSE_07 -.9_585592E-07 ._@_@bJE-O@ .3@aBJETOE-Ob *m_OqS_41E-O@

-.@@JO_@qTE-OT -._OI_9_O_E-00 ._5@O_bbT[-OT .Sl$O_eqE-07 -.IO§2bbB@E-@@ -,9qoo7I_SE_O@ mbl$|q22_E-O@ -_3@6_17|0E_07

*m1275_@_2Eo07 -.75@7_0@E-0_ -._2_9_118E-07 .I@lOl9_qE_0b -.3707077@E-07 **958@_06@E-08 mlbl_k?@_[-07 ".|@|5_O@OEeO?.$_$b_lSOE-O@

X.X!

-._@[@072_E$00 -._17b_b@q_*00 -.827_15SE-0! -.3qgllq.SE*01 .b@qObOOOE-O_ eS_lT_|ESEoO| .ql_$bbeOE-O| .l_|_OlqE$O@

.l@07_$1bL÷O0 .l_TeO_BE*OC .1_1082@1E*00 .I_$@_OOE÷O@ .9_@50_15E-01 ,5@0_675E-0| .238_|lbOk_O! mlO_$@_OEeO|

.37"bT_00E-02

X.ETk

.87qb_@5OLo02 ._@lJ_OE-02 -.27_20250E-0_ -.l/7587qOE-01 -.1@@@7$1OE-O! *.lb_b2qO[-O| -.|$@@790q[-01 _ml|B_@J?qEm@[

-.12JS?_qSE*O! -.t2_OO[E-O| -.tJO$7IlOE-OI *.1_5_0_5E-01 -.15@23705E-0! -.I_@@7_OOE-O| -,TqJg|OOOE*O$ ,5_qq@gOOE-O_mq@_qqbooE-o2

Page 150: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

142

Page 151: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

143

MOU _OANY

JACOB_

.Qgg_7oWlE-OS ,_g_w_gk-q_

ALPHA

,2_701e?L-d_ ,19_2117_L-02

_LT_

.209_57_E-02 ,l_81b_8_E-O@

,1g05_72_*05 ,QO_57_|_k-05

,_O/bWqLE-OI ,2050_2b_k*01

,|QWblTobE-O| ,Lgg_bTL_E.(ll

S[G_A

l_d

-.6gOOOOOOh-OW -.II210OOOEeO_

-.IbbuOgbOE_O0 -.I_I_{)OE,O0

,I_Ibl_5OE*JO .1_11_50L_00

,583_000L-)_ .15b_SVCO_-O_

X,ETA

-,lO_e_950L-01 -,It$1_I_bE-OI

Y,X!

-,l$llbOJV_-o_ -,I}OWSUUOL-_

"eQ_bTOOOOE'd2 ,Iw_OSOOOE_OZ

-.269;SOOOE-02 -o15_55000E-02

,w_5og]gBE-O_

,obSelQOEE-02

,w_9_lg_E-O5

,22011717E-0_

,l_l|_e27L=O_

,oO_b1oouE-o_

,II_QO25bE-O_

,IQ_._32gh-ul

._2¢lwbTL-Ol

,I_O_.b_bE-Ob

-._57_o8_bE-UW

-,_$7_be_bE-OW

,_2V$12e_EoO_

-.blbiOOOUE-O_

-.tI_7OUE÷O0

,I_gOlOOE÷O9

",_hSOVOOOh_O_

-,IO_0_050E-0£

-,TI_e_QOOE.Q2

-,_()IbUOOOL-U2

,_2bOOOE-o?

-,I_7HSOoOE-O_

,_l_W£w_wE-O$ ,119eO705E-O2 ._55JI61?E-O_ o5707?OSbE-O_ .7Q_7OWOE-O_

,2_71bOgt-O_ ,bU7OBT31E-03 .175W760_E-O_ ,ll_|@qllE*O_ ,_§91591_E_0_

,o$721ea$E-OE .51700971E-O_ ,_BSIbOE=O_ ,II_7505E_OZ ,EUa_2IOIE=_3

.77q_Og_E-O_ ,_19bSq72L-O_ .577_175_E-0_ ._815_178E-0} .9_O_?_IE-O_

,2J120bObE-O_ ._bSOJ52E-U2 ._0512_5_E=0_ .lbSQ138qE-O_ o}8705]7_[_05

,lqlg3OO7E=O_ ,IeO75598L-uZ ._0977115E-0_ ,35_L370BE-O_ ,ZE7a2_ITE-O_

,I/_JgZ_E-UJ .gOSb_778L-_5 .3W=OSo_SE-O0 -,5011_OOEoOa "._970q58bE-O_

-,27795U_2E-O_ -,_15_SqOeE-O_ *._1159E=02 =,_7979_E*0_ -,l_8bTe_OE-O$

,I/2_BQW/E=03 ,E$53WeglE-02 ,IQ2QbsO@E-01 ,1800_371E-01 ,_qI_8_i-O!

,/o_llgObE-n_ ,lqObbObOE=O2 .5_O?}_eSE-O] e$$O1_TqSE=O_ _878_qOO_E=O_

,_UgU_5_gE=O_ ,[b_blb_OL-O! .q_78iSqE-O_ ,_O0@I$OE-O_ elbb_b78EeO_

-.5_750820E-0_ =.33730B_bE-Og -,3_7_08_0E-0_ -._37308@bE-OW -,357508_bE=0_

-.JJ7$O_OE-O_ -,337JOaEbE-Oa =,3$rJOsEbE-Oa -,337308_eE-Oa -,]$7$08@bE=Oe

,J_oS|_JE-O_ ,J_OJ|_bJE-O_ ,J_O_l_b3E.OW .3_0312b$i-O_ e3_O3t_b]E=O_

,J_OJt_bJ_-O4 ,_O_LLOJE-Qa .$_0312b$E-OW ,_O_12e_E-Oa ,_O$1_b_E-O_

-.12_iIOOOE-O[ -,_807_500E=01 -,lO0abeOOE_O0 -,15_7_050E_00 -,_5@17700E_00

-,_2_OO00E-_I -,_gw_oouoE-o! tTTO_OoOOE-O_ ,5_QLISOOE-01 .9159_500E_01

,l_Jg_750E_O0 ,t_SBbSOOE÷O0 ,q_BeqsOOE-Ot ,_50b3500E-Ot ,t@_l_500E-Ol

-,ogJelJtOE-O_ -,_qS_ia|OE-01 -,_b7750_OE-01 -,_1_$570E=01 -,IO0_=]t_E=01

-,_UOb$5Ol-O_ -,bSel_BOOE-OE -,71508qOOE-O_ -,8_150_50E-0_ -,qe_?q_g[-O_

",LbO_OOSOE-Ol -oIB77_BSE-01 ",_517955E=Ol -._b_lbS_OE-O_ _eS_tOq_OOE_O_

-._BTwSOOOE-O_ -,bs[gsoooE=O_ -,IU/_500E-01 -,1109q500_*01 -,9_$_OOOE=O_

,taS_J_UOE=Ot ,[877_50UL*01 ,_laBO500E-01 ,_ZWIIOOOL-OI ,t_B_$OOOEe01

".1551bbOOE-_i -,|ega_OOOE-Oi -,IBOg@5OOE-O| =,lOT_e_OO[*Ol *.el_q$OO_keO_

Page 152: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

144

YoL_A

-,_b_i_oqOh=O1 -,_5b_O2OrE-O1 -,_7_7_18_E-01 -,d700_o$gE-ol ",lJ_Bq_eE*Ol ,_BOO2_OE-O_ ,L7b_BI79E.OL ,@_iOi7t_EaO|

_LLFT

ALPHA

,_b|Sml++_*+O

,I+O_++7_E-O+

,U/IO_O_L÷OO

5IG_A

-.5OSJ_bO_-O5

-,t+;oOJJ+e-Ol

-.L_OgblE-O, -.JO7_OOIJE-O_ -.57_7179_L-0_ -.tOO_tOb6t-O$

-,13_l_b?uL-oe -._1_330o1L-05

TI, L#

,520J;_C-0_ ,_mIWTmj_E-,!+ -,lJq+ooeS_-tJ7

X,X/

-,_OblSOOg_-uq

-,105_5@60_-03

-.7UI_OoIE-Ob

X,EIA

-,1088_189L-03 ",|_OW_o_EoO_ -,55_O_bl_L-O_ -,eSTS_JOSE-O_

-._7_bCOL-02 o."0097000E-0_ -._6_5000E-0_ -e_B|5500E-O_

,J_IJ_iSOL-O_ ,lO_l?_tSL-Ol ,171n7005[-01 ,_50_15L-01 ,J_gJJO_NL'GI ,bOJg_8_E-Ol ,_7_7090_E-01 ,8771_15E'0!

,I|U_JO_E+OC ,L$707_L¢OI1 .IObO_7OoE+O0 ,_O_OdgOE+O0 ,_7_7_0E÷00 ,_?_bo_OL¢O0 o$507_850L¢00 ,_7_OE_O0

.511=0030E¢0_ .OIIOJ_E++)C .7_lloO00E+O0 ._blLbO2_k¢O0

V,XI

-)iJSolT]_h+O0 -.17l_g_Oh+oO -._31b_3E¢OO

¥,ETA

-,a750eilOE-oL

-.20_b_5_L¢O0

-,ai_£7_lO_L-Ol -,5_57027uF-03 -,790q_bO_L-Ol -,1051671bL¢00

-.j_OBJb_UL*O0 -.J_9_O518E¢O0 -._710III_L÷O0 -,5=gb_3_LE_O0

-,l_O_OOqI£-02 -,i)qe_Ok-O_ -,|_L_5_E-_ -,llT_bBTOk-O_ o,e_38_00_-03 o,55JOBoOOE-OJ -,_e_7_OOk-OI o70116_00l-0$

,[7@UOeB_L-02 ,JlJOLJ$OE-O£ ,_q78/TTJ_-_ ,lO8%UJTOEoO_

Page 153: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

145

*TOP

JACOdN

,LG_gJ_IeE+_I

,IOJ35520E_UI

AlPha

,7ule_70_e+oo

.TbgU2J7_E+_0

,7_blgQ_qE+O0

.7_71I_gE+O0

8ETA

-.12_b0_5_E-0!

-._00e_851E-01

GamMA

,15Lb_$P_E+01

,t_JlTgqb_+Ol

,L_JII997E+01

SIGma

-.3575002eE-0_

.._jlJU82bEe0_

".JJ?_08_bE*0U

=.3J/JOS_bL'0a

,3_031_6/L-ga

._20JI_JE=0U

,J_U3L_O3E-OU

X,Xl

*,_L8500EoO_

.7¥_uT_0b+00

.55_07_70E+00

x,Era

.8611o0_0E*00

-,]_90eO70E+O0

,7_1795E+00

,_31_5bE+00

._9_bSi70L_00

-.1059517_E+0t

v.Era

,70_5_J70E-O_

-,SI_8OE_O0

,55_17bqOE+O0

,_05_=1_E*01 ,lO3bq_q3E+Ol .IUaleO39E+01 ,loa71qObE*Ol ,1051_050E+01 ,105_$_b3b+Ot ,LOS_7575[e01

.]0_38_7_E+01 .L03Tbq71E+01 .10_155_bE+01 .10_bS_50E+01 .L0_b4_E+0| .10_5$BqbE*0t .10_8_7_E+0|

.1O$Sb_7E+01 .10_$_o19E+01 .IUUbIb_bE+01 .10_eqqe_E*0t .I0_SIiLSE+01 .10al_$07E_01 .1057_=_*t+0|

,IU_UgO85E+_] .1000alBaEegl

,Tq. Stl$SE+OU ,7505e_lOE+O0 .758_98_1E*00 ,Tbb97878E+O0 ,71_]671E+00 ,77bq]ooBE_O0 ,77aTbgTSE_O0

.76117_L+0_ .751_bt_bE+00 .7_90_9E+09 .Tiber]SeE*00 .?J3J_kT_E_00 eTJ4_TB_E_00 .75_1]85_E_00

.75_U25LSE+00 .Tbi59518E+00 .7bbJl_SE+C0 .767g_58_E+00 .TbSb]qZlE$00 .Te018116E+00 *755b_=Eg00

,?U_TOI_TE÷UU .7alOU709E+00

.e_o_Jqr_E-0_ ._SJS317E-01 .J_$173_gE-01 .Jq3q_88LE-01 .q08|7a0aEe0l .37_0507E-0t .$188e$07E=0|

.1_739UE-_1 ,7078JIT=E*U_ *._08U_77bE=03 -,e_Tq_SbE-OZ -.119_0_Z_E*01 -,17Jb_SeBE-OL -,_$30_17bE-01

-._75L057_L-01 -._53_5_28E-01 -.5_J98Jg_Eo01 -.57572_8Lk-01 ".5qTI0z0BE-0t -.57kbb0_8E-01 -.S08790qSi-01

.1_JL7997E+_L .L_3179_TE+01 .lq31799OE$01 .1_317997Ee01 .1_$1799TE+01 .laJt7_qbE$0t .t_]|TqgtE+01

.lUJtT_qTE+0L .la3179qbE÷01 ,IaSJI_TE+Ol .Aa317_97E+01 .tq$179qbE+01 .la_t7q97E*01 .t=]i?qq7E+01

,1"317_qTE+oL ,t_JJ7997E+V1 ,lq$lTqgok+Ot ,la3l?_9OE+Ol ,la$17997E+01 ,I=JI?99?E*oI ,1_JlT99_E*O|

.1_J17997E+0t .L51e_373E+uI

*,JJTJOB_bE-O. -,_7$US_bE-Ua

"._7$00_bE'_ -.J37JQE_bE*UU

-._$730_OE-D= *ej_TJOb_bL-0;

*,JJTJO_eEeO_ -s]JT3OB_bE-O_ -.$37308=eEo0_ -,_]7308_bLeOa -,337308_eE-oe

*.JJ730B_OE=0a -.J$730B_bE=0a ".33730B_OE-0a ee_$?$0B_bE-Oa -¢3JTJ0BZeEe0e

.3_031_b3E-0, .J?0Jt_b3E-ou .3_031_b_E*0U .3_U_I2b_E-0= ._031Zb3E=0a .$_0312e3E-0= ,3_OSt_JEeOa

._O$l_OJLe0a ,J_O_bJk-_U

OmES_$5995E+UO -.55b01770L+0O

-._Su7eabSE*00 -.7q_a78_0E+0u

,_ObJ5995E+O0 ._|8_00E-0_

".79_"TB_0E+00 -.gBq7b_bSE+00 o,II|BS_O_E+01 e. IIB7BSJqE$0t ".L|8785]gE+0|

-.Sbb0777UE÷00 -._Sb3599bL+00 O, ._8e3bgqbE+00 ._5b07770[900

,IL87_53gE+OI ,118785JgE+01 ,11188EO_Eg01 ,gOaTb_eSk+O0 ,7_]aTeZoE$o0

._$eI_J_0E+O0 .75619U_bE*00

-.50b05765E*00 =.bb_gO3?0E_00

-,51B_85JOE+O0 -,_eO355L+O0

.8_1505i%E_00 ._bllbO_OE+o0

.e3J_bba0E*00 .ql005oo0E+00 ._7_O8810E*00 .TaO_BT_OE=0! *.1$_50_6gE_00

-.Tb3L0970E÷00 -.SJlg05eSE÷00 -.BbbJl0a0E+00 e._3b$0770E+00 ..7?O|IISOE_OO

-,t_885570E+O0 ,5I?O5_50E-Ot ,Zb311qLSE*O0 ,aS_O7565E+O0 ,e_OOZ20_E+O0

-.11_180_0L+01 -,10595175E+01

,bT97J_gSE+OO ,89%b517OE_O0

,_?qTJ_q5[+O0 ,U_JI_55E+O0

-,ilblduS_E+01 -,1_$1_87E+01

o.e95_S170E*00 -.oTq735_SE+00 *.U2U3Lz_SE+00 =,ta_3100b+O0 .l_a_31b0k+00

,I05gS_7_E+O_ ,11elSOeOE*Ot ,119e578JE+Ot ,11618079E*Ot ,10595[7S[+0|

.laU2_k_0E+0O -.t_]tb0E_00 *,4_"_|_55E_00 _,b79?$]Q_E_O0 emSg_b_|?O[900

-,_I_U3u_E÷OO -,_Lg_OL2OE÷O0

-,710_U_SE÷OO -,%TbbgO_OE_00

,b_b3_U95E+OU mbO1775JSE÷OO

-,598_10E+00 *,738939_5E+00 -,B3$eT]_OE+O0 -,877200_0E+00 -,87017975Ee00

*._u0707bOE+00 *._I0bLB57L+00 "._gb_50Eg[-0_ ,1gOgB369EeO0 .38E|BbB_E_00

.8b_bq_BSE+00 .87a_tt75E+00 .83aS10JS[_00 .7_383ZBSE*O0 .bg600715[*00

Page 154: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

146

*eIGHT

JkCOBN

Oo

O,

aLPma

O,

Op

eETA

,ItJgO_55boOe

O.

O,

GAMMA

190J_5_5E-05

0,

O,

SIGMa

O,

O,

TAU

O,

O,

-,SbSOOOOOEoO_

O,

O,

X,ETA

Oo.

Y,XJ

O,

Oo

Y,ETA

-,_}OIWgqIE-03

O,

O,

O_

Oo

O,

Oo

O,

Oo

Oe

Oi

Oo

O|

O,

O,

Oi

O=

O,

Om

O,

Oo

Oo

Oo

Oo

om

O,

om

uj

Oo

Ot

vo

oo

Oo

O,

O,

Oo

O,

oo

go

O,

O,

Oo

o,

OD

OD

O,

O=

O,

o,

Oo

ue

O,

C,

O,

O,

go

O,

U=

(I,

O0

gl

O,

zlgbOWteqE÷O!

Oo

O,

,7_IoWIOgE_O0

Oo

Oi

-,50_oqSQOE-O_

Oo

O_

,Ibt6_375E_Ol

Oo

O,

-.J_TJOQ£bE-Oa

O|

Oo

_m

O,

,w_18_006-0_

Oo

O,

,SbllOO_OE*O0

D=

-,I_3L}wBTE*OI

Oi

O,

Oo

O,

O|

O,

Om

O,

Oo

O,

Oo

O,

Ot

0,,

Oi

O,

Oo

O,

O,

0,,

O_

O.

Oo

Oa,

O_

O_

Oo

O,

Oe

Oo

Oe

O,

O_

0,,

Oe

O,

Oo

Oo

Ot

Oe

O,

O|

O,

Oe

Oi

Oe

O,

Oi

O,

Oe

O_

Oe

O,

Oe

O,

Oe

Oo

Oe

O,

Oe

Oo

O|

Oo

Oe

O,

Oe

Oo

Oe

OI

Oe

O,

Oe

O,

Oe

O,

Oe

0,,

Oo

O_

Page 155: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

147REFERENCES

i. Winslow, A. J., "Numerical Solution of the Quasi-Linear Poisson

Equation in a Non-Uniform Triangular Mesh," Journal of Computational

Physics, 2, 149 (1966).

2. Barfield, W. D., "An Optimal Mesh Generator for Lagrangian Hydrodynamic

Calculations in Two Space Dimensions," Journal of Computational Physics,

6, 417 (1970).

3. Chu, W. H., "Development of a General Finite Difference Approximation

for a General Domain, Part I: Machine Transformation," Journal of

Computational Physics, 8, 392 (1971).

4. Amsden, A. A. and Hirt, C. W., "A Simple Scheme for Generating General

Curvilinear Grids," Journal of Computational Physics, ii, 348 (1973).

5. Godunov, S. K. and Prokopov, G. P., "The Use of Moving Meshes in Gas

Dynamics Computations," USSR Computational Mathematics and Mathematical

Physics, 12, 182 (1972).

6. Stadius, G., "Construction of Orthogonal Curvilinear Meshes by Solving

Initial Value Problems," Dept. of Computer Sciences Report No. 53,

Uppsala University, Sweden (1974).

7. Meyder, R., "Solving the Conservation Equations in Fuel Rod Bundles

Exposed to Parallel Flow by Means of Curvilinear-Orthogonal Coor-

dinates," Journal of Computational Physics, 17, 53 (1975).

8. Ives, D. C., "A Modern Look at Conformal Mapping, Including Doubly

Connected Regions," AIAA Paper No. 75-842, AIAA 8th Fluid and Plasma

Dynamics Conference, Hartford, (1975).

9. Gal-Chen, T. and Somerville, R. C. J., "On the Use of a Coordinate Trans-

formation for the Solution of the Navier-Stokes Equations," Journal of

Computational Physics, 17, 209 (1975).

Page 156: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

148

i0. Thompson, J. F., Thames, F. C., and Mastin, C. W., "Automatic Numerical

Generation of Body-Fitted Curvilinear Coordinate System for Field

Containing Any Number of Arbitrary Two-Dimensional Bodies," Journal of

Computational Physics, 15, 299, (1974).

ii. Thames, Frank C., "Numerical Solution of the Incompressible Navier-

Stokes Equations About Arbitrary Two-Dimensional Bodies," Ph.D. Disser-

tation, Mississippi State University, (1975).

12. Thames, F. C., Thompson, J. F., and Mastin, C. W., "Numerical Solution

of the Navier-Stokes Equations for Arbitrary Two-Dimensional Airfoils,"

Proceedings of NASA Conference on Aerodynamic Analyses Requiring

Advanced Computers, Langley Research Center, NASA SP-347, (1975).

13. Thompson, J. F., Thames, F. C., Mastin, C. W., and Shanks, S. P., "Numer-

ical Solutions of the Unsteady Navier-Stokes Equations for Arbitrary

Bodies Using Boundary-Fitted Curvilinear Coordinates," Proceedings of

Arizona/AFOSR Symposium on Unsteady Aerodynamics, Univ. of Arizona,

Tucson, Arizona, (1975).

14. Thompson, J. F., Thames, F. C., and Shanks, S. P., "Use of Numerically

Generated Body-Fitted Coordinate Systems for Solution of the Navier-

Stokes Equations," Proceedings of AIAA 2nd Computational Fluid Dynamics

Conference, Hartford, Connecticut, (1975).

15. Kolman, B., and Trench, W. F., Elementary Multivariable Calculus,

Academic Press, New York, (1970).

16. Levinson, N., and Redheffer, R. M., Co mi_ Variables, Holden Day

Nan Francisco, (1970).

17. Mastln, C. W., and Thompson, J. F., "Elliptic Systems and Numerical

Transformations," ICASEReport 76-14, NASA Langley Research Center (1976).

Page 157: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

18.

19.

14N

Varga, R. L., Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, (1962).

Thompson, J. F., and Thames, F. C., "Numerical Solution for Potential

Flow about Arbitrary Two-Dimensional Bodies Using Body-Fitted Coordinate

Systems," NASA CR to be released 1976.

20. Karamacheti, K., Principles of Ideal-Fluid Aerodynamics, John Wiley &

Sons, Inc., (1966).

21. Liebeck, R. H., Wind Tunnel Tests of Two Airfoils Designed for High

Lift Without Separation in Incompressible Flow, McDonnel Douglas

Corporation, Report No. MDC-J5667/OI, (1972). See also, Liebeck, R. H.,

"A Class of Airfoils Designed for High Lift in Incompressible Flow,"

AIAA Paper 73-86, AIAA llth Aerospace Sciences Meeting, Washington, 1973.

22. Morse, P. M. K., and Feshbach, H., Methods of Theoretical Physics, Vol.

II, McGraw-Hill, (1953).

23. Hodge, J. K., "Numerical Solution in Natural Curvilinear Coordinates of

Incompressible Laminar Flow Through Arbitrary Two-Dimensional and

Axisymmetric Bodies," Ph.D. Dissertation, Mississippi State University,

(1975).

24. McWhorter, J. C., Unpublished Research, Department of Aerophsycis and

Aerospace Engineering, Mississippi State University, (1975).

25. Timoshenko, S., Theory of Plates and Shells, McGraw-Hill Book Company,

Inc., 1940.

26. Thompson, J. F., Thames, F. C., Shanks, S. P., Reddy, R. N., and Mastin,

C. W., "Solutions of the Navier-Stokes Equations in Various Flow Regimes

on Fields Containing Any Number of Arbitrary Bodies Using Boundary-Fitted

Coordinate Systems," Proceeding of V International Conference on Numerical

Methods in Fluid Dynamics, to be published in Lecture Notes in Physics,

Springer Verlag, (1976).

Page 158: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

150

0

0

,-q

or_

_ ocq

_J

_ _o

0

L_

_3 _q

!0

r_

0=0

_o,-qu_

_o

IM

_g

!0

e,3

I0

0t_

,-4 ,--I

_oo

!0

!o

_-4_

& &

I I0 0

o _

0 0

g

Iop..

_.--t o4 e-i o

,-4

,-,4

Page 159: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

"O

OL3,-4

O

¢',1

t-,I

H

t.,I

o'J

I-i

!O

oh

Io

O

O

IO

!Of-.

oI--.

o

Ot_

O

¢',1

O

O

OC0 _D

_NOO

,4

o

_OO

,-IO

t,h

,.-I

_. _,_ "__ _ I0 _ N

0

_OM

_.._

0,.,_

• lJ ,_ 0

• N __ m 0

_ ° _

•_ O -N

151

•,'4 O00 l_00000000 00 _ ....... 0 .00

t_,l ,--I > ,--I O O _'_ O O O O

!

0

o

Page 160: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

152

TABLE 2

Effect of Initial Guess on Convergence

Configuration

(Fig. 4a)

(Fig. 5)

(Fig. 6)

(Fig. 7)

(Fig. 8)

(Fig. 9)

(Fig. i0)

(Fig. ii)

(Fig. 12)

(Fig. 13)

IGES :

0 i 2 3 -i -4 -i0 -20 -40 -i00

68

75

NC

NC

i00+

i00+

99

NC

NC

NC

NC 80 NC NC

NC 64 NC i00+

NC 1 NC NC NC

NC NC NC 2 NC

i00+ i00+ NC NC

I00+ i00+ NC NC

89 99 NC NC

i00+ i00+ NC NC

NC NC NC NC

NC I00+ NC NC

NC

i00+

NC

NC

i00+

i00+

NC -- 69 71

70 63 67 68

NC NC NC NC

NC NC NC NC

i00+ 87 84 86

NC NC NC NC

i00+ 91 84 82 86

i00+ i00 93 91 94

i00+ i00+ i00+ I00+ i00+

i00+ i00+ i00+ i00+ 99

Legend:

Notes:

Numbers given are the number of iterations required for convergence

to 0.0001.

NC indicates no tendency toward convergence in I00 iterations.

i00+ indicates a converging solution at i00 iterations.

IIGES = 1 gave convergence for the field shown in Figure 6.

2IGES = 4 (Guess 3 without division by total number of boundary

points) gave convergence for the field shown in Figure 7.

Page 161: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

TABLE3

Input Parameters for Basic Single-Body Field Used inOptimumAcceleration Parameter Studies

Case 1

153

IMAX 67

JMAX 40

NBDY 1

IGES 0

NBSEG 2

NRSEG 1

LBSID 1

LBI 1

LB2 67

LBDY 1

LRSID 2

LRI 1

LR2 40

LISID 4

LII 1

LI2 40

R(1) varied

R(2) 0.0001

R(3) 0.0001

YINFIN i0.0

AINFIN 0.0

XOINF 0.0

YOINF 0.0

NINF 66

3

1

67

0

Page 162: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

154

TABLE3 Continued

IEV 0

R(10) 0.0

INFAC 0

INFACO 0

ATYP ETA

ITYP 0

NLN i

NPT 0

DEC 0.0

AMPFAC 0.0

JLN i

ALN i000.0

DLN i. 0

ATYP 0

ITYP 0

NLN 0

NPT 0

DEC 0.0

AMPFAC 0.0

IFAC 0

EFAC i00.0

Page 163: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

Case

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

TABLE4

Input Parameters Varied for Single-Body Field Used inOptimumAcceleration Parameter Studies

IMAX

37

97

37

37

97

97

JMAX LB2 LR2 LI2

37

37

97

97

20 20 20

60 60 60

37

37

37

37

97

97

97

97

20 20 20

20 20 20

60 60 60

60 60 60

YINFIN NINF ALN

I00.0

i0000.0

36

96

5.0

20.0

36 I00.0

36 i0000.0

96 i00.0

96 i0000.0

i00.0

i0000.0

i00.0

i0000.0

5.0 i00.0

5.0 i0000.0

20.0 i00.0

20.0 i0000.0

IFAC

4

4

4

4

155

Page 164: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

156

Case IMAX JMAX

22

23

24

25

26

27

28

29

3O

31

32

33

37 20

97 20

37 60

97 60

37

97

37

97

LB2

3737

9797

3737

9797

3737

9797

3737

9797

TABLE

LR2

20

20

60

60

4 Continued

LI2

20

20

6O

60

20 20 20

60 60 60

20 20 20

60 60 60

YINFIN NINF ALN

36

96

36

96

5.0 36

5.0 96

20.0 36

20.0 96

5.0

5.0

20.0

20.0

IFAC

Case

34

35

36

37

38

39

NLN ALN DLN IFAC EFAC

i0000.0 i

i0000.0 2

i0000.0 3

i0000.0 5

i0000.0 4 i000.0

i0000.0 4 i0.0

Page 165: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

157

TABLE4 Continued

Case NLN

40 2

41 3

ALN DLN IFAC EFAC

i000.0, i000.0 1.0, 1.0

i000.0, i000.0, i000.0 1.0, 1.0, 1.0

NOTE: Blanks indicate the basic value (Case i, see Table 3).

Page 166: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

158

TABLE5

Input Parameters for Basic Double-Body FieldUsed in OptimumAcceleration Parameter Studies

Case42

IMAX 93

JMAX 40

NBDY 2

IGES 0

NBSEG 4

NRSEG 2

LBSID i i i 3

LBI 1 75 29 1

LB2 19 93 65 93

LBDY I i 2 0

LRSID i 2

LRI 19 i

LR2 29 40

LISID i 4

LII 65 i

LI2 75 40

R(1) varied

R(2) 0.0001

R(3) 0.0001

YINFIN i0.0

AINFIN -30.0

XOINF 0.0

YOINF 0.0

NINF 92

Page 167: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

159

TABLE5 Continued

IEV

R(i0)

INFAC

INFACO

ATYP

ITYP

NLN

NPT

DEC

AMPFAC

JLN

ALN

DLN

ATYP

ITYP

NLN

NPT

DEC

AMPFAC

I FAC

EFAC

0

0.0

0

0

ETA

0

i

0

0.0

0.0

i

i000.0

1.0

0

0

0

0

0.0

0.0

3

i00.0

Page 168: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

160

TABLE6

Input Parameters Varied for Double-Body Field Used in OptimumAcceleration Parameter Studies

Case IMAX JMAX LBI LB2

45

44

47

46

49

48

60

43

20

LRI LR2 LII LI2

19 29 65 751 60 i 60

19 29 65 751 20 1 20

i 33 33 43 107 117149 117 149 i 40 i 40

43 107i 149

YINFIN NINF ALN IFAC

i0000.0 6

i00.0 1

20.0

5.0

148

Case NLN ALN DLN IFAC EFAC

54 I0000.0 6 i0.0

53 i0000.0 5 i0.0

52 i0000.0 5

51 lO000.0 4

50 i0000.0 3

Note: Blanks indicate the basic value (Case 42, see Table 5).

Page 169: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

161

O"

,-4_0

oD

O

O,H_._

.H

>

4;

.,--I

r_ O

.r..I

O

O

(D

U

O

r/l

O

"_ Z ¢1_ 4-1

ffl

O

•,_ Z

0

_J

z0

•el 4-

r/)

z

"HO

O_ OO r--OO O_ o_

u_ r-. Ooo _O o-,

oo-..i-I'--.,.o r-. oh

,-I

r-- -._- ooP-. oo oo

oool_O', O_ _-..I

o'1 r-- Ooo oo O'_

O -._ '.OO_ I'-. cxl

,..-I

oo oo oo

,4,4,4

r-- oo ._r

oo _.. ,._oo oo oo

,-I ,-_ ,-I

oo i-.. ,.._

Lth ..-r _oo oo oo

l> ooi-i o'_C_

,-I r-.. ooo_ oo oo

,-I ,-4 ,-I

O r--. oo,-_

O -.T -._"oo oo oo

I_ "_ oo :n

4-;

•r..I _

O O _1 _ O _ _ .;.-I

•_ m m

_ _ .-_._

CO _

•..T _,D

z v_

._ II II IItY

OOOO c'q _T ',.O

.U II II II

1-14-1

u_O

_.1

II II II

nnl "_ nn+

_.J _.J 4J

,-_ ,-_ ,_

_ vO O O

O

0OJ

_ _) _-_

O_t:D

O

Lth ,_ ¢',,Ik_

II U II O,-W

_ _ _ o o_•,_-r_ ._ _ _._ _J

O0 _-_ 0"_ +.--I 0

Page 170: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

162

TABLE 8

Optimum Acceleration Parameters for Single-Body

Field : Variation of Pairs of Quantities

(12) IMAX Up

Amplitude Down

1.89 : 122

(1.90 : >122)

(2) Amplitude Down

1.85 : 81

(i0) IMAX Down

Amplitude Down

1.79 : 63

(1.85 : 92)

(5) IMAX Up

1.88 : 137

(i) Basic

1.84 : 74

(4) IMAX Down

1.77 : 68

(13) IMAX Up

Amplitude Up

1.86 : 183

(1.89 : >183)

(3) Amplitude Up

1.86 : 114

(ii) IMAX Down

Amplitude Up

1.83 : 86

(1.84 : 83)

(16) JMAX Up

Amplitude Down1.86 : 129

(1.90 : DIV)

(2) Amplitude Down

1.85 : 81

(14) JMAX Down

Amplitude Down

1.84 : 89

(1.84 : 94)

(7) JMAX Up

1.85 : 126

(I) Basic

1.84 : 74

(6) JMAX Down

i .81 : 90

(17) JMAX Up

Amplitude Up1.87 : 147

(1.90 : DIV)

(3) Amplitude Up

1.86 : 114

(15) JMAX Down

Amplitude Up

1.81 : 139

(1.81 : >139)

(20) Radius Up

Amplitude Down1.89 : 131

(1.88 : >131)

(2) Amplitude Down

1.85 : 81

(18) Radius Down

Amplitude Down

1.80 : 185

(1.91 : DIV)

(9) Radius Up

1.84 : 205

(i) Basic

1.84 : 74

(8) Radius Down

1.80 : 184

(21) Radius Up

Amplitude Up1.81 : 243

(1.88 : DIV)

(3) Amplitude Up1.86 : 114

(19) Radius Down

Amplitude Up

1.81 : 176

(1.91 : DIV)

Page 171: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

163

TABLE8 Continued

(24) JMAXUpIMAXDown1.83 : 77

(1.89 : >i00)

(4) IMAXDown1.77 : 68

(22) JMAXDownIMAXDown1.71 : 48

(1.76 : 62)

(7) JMAXUp

1.85 : 126

(i) Basici. 84 : 74

(6) JMAXDown

1.81 : 90

(25) JMAXUpI_IAXUp1.89 : 128

(1.91 : DIV)

(5) IMAXUp1.88 : 137

(23) JMAXDownIMAXUp1.84 : 142

(1.87 : >142)

(28) Radius UpIMAXDown1.81 : 77

(1.84 : 92)

(4) IMAXDown1.77 : 68

(26) Radius DownIMAXDown1.78 : 102

(1.84 : >102)

(9) Radius Up

1.84 : 205

(29) Radius UpIMAXUp1.87 : 219

(1.90 : >219)

(i) Basic1.84 : 74

(8) Radius Down

1.80 : 184

(5) IMAXUp1.88 : 137

(27) Radius DownIMAXUp1.82 : 285

(1.93 : DIV)

(32) Radius UpJMAXDown1.82 : 117

(1.84 : >117)

(6) JMAXDown1.81 : 90

(30) Radius DownJMAXDown1.80 : 176

(1.91 : DIV)

(9) Radius Up

1.84 : 205

(33) Radius UpJMAXUp1.89 : 103

(1.90 : >103)

(i) Basic1.84 : 74

(8) Radius Down

1.80 : 184

(7) JMAXUp1.85 : 126

(31) Radius DownJMAXUp1.58 : 218

(1.91 : DIV)

Page 172: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

164

TABLE8 CoNtinued

Format: (Case Number)CaseOptimumAcceleration Parameter: Numberof Iterations(Average Variable Acceleration Parameter: Numberof Iterations)

SeeTables 3-4 for values of the quantities varied.

Page 173: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

165

TABLE9

OptimumAcceleration Parameterfor Single-Body Field : Miscellaneous Variations

CaseNumber

3435363

37

383

39

i4O41

Case

Experimental Optimum

OptimumAcceleration

Parameter

Numberof

Iterations

Effect of Numberof Steps in Addition of InhomogeneousTerm (Attraction Up)

One StepTwo StepThree StepFour StepFive Step

1.351.611.851.861.85

561317119114125

Effect of Intermediate ConvergenceCriterion (Attraction Up)

Convergence : -01Convergence : -02Convergence : -03

1.861.861.85

i01114167

Effect of Numberof Attraction Lines (Basic)i

One Line 1.84

Two Lines 1.83

Three Lines 1.83

I

Effect of Convergence Criterion (Basic)

Convergence : -03

Convergence : -04

Convergence : -05

Convergence : -06

1.84

1.84

1.84

1.89

74

76

79

49

74

117

175

Page 174: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

166

(U-r-I

O

IO

0

m

0.N

,-.-t

<

E

.el

0

.-4

0

ia

(Q

0

,.Q u_ .I-II_ 0 _

Z,LIH

0

o_<

_DIn

c.D

Z

.r_Ou_

<

O

(n4-J

.r4O_U

O

Z

O

"OO

O_ .-Too O,.4 c_

-,1" _OoO oo

,.-I ,-4

-r_

m m__1 4.1

•r't ._0 0

r_ u_

_.1 o'3

0

u,-4

c'_ O', oOO oo c,'_eq ,-.I c..I

o0 -.T u%r-... 00 O0

II II II

-<t" c.l u'_

_ oo u'3

,--t r-t ,--t

°_ O0

4-1 ,--_ ,--t ,--t4-1"_ II II II

O "_D "_D '_

4J .Ira 4-_ 4-1(0 -r4 -,q .,-4(D _-I ,--4,-4

_4D oq r----.T -.._-.T

tOm.,-4

O

Q)4-J

O

,4-iO

J.J

O

q_q_

u_ Ch c_oO oO _Dc-q ,--Ieq

,-4 -.I"_D_._ cO oo

0 c_ _:_,

•r-I -_ .,-4

_ c-4

II U II

"_ "tJ "_

O _-I eq r--u-% u-.lu_ ..-i-

Page 175: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

167

J_J

0

O

4.J

O

OCD ._

_ O _

Z4.J

O

0

r/l

O

O

4.J

O

(DO

0r_

.r..I

0

4_1

0

_. u'_ _- _

0'_ o'_ O_ o_

0000I I I I

_.) r,..) 0 0

g-

> > N N

Page 176: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

168

TABLE ii

Input Parameters for Coordinate System Control Demonstration of Figure 27

IMAX = 31, JMAX = 30, YINFIN = I0, AINFIN = 0.0

(a.) No Attraction

(b.) ETA Attraction: JLN = 20, ALN = I0.0, DLN = 1.0

(c.) ETA Attraction: IPT = i, JPT = 20, APT = i0.0, DPT = 1.0

IPT = 16, JPT = 20, APT = i0.0, DPT = 1.0

(d.) ETA Attraction: IPT = 5, JPT = 2, APT = i000.0, DPT = 1.0

IPT = 6, JPT = 2, APT = i000.0, DPT = i00.0

(e.) XI Attraction: JLN = 2, ALN = i00.0, DLN = 1.0

(f.) XI Attraction: IPT = 5, JPT = i, APT = i000.0, DPT = 1.0

Page 177: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

169

_D

0U.4

C8

0

0

4..1 _

0og

,-4

,-4

0 _ 0 _"-t

-,-i

_ "_ 0

0 _ _

•N _ _ O

_ .H ,-4

oo_

0 .I-I 0 ,-I_._

_o-__o

"O,-4 _-H-H O

O_-_O _

•,_ _ _:_ O,-4-,-4 _

_-_,_

. O _

0

0•,'4 I_

0

0•_ 0

•,-I "_

0 _

,-4 0

0 ",-4O

O _ O¢J O

O

O "_

O ,-40 °

_ O',_ _O m O

4_ O O _ _

4-_ O_O _ O_0 _ _,--I•I-_ 0 '4-1

¢xl _ 0 .,-I

I"-,.

o

,-_ _ _

._

u_ _ O

o4

(D

I--I _ r--

•_ O

_ _._ _ _

0 -I_ ._ _O,_U_ t_ 0

(D

m

Page 178: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

170

Physical Plane

q=q2

_=N 1

n

i"2

I ' I

Region D*

II il

rl

Transformed Plane

F 3

Figure I. Field Transformation - Single Body

Page 179: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

171

Physical Plane

N=D2

F4

_=n I

_2

I ' I I

Region D*

I

J

F7 F 5 FI F 6 F 8

F3

Transformed Plane

Figure 2. Field Transformation - Multiple Bodies

Page 180: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

172

j=JMAX

j=l

i=l

I

] ..... i _ ..... T

t

] (

,""I I " I I I I I"_ ,, ,,[III _,_'

L

i=IMAX

a) Single Body

j =JMAX

j=l

" " 7 ........... _ "" ¶ ....... T

I

I

• J.... , , ," , ...... , ,

.... r III,,II

i Ii=l I1 I2 I3

I

I

J,

I

b) Two Body

Figure 3. Computational Grids - Single and Two Body Regions

Page 181: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

173

37

1 37

Figure 4a. Single-Body Configuration

Page 182: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

174

g

g

4-1

oo .,-Io

4 ,I

1I

i

o-1-t.,_

_0.1-1

=o

o

I_J

_J

Page 183: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

175

8!

2 16 _ ! s_ 86 2 81

!

Figure 5. Double-Body Segment Configuration #i

Page 184: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

176

31 2L _L31

2

\

Figure 6. Double-Body Segment Configuration #2

Page 185: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

177

,oo

11 2 _I

11 i _I

I

Figure 7. Double-Body Segment Configuration #3

Page 186: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

178

16

.......................................... i

51

16

2

! !

/

\ /\

Figure 8. Double-Body Segment Configuration #4

Page 187: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

179

11l

I

L1

_03!

1 31

26

11

//

\

Figure 9. Double-Body Segment Configuration #5

Page 188: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

180

2_ 51 26

2

i 71

2

l',ilk

\

2

Page 189: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

281

2

01

i

Figure ii. Double-Body Segment Configuration #7

Page 190: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

182

21

51

Figure 12. Double-Body Segment Configuration #8

Page 191: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

183

16 76 2

_6 86 !Ol

Figure 13. Double-Body Segment Configuration #9

Page 192: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

184

0

L

, ++ _" - I,

. _ _----,.. --

z _

7

-4O

" 7-_- I-

<

Figure 14. Initial Guess Types - Single Body

Page 193: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

185

2

_'liI//II//M,I ! ! i ! _t//,

ili_,/iI,,'//_/(,Ait!,i,O7,'//,

_////." ;&<./.K7_',/ /// 4.'/.."_

!1

Figure 15. Initial Guess Types - Double-Body Segment Configuration #i

Page 194: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

186

\

1

/

/

/

-4

'\_/ \ \/" // " ,\....,- X \, /

<,: '" 1 \ X

Figure 16. Initial Guess Types - Double-Body Segment Configuration #2

Page 195: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

187

\ ,,, / /

' // i/

2

¢'" "_" 4, ', ,, ,,

\¢i . ,....... ',

x - /

"" i' / ,, t ,\ -4

\ ,/" / i j\d / ,_

Figure 17. Initial Guess Types - Double-Body Segment Configuration #3

Page 196: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

188

.J

/ ,

j_

t-..

. -2

7,

/

2

1 i

i!'.-/// //

./

3

Figure 18. Initial Guess Types - Double-Body Segment Configuration #4

Page 197: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

189

0

i _*t_ / '

-4O

Figure 19. Initial Guess Types - Double-Body Segment Configuration #5

Page 198: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

190

i"" _"

\.

A,

\

.%/]

-40

Figure 20. Initial Guess Types - Double-Body Segment Configuration #6

Page 199: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

191

3

/-

.fJ

\

\_///Y'

Figure 21. Initial Guess Types - Double-Body Segment Configuration #7

Page 200: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

192

0

/ , .,/x\

.-/

/

• / /

/-"

_k

j_'TC-

," // /

,, / /' _x

J

_. y ,t

\\,_ \

Figure 22. Initial Guess Types - Double-Body Segment Configuration #8

Page 201: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

193

o< i/

Page 202: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

196

50_ 0 BASIC, ONE LINE GTTRRCTION

_SD'_

___5o_

.oL

100_-

50._-

0. io"TI_uM" _'" l 1 I i 1 I I

1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1,90 1.65 2.00_CCELEflRT|ON PRRRMETER

I00

l°90.

O0o m

!70.,"

I

_ 5o.__c I

_ _o. }-.

30. _

t2O.!_

1:o.__

(a)

IMRI DOWN, JM_I DOWN /

i3PTIMUM - 1.71

O. [ I ' '1.50 t.155 1.160 1.165 1.70 1.75 _ .'80 1,185 1.190 1,19E ;c. O0

RCCELERRT ION Pq_RMETER

(c)

:I"°!° .o?\_sooL

;4= 2oo_

I50L

:GO t50.

i

IOPTIMUM - 1.80O. I 1 I I I I 1 I I!.50 1.55 1.60 1.65 1.70 1.75 1.80 1,85 1.90 1._5 2,]0

ACCELERATION PARAMETER

500

t°_50

_,00 _.-

:_50 L

= 2soL.

._ ZOO F

150 I

fOOL

I

50" _OPTI_UM . 1.8tO. I I I I t I I 1

1.50 1.55 1.60 1.65 1.70 1.75 1,80 1.85 I.gD 1.95 2.00ACCELERATION PARAMETER

(b)

ioo 160 r

l_ok

£

ioo_ i i= eo.b

i80. m i

20. _

Io-I_O,- _.-O. I I I I I l I

1.50 i.55 1.60 1.65 1,70 1.75 1.80 1.85 1.90 1.95 2.00ACCELERATION PARAMETER

500

_50 t

_O0_-

Is5oL

I

i::i= 2ooL

(d)

,o.LO, _ I 1 I t 1 I I

1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 ?.00_CCELERRT ION PARAMETER

(e) (f)

Figure 26. Effect of Acceleration Parameter on Convergence Rate

Page 203: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

197

(e)

Figure 27.

(f)

/

\

Examples of Coordinate System Control

CSee Table ii for control parameters.)

Page 204: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

198

, , P?_/_./,:-" . ..,,/..J_/_.X3J_ L !,'_, ,_v' _ ..... ' -_,

"-'_'I., <"X.<k"'v_ '

(a)

__L_._., __,.,_. , _,._ , , ¢ - ,,? ,,:',,, ,_ ,,

• _,_, ,_ ,I, ,

(b)

Figure 28. Example of Attraction into Concave Region

Page 205: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

199

Figure 29. Coordinate Systems- Circular Cylinder And JoukowskiAirfoil

Page 206: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

200

(a)

J

\

(b)

\

Figure 30. Coordinate Systems - Karman-Trefftz Airfoils, No Coordinate Line

Contraction

Page 207: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

201

Figure 31. Coordinate Systems - Karman-Trefftz Airfoils, With Coordinate Line

Contraction

Page 208: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

202

\

, .÷f_

4

1l

/

/

,/

_f

l;7-j-7.7/

J

1-

/

ou_

.H

I

o)4J

oo

4-1

4-1

o_)

_)°H

Page 209: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

203

"'4

/

/

g.._

t-""

/

"\

:7::7/--i1

c,I

,--I,.Q

00

0u,-i

M°N

0

4..i

I

m

m

4.1

°_..t

00

1.1

or_

Page 210: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

204

i

/

i

\

J

,.Q

[._

0

oo

00

<

Z

I

00

4J0

._J

0

Page 211: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

205

| m : _ 2 sin' i .T ! _ 1_

Figure 35. Contracted Coordinate System - Multiple Airfoil

Coordinate line attraction to the first i0 lines around the airfoils

with amplitude i0,000 on the body. Decay factor of 1.0 for all except

last line, where 0.5 was used. 37 points on airfoils, 40 lines around

airfoil. Circular boundary of radius i0 fore body chords.

Page 212: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

206

Figure 36. Coordinate System - Triangular Simply-Connected Region.

Page 213: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

¢O

! !! i

i ii ii Id

i 21

207

Figure 37. Coordinate System - Key-seat Shaft, Simply-Connected Region

(See Table iZ)

Page 214: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

2O8

\

o

0o

o

I

4Jm

m

4.1

.N

I-ioo

4_1

4-)

o

t-¢3

.1-4

Page 215: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

2O9

Figure 39.

LIFT COEFFICIENT I 2. 535Ii9t_

ORRG C3EFFIC!ENT - 0.0039¼6

L:=T C_;EFFICIENT EBR_ I --0.00S_0_

I. 00qa

-°-°° r

b r_

\ :0I

-2.00 L

I

I _ Numert¢il Solu¢lo

-3.00 II -- Analytic Solution I-I,O0 -0.00 I.OO

X

Comparison of Numerical and Analytic Potential Flow Solutions for

Flapped Karman-Trefftz Airfoil. No coordinate attraction.

Page 216: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

210

c_c_

....i i.........i.....!.........i. " " _. '_' ._.i i _ ! i LIEBECK LAMINAR AIRFOIL

o i :: ! i ! -- NUMERICAL0 : : ; ;

d re TEST DATA [2L]' i

• . . .

] ..... i.....!.....i ....i....

: i : i$ .... i .... ,_..... ;

i....!

.....i.....i....i.....)

I

I ..................... i

ooi....i....._....i....i....._....i....i.....!....i.........._.-_..-.I .....i....i....i.....i....!• ! :, i _ i ! i _ ! ! _ihl_-.,l:/_,i ! _ i I

° ....i....i.....ii.............i.....i....i!.........i....i.....i..-......i.._ " il

,0.00 0.25 0.50 O.?5 :.DO

X/C - DIMEN$1ONLESB CHORD

Figure 40. Comparison of Experimental ,_nd Numerical

Pressure DistributLon - l,ieback Laminar

Airfoil

Page 217: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

211

I_j_y.F_/_-_._ _ _ ._-_------_._.._.__I__--_ _ _-_..._

-O.t_L.

-$._7 b

e. "|$'_-II.I

-:S._

-ll.I,

-LT.q

-10. ill

-IO.I

-ZI.I

-H.I

-il.q

"M.I

-K.I

"N.I

-N.Ig.M

-0.0_

-t.O_

-$._

-q. O(

$U° .

I II ; ._1. OdO.fHD I.N -I.M -LID O.N

II meql,. IlI

Figure 41. Potential Flow Streamlines and Pressure Distributions

- Double Airfoil

Page 218: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

212

co

Figure 42. Coordinate System - Double Cylinders, Coordinate Attraction to Cut

Intersections

Attraction to intersections of body contours with cut between at

amplitude i000 and decay factor 0.5. 31 points on each obdy. 40

lines around the bodies. Outer boundary at 20 diameters.

Page 219: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

(a) 213

f.

(b) I-! NUMERICAL- ANALYTIC

-5.00

Figure 43.

-0.00X

Potential Flow Streamlines and

Pressure Distribution - Double Cylinder

Page 220: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

214

BSOT

-,.,%-_.90_-

-5.90_.

-6.90L-

90L _r-

L

-9.90_-

- I O. 9(],.

-_z.*_- [] NUMERICAL

-_3.9_- -- ANALYTIC-lll. g_.

-15.9_-16.9

,,,L _oo-0,50

%

0.50

Figure 44. Potential Flow Pressure Distribution for Double Cylinder without

Coordinate Attraction

Page 221: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

215

qD

Figure 45. Alternate Segment Arrangement - Double Cylinders

No coordinate attraction.

Page 222: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

216

-o,ooI

-1.ooI

-2-°°I

-3.00

-_,. 00

-5.00 [] NUMERICAL

-- ANALYTIC

-6.00 I-1.00 -O,O0 1.00

X

Figure 46. Potential Flow Pressure Distribution for Double Cylinders - Alternate

Segment Arrangement

Page 223: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

217

t=3.13

t=3.33

Figure 47. Streamlines - G_ttingen 625 Airfoil, R = 2000, e = 5 °

Page 224: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

218

Figure 48. Velocity Profiles, Gottingen 625 Airfoil, R = 2000, _ = 5 ° t = 1 83

Page 225: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

t = 0.118 C, =0._15916

O

CD=O.c-_a),u CDp=O- CO ='-'l.l]7Ei31S

I ]i

Z

(-)

C.

cr_

i

=P

?

C_

0

! ...... :

i _ ! _ i . i

iiV_____ ___-----------

l

I

i

"i_N'j. O0

r

0.25 O. 50 O, 75 1.00

X/C - DIMENSIONLESS CHORD

219

W

O_

L_

t = 3.33 CL=0"83051i

CD:0.258096 CDp=0.090_55 CDF:O.1677u, I(::)

"T'l _ !

I

• t _ t t_

!If- ! - , ,...... E0

II

- i I

i I '

_ioo o125 olso o'• ?5

X/C - DIMENSIONLESS CHORD

.00

Figure 49. Pressure Distribution - G_ttingen 625 Airfoil,

R = 2000, _ = 5 °, t = 0.118 and 3.33

Page 226: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

220

Figure 50. Streamlines and Vorticity Contours - Rock, R = 500, t = 0.5

Page 227: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

221

Figure 51. Velocity Profiles - Rock, R - 500, t - 1.2

Page 228: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

222

1.00 1.00

:. -O.CO_- -o.oaL

-1.00L ] -I.00 I i0.50 0.80 ;.00 -0.60 -1 ) -0.20 -,l,OC 9._0

X

Figure 52a. Pressure Distribution and Velocity Vectors - Double Airfoil,

R = 1000, t = 0.i

Page 229: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

223

2,00

F)i

;.00 _-

_. -o.ooL

-,.ooL

\\

i

'/

B_OY z1.00

LI

,._-0.00_

2.001 I -_.ooi I l ; ' ;0.60 0.80 1.00 -0.'$0 -0.'¢0 -0.20 -0.00 ')._0 O.WO

I X

Figure 52b. Pressure Distribution and Velocity Vectors - Double Airfoil,

R = i000, t = 1.2

Page 230: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

224

BOD_ !1.00

-O,OC

-2.00

t

i

-3.00 I0.60 0.80 1.00

X

1.00

-0"00 1

-I.O¢ L 1 1 A I

-0.60 -0,_0 -0.20 -0._ 0.20 0._0x

Figure 52c. Pressure Distribution and Velocity Vectors - Double Airfoil,

R = i000, t = 3.02

Page 231: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

225

Fig. 53. Comparisonof Numerical and Analytic Solution for DeflectionContours for a Simply-Supported Uniformly Loaded Plate.

Page 232: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate
Page 233: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

APPENDIX A

DERIVATIVES AND VECTORS IN THE TRANSFORMED PLANE

This appendix contains a comprehensive set of relations in the trans-

formed [_,q] plane. A few relations involving x and y derivatives of the

coordinate functions _(x,y) and n(x,y) are also included. Since the intent

here is to provide a quick reference only, most of the algebraic development

is omitted. The following function definitions are applicable throughout this

appendix:

f(x,y,t) - a twice continuously differentiable scalar function of x, y,

and t.

F(x,y) = i Fl(X,y) + j F2(x,y) - a continuously differentiable vector-

valued function of x and y.

coordinate unit vectors.

J = x_y n - xny _

= xn2 + yn2

= x_x n + Y_Y_

y = x2 + y2

Dx = _x_ --2BXEn + yxnn

Dy = _y_ - 2By_ + YYnn

= (y_Dx - x_Dy)/J

= (xnDy - ynDx)/J

i and j are the conventional cartesian

A-I

Page 234: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

A-2

Derivative Transformations

fx _ (_f) = (Yqf_ - Y_fq)/J_x y,t(A.1)

fy _ (_f) = xqf_)/J_y x,t (x_fq -(A. 2)

_f = _f 1ft -- (_-)x,y (_t)_,q - 7 (Yqf_

_x

- y_fq) (-_-)_, q

1 (x_fq (3_-_t)- _ - xqf_) _, q(A.3)

._2f. = (yq2f_ + /j2fxx E (_x2)Y,t - 2ysyqfsq y_2fqn)

+ [(yq2y_ _ 2ysynysq + y 2yqq)(xqf_ _ x_fq)

+ (yq2x_ - 2y_yqx_q + y_2Xnq)(y_f n - yqf_)]/j3 (A.4)

(_2f) = - 2x_xqf_q + Ij2fYY _y2 x,t (xB2f_ x_2fqq )

+ [(xq2y_ - 2x_xqy_q + x_2yqq)(Xnf _ - x_f )n

+ (xn2x_ - 2x_xqx_q + x_2xqq)(y_fq - yqf_)]/j3 (A.5)

fxy = [(x_yq + xqy_)f_q - x_y_fnq - xnyqf_]/J2

+ [xqyqx_ - (x_yq + xqyE)x_q + x_y_xqq](yqf_ - y_fq)/j3

+ [xqyqy$_ - (x_yq + xqy_)ysq + x_y_yqq](x_fq - xqf_)/J 3 (A.6)

Page 235: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

A-3

Derivatives of _(x,y) and n(x,y)

_x = Yn/J (A.7)

_y -xn/J (A.8)

nx = -y_/J (A.9)

ny = x_/J (A. 10)

Cxx = (¢xYcn + nxYnn)/J - (_x2J¢ + CxnxJn) IJ (A.II)

Cyy - - (_yX + CyXcq)IJ - (¢ynyJ B + Sy2jE)/j (A.12)

_xy " (nyYnn + _yYcn )/J - (_xCyJ¢ + _xnxJn )IJ (A.13)

nxx = _ (¢xy¢¢ + nxYcn)IJ - (¢xnxJ_ + nx2Jn)/J (A. 14)

nyy = (nyXcq + CyX¢_)/J - (_ynyJ¢ + ny2j )/J (A.15)

nxy = - (nyYE_ + _yYE¢)/J - (nxnyJ n + CynxJ$)/J (A.16)

Page 236: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

A-4

Vector Derivative Transformations

• Laplacian:

V2f = (af_$ - 28f_n + yfnn)/J 2 + [(_x_ - 28x_B + yxqn)(ysf n - ynf_)

+ (_y¢$ _ 2BY_n + XYnn ) (Xnf $ _ X_fn )]/j3 (A.17)

or3

V2f = (af_ - 28f_n + Yfnn + °fn + Tf_ )/J2(A.18)

Gradient:

Vf = [(y f_ - y_fn) _ + (xsf n - x f_)j]/J (A.19)

Divergence:

V • F = [yB(FI) _ - y_(Fl) _ + x_(F2) n - x (F2)_]/J (A.20)

Curl:

V x F = k[yn(F2) _ y_(F2) n n~ . - - x_(F I) + xn(Fl)_]/J (A.21)

Page 237: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

Unit Tangent and Unlt Normal Vectors in the _,q Plane

A-5

In many appllcatlons components of vector valued functions

either normal or tangent to a line of constant _ or n are required.

Similarly, dlrectlonal derlvatlves in these dlrections are often

needed to evaluate boundary conditions. These quantities may be

obtained by trivial calculations if unit vectors tangent and normal

to the _ and q-llnes are available. These vectors are developed

below.

It is well known that the unit noKmal to the graph of f(_,y).

= constant is given by

Vf

n (f) = -

Associating the coordinate function q(x,y) with f(x,y), we have

Utilizing equation (A.19) this reduces to

= (-ycl+ xcj)ICv (A.22)

which is the unit vector normal to a llne of constant q. In a

similar manner the unit vector normal to a llne of constant _ is

given by

n(t)= _ = (yqi - xqJ)//_ (A.23)

These vectors are illustrated as they appear in the physical plane

Page 238: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

A-6

in Figure A.I below.

Y

_=K2 _=K3

_=K_ __ n=C3

n(n) n c 2t(EJ)

q=C I

.r- x

i

Figure A.I. Unit Tangent and Normal Vectors

The unit tangent vectors are then given by

t (D) = n (n) x k = (x$i + y_j)/_ (A.24)

t($). = n(_)~ x k. = - (xn ~i+ ynJ)/v_a. (A.25)

Vector Components Tangent and Normal to Lines of Constant _ and n

Fn (n) : n(n) " F : (-ysF 1 + x_F2)//Y'Y (A.26)

Ft (n) : t(n) " F~ = (x_F I + Y_F2)/V_y (A.27)

Page 239: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

A-7

Fn(_) - n(_) • F = (YnFl - xnF2)/_ (A.28)

Ft ($) = t (_) • F = - (xnF 1 + YuF2)/_a (A.29)

Directional Derivatives

_--f = n (n) • Vf = .(Tfa - 8f_)/J_ __ (A.30)_n(N) ~ -

af (n>= .t • Vf = f¢l_Y (A.31)_--_(n)

Bf <_)B---_(_)"= n • V f = (sf_- 8fT])/J/_ (A.32)

_--f = t ($) • Vf = - f /4 (A.33)_t(¢) - - n

Integral Transform

Scalar Function:

/ f(x,y)dxdy = / f(x(_,D) , y(_,_))IJId_dn

D D*

Vector Function:

Consider a vector integral in the physical plane of the form

I = / f(x,y) n(x,y) as- S ~

where S is the closed cylindrical surface of unit depth whose

perimeter is specified by the contour F1 in the physical plane

(see Figure A.2) and whose outward unit normal at any point is

given by n(x,y).

(A.34)

(A.35)

Page 240: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

A-8

n(x,y)

rI

x

Figure A.2. Integration Around Contour r I

If r = r(x,y) is the position vector describing rI, then

dS = (i.0) Idrl

which implies that (A.35) becomes

I - ¢ f(x,y) n(x,y) Idrl

rI

We now wish to transform (A.36) to the (_,n) plane.

(A.36)

Consider Idrl :

Idrl = _(dx) 2 + (dy) 2 = _(d_) 2 + Bd_dh + a(dn) 2

" /_'7d_ (A.37)

since rI transforms to rl*, a constant R-line (n = nl). Noting that

(nI)n(x,y) = n - (-y_i~ +x_J)/_ (Equation (A.22)), Equation (A.37)

becomes

Page 241: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

A-9

_mAX

I = I f(x(_,n I) , y(_,nl)) (x_J - y_i)d_" _min

_max

-/_mln

f([,n I) (x_J - y_i)d_(A.38)

where _min and _max are the minimum and maximum values respectively of

on rl*. Note that all quantities in (A.38) are evaluated along

B = nI. If the vector n(x,y)~ is incorporated into the function f(x,y),

we can define the vector function f(x,y) as

f(x,y) _ f(x,y) n(x,y)

Equation (A.3_ now becomes

_x

I = f f(_,_l ) _y d_ (A.39)&rain

which is merely an alternate form of (A.38).

Page 242: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate
Page 243: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

APPENDIXB

PRESERVATIONOFEOUATIONTYPE

Whencoordinate transformations are utilized as an aid in

solving a given partial differential equation, it is imperative

that the equation not change type under the transformation. Such

an invariance will now be demonstrated for the transformation

discussed in Section II. Consider the general, second order,

quasi-linear partial differential equation

A(x,y,f)fxx + B(x,y,f)fxy + C(x,y,f)fyy + E(x,y,f)f x

+ F(x,y,f)fy + G(x,y,f) = 0 (B.I)

where f = f(x,y) is a twice continuously differentiable scalar

function and A, B, C, E, F, and G are continuous functions. Recall

that the equation type is determined by the coefficient functions

A, B, and C as follows:

Elliptic if B 2 - 4AC < 0

Parabolic if B2 - 4AC = 0

Hyperbolic if B 2 - 4AC > 0

Utilizing equations (A.I), (A.2), (A.4) - (A.6), and (A. 7) -

(A.I_) of Appendix A, equation (B.I) transforms to

+ E*f_ + F*f + G* = 0 (B.2)A*f_ + B*fsn + C*fnn n

B-1

Page 244: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

B-2

where: A* E A_x2 + B_x_y + C_y2

B* E 2A_xnx + B(_xny + Synx) + 2C_yny

C* E A_x2 + Bnxny+ Cny2

E* _ A_xx + B_xy + C_yy + E_x + F_y

F* _ Anxx + Bnxy + Cnyy+ E_x + Fqy

F* -F

Now, consider (B*) 2 - 4A'C*:

(B*) 2 - 4A'C* = [2A_xn x + B(_xny + nx_y) + 2C_yny] 2

- 4(A_x2 + B_x_y + C_y2)(Anx2 + Bnxny + Cny 2)

= (B 2 - 4AC)(_xny - _y_x )2

= (B2 - 4AC)/J 2

Since j2 > O, B 2 - 4AC and (B*) 2 - 4A'C* are either both positive,

both negative, or both zero. This implies that (B.I) and (B.2)

have the same type.

Page 245: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

APPENDIXC

PRESERVATION OF INTEGRAL CONSERVATION RELATIONS

IN THE TRANSFORMED PLANE

It is now shown that the divergence property is not lost in

the transformed plane. Let F(x,y) be a vector valued function

defined on the physical plane (Region D in Figure I) whose component

functions, Fl(X,y) and F2(x,y), are continuously differentiable

on D. Let S(x,y) be a continuously differentiable function on D

and suppose F(x,y) and S(x,y) are related by the partial differential

equation

v • F = S (C.I)

Integrating (C.I) over an area RCD,.we obtain

f [(FI) + (F2) ]dxdy = f SdxdyR x y R

Application of Green's Theorem to the integral on the left yields the

conservation relation

(FldY - F2dx) = f Sdxdy (C.2)C R

where C is the boundary curve of Region R taken in the proper

direction. In a physical sense the line integral represents a

flux through the boundary of R, and the integral over R a source

within R.

Now, in the transformed plane (C.I) becomes

C-I

Page 246: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

C-2

!j {[yn(Fl)_ _ y_(Fl)n ] + [x_(F2)n - x (F2)_] } = S (C.3)

But also note

(YnFl - x F2) _ + (x_F 2 - Y_FI) n = [yn(Fl)_ - y_(Fl)n]

+ [x_(F2) _ - xn(F2)_] + [Y_nFI - x_nF 2]

+ [x_nF 2 - y_nFl]

which, since the last two terms cancel, implies that (C.3) becomes:

(YnFl - xnF2) _ + (x_F 2 - Y_Fl) n = SJ

Integrating over the area R* in the transformed plane and applying

Green's Theorem as before yields the relation

[(y F1 - xnF2)dn - (x_F 2 - Y_Fl)d_] = f SJd_dnC* R*

(c.4)

where C* is the boundary curve of R* (R* and C* are the images

of R and C respectively). To see that (C.4) expresses the

conservation relation in the transformed plane parallel to that

expressed by (C.2) in the physical plane, consider calculating

the components of F normal to lines of constant _ and n. Utilizing

equations (A.26) and (A.2_) we have

n (n) _ Y_Fl)/C_y• ~ = (x_F 2

F • n(_) = (y F1 - xnF2)//_-_

Page 247: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

C-3

Let r be the position vector describing the points along the curve

C*. Then, utilizing conventional techniques,

Idrl = /y(d_)2 + Bd_dq + _d_)2

Along a line of constant q we have

Idrlr _ = _ de

and along a llne of constant

Idrl_ = _ dn

Thus, the flux across a llne of constant q is

F • n(q)~ Idrlq~ = (x_F 2 - Y_Fl)d _

and across a llne of constant _ becomes

• _(C) Id_l_ = (YqFl - x F2)dq

These are the relations appearing in the flux terms of (C.4).

The flux terms thus have an exact analog to those appearing in

(C.2). Hence, the conservative relation (C.4) in the transformed

plane expresses conservation in the physical plane over the non-

square area formed by intersection of the curvlllnear _ and n

coordinate lines in a manner which is precisely equivalent to

the conservation expressed by (C.2) over the square area formed

by the intersection of the x and y coordinate lines.

Page 248: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate
Page 249: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

APPENDIXD

FINITE DIFFERENCEAPPROXIMATIONSIN THETRANSFORMEDPLANE

This appendix contains a compilation of the second order finite

difference expressions used to approximate partial derivatives in the

transformed plane. Computational molecules for the derivative approximations

appear to the right of each expression given. Combineddifference forms

for the transformation parameters _, B, _, J, o, and T are also included

here. Since the field step size is immaterial in the (_,q) plane, it

is taken as unity for all approximations and does not appear explicitly.

The following definitions are used throughout this appendix:

f=f(_,q) - a twice continuously differentiable function of _ and

n.

x---x(_,q) - coordinate transformation function defined by Equation

(13).

y=y(_,q) - coordinate transformation function defined by Equation

(13).

a, 8, Y, J, c, and _ - transformation parameters defined

in Appendix A.

In addition the following notational convention is utilized to indicate

the position at which functions and derivatives are evaluated in the

discrete ($,q) plane:

fi,J m f(_i'nJ ) '(f_)i,J _ f_(_i'nJ )' (f_)i,J m fn(_i'nJ )

Page 250: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

D-2

(fnn)i,j fnn(¢i,nj)

Derivative Approximations

First derivative, central differences:

(f_)t,J = (f_)t,J/2

where

l i i

i

(D.la)

t(f_)i,j fi+l,j - fi-l,J

(fn)i,J = (f'n)l,j 12

where

i

(D. Ib)

(D.2a)

(f'n)i,J - fl,J+l - fl,J-i(D.2b)

First derlvatlve, forward differences:

(f_)i,j = (-fi+2,j + 4fi+l,j - 3fi,j)/2

(fn)i,J -".(-fi,j+2 + 4fi,j+l - 3fi,j)/2

Second derivative, central differences:

(f_$)i,J = fi+l,J - 2fi,J + fi-l,j -

(fna)i,j -_ fi,J+l - 2fi,J + fi,J-i - (f'na)i,J

(f_n)i,j = (f_n)i,j/4

where

! I |

i

i

i

(D.3)

(D.4)

(D.5)

(D.6)

(D.7a)

Page 251: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

D-3

fi+l,J+l - fi+l,j-I + fi-l, J-i - fi-l,j+l (D. 7b)

Transformation Parameters

ui, j = a' j/4i, (D. 8a)

where

=_,j - (x')2 _ + (y_)2n 1,3 i,J(D. 8b)

!

Bi, j = Bi,j/4 (D. 9a)

where

(D.9b)

Yi,J = YI,j/4 (D.10a)

where

_' = (x_)'_ + (y_)2i,J ,J i,J(D.10b)

= ' /4Ji,J Ji,J (D.lla)

where

Ji,j- (x_)i,j(Y_)i,j- (x_)i,j(y_)i, j (D. llb)

!

ai, j --" oi,j/2 (D.12a)

where

O' - [(Y_)i,j(Dx' - (x_) i (Dy') ]/J_,ji,J )i,.J ,J i,j (D.12b)

Page 252: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

D-4

= ' /2 (D.iBa)

where

T_,j E [(x')i _(Dy') - ') (Dx') ] 'n ,J i,j (Yn i,j i,j /Ji,j (D.13b)

and where

(Dx')i, j - 2B_,j (x_11)i,j!

+ Y_,j (xnn)i,j (D.14a)

m' (y_) ' - 2B_ (y_q) + ' ' (D.14b)(DY')i,j i,J i,J ,j ' i,j Yi,j(Yqq)i,j

Page 253: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

APPENDIXE

CONTOURPLOTS

This appendix presents a detailed discussion of the methods used

to determine contour plots of a function defined in the ¢,n plane.

The numerical procedures which are used to transform the contour to a

physical plane representation are also covered.

Determination of Contours in the _n Plane

Let _ = _(_,n) be a function defined in the region D* (Figure i)

possessing continuous second derivatives. Since D* is closed and

bounded, let m(_) _ min {_(_,_) i [_,n]e D*} and M(_) E max {_(_,n) I

[_,n]E D*}. If _ is a number such that m(_) ! _ !M(_), then we define

the _-contour of #(_,n), CT(_), as the set

CT(_) = {[_,n] [ [_,n]E D--*and _($,n) = _}

Graphically, CT(_) is the curve created by the intersection of the graph

of _(_,_) and the plane _(_,n) = _. For plotting convenience the curve

is usually projected onto the (_,n) plane. These ideas are illustrated

in Figure E.I. The contour, CT(¢), is also often referred to as the

level set of _(_,n) through _ .

Now suppose that _(_,n) is known only in a discrete fashion. That

is, let the net function _i,J E _(_i'nJ ) be known on the discrete set

D--**- {[_i,_j] I _i = i-i for I ! i !IMAX and nj = J-i for i ! J !JMAX}

E-I

Page 254: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

E-2

¢

c(¢)

Figure E.l. Contour - _ of _(_,n)

(The fact that _i,j may only be an approximation to #($ ,n ) is im-

material to the current discussion). If similar defintions for m(_)

and M(_) are made for _i,j on the set D**, then the _-contour of #i,j'

denoted CT(_) again, can be defined as

CT(_) = {[_k, nkl I 05_ _--k< IMAX-I; O< _--k<--JMAX-1;

#(_k,nk) = _; k=l,2,...,N; N _ 2}

The bars over 6k,nk, and _ are to indicate that [_k,nk] may not be an

element of D** and that _ is not necessarily one of the values of the

net function _i,J" This is readily apparent from the discrete analog

[o Figure E.I given in Figure E.2.

Page 255: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

E-3

3

Figure E.2. Contour of _(_i,_j)

Numerically, the import of the above discussion is that interpo-

lation between the points of the discrete set D** is required to deter-

mine CT(#). Consider a portion of grid D--**as shownin Figure E.3a

where i < Ii < 12 < IMAXand i < Jl < J2 < JMAX. Each grid block is

labeled by the (i,J) coordinates of the lower left hand corner of the

the block. Block (m,n) is shownon a larger scale in Figure E.3b.

In order to improve the plotted resolution consider subdividing

each block into four triangles, as shown. The value of _ at (m+ ½,

n + ½) is taken as the four point average

_m+ ½,n + ½ = (_m,n + _m+l,n + _m,n+l + _m+l,n+l )/4

A local (_,_) coordinate is affixed to each grid block as demonstrated

Page 256: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

E-4

J=J2

(m,n+l) (m+l n+l)

m,n

Iqm,n2

a)

Figure E.3.

j=Jl i 1

l=Ii i=12 (m,n) _m,n (m+l,n)

b)

Sample Grid in Set D

in Figure E.3b. In order to standardize the interpolation procedures,

a local (_,p) coordinate system is also placed on each of the sub-

triangles as illustrated in the series of drawings given in Figure E.4.

r 7II!

m,

_2

r

m,n

ii

P3,

I i

rl tm,n i m,n

!

_m,n _ P_'m,n

_4

a) b) c) d)

Figure E.4. Local Coordinate Systems for Triangles

Interpolation is carried out on each of the four triangles for each grid

block in the segment (Ii ! i ! 12, Jl ! J ! J2) of the set D--** specified.

In particular interpolation is performed along each of the three sides

of each of the triangles if the contour value, _, lies between the values

at the ends of the sides. Let d' be the directed distance from a given

Page 257: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

E-5

triangle vertex to the point on the triangle side where the contour

intersects that side (denoted bye). This distance is illustrated in

Figure E.3b for triangle Oand is defined in an analagous manner for

the other triangles. If _i is the value of $i,J at a particular triangle

vertex and _2 the value of $i,j at the other end of the side, then d'

may be expressed as

d' = (side length)(# - _i)/(_ 2 - _i )

For example, along side 1-2 of triangle_), d' is given by

di_ 2 = (I.0)(_- Cm+l,n)/(¢m,n- ¢m+l,n )

Noting that the sides of the triangle have lengths 1.0, 1.0//2, and

1.0//2, the contour intersections can be expressed in the local triangle

coordinates as

Side _£ _A

1-2 l-d 0

2-3 d/2 d/2

3-1 (l+d)/2 (l-d)/2

where d _ (# - _i)/(# 2 - _i ) and where £=1,2,3, or 4 denotes the triangle

number.

Once the contour intersections have been determined in the local

triangle coordinates, (_£,p£), they must be transformed to the grid

block coordinates (_m,n,nm,n). This is done in the conventional fashion

using orthogonal rotation matrices. If [_£,p,p£,p] are the coordinates

of an intersection in triangle £, then

Page 258: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

E-6

"(_m,n)_,

(nm,n)A,p

= A£

where

[I r1A1 _- 1 0 A2 0 10 1 -- l-I 0

L

[-'o:I o-'IA3 -- ' =1

-- - -- L1 o

Note that up to three contour intersections can occur for each triangle

(i.e., one on each side). Finally, the point [(_m,n)£,p, (Dm,n)£,p]

is transformed to (_,n) coordinates by a simple linear transformation

producing an element [_'k' q--k] of the set CT(_ ).

Transformation to the Physical Plane

Since contours in the (_,n) plane are of little interest, CT(@ )

must be transformed to the physical plane. This is made possible

through the use of the coordinate transformation functions x(_i,qj )

and y(_i,qj). Again interpolation is required since almost all elements

of CT(@ ) are not elements of D** on which the discrete functions x(_i,qj )

and y(_i,nj) are defined. As illustrated in Figure E.5 this implies

a double linear interpolation must be performed. If [_k' n'-k]denotes

an element of CT(@), the first step is to locate the _ and n values

bracketing Ck and nk. Denoting these by _i' Ci+l and qj, _j+l as shown

in the figure, the values of xk and Yk are calculated as follows

'='(q'k - nj)(Xj+ 1 - Xj)/0]j+ 1 _ nj) + Xj

Page 259: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate

E-7

where

Xj = (_k - _i)(Xf+l,J - xl,j)/(_i+l - _i ) + xl,J

Xj+l = (_k - _i)(Xi+l,j+l - xi,j+l)/(_i+l - _i ) + xi,j+l

for all k=l,2,...,N. Similar expressions are used to calculate Yk"

Figure E.5. Interpolation for x and y

NASA-Lan_I ey, 1977

Page 260: C 4 Z - NASA€¦ · to be concentrated as desired, and is applicable to all multi-connected regions (and thus to fields containing any number of arbitrarily shaped bodies). The coordinate