c l(1405) peak by chiral interactions compared with preliminary...

30
Faddeev approach to the reaction at Analysis of the J-PARC experiment (E31) - Realistic calculations made possible - Predictions of L(1405) peak by chiral interactions compared with preliminary data. (Calculations for 2-step and higher-order processes) An enhancement in recently found at J-PARC so-called quasi-bound KNN state ? 3 He K pn - L Kd n - 1 GeV/c K P K. Miyagawa Okayama University of Science Kd n - Outline 0 n 1 GeV/c K P

Upload: others

Post on 07-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Faddeev approach to the reaction

    at

    Analysis of the J-PARC experiment (E31)

    - Realistic calculations made possible

    - Predictions of L(1405) peak by chiral interactionscompared with preliminary data.

    (Calculations for 2-step and higher-order processes)

    An enhancement in recently found at J-PARC

    so-called quasi-bound KNN state ?

    3HeK pn- L

    K d n-

    1 GeV/cKP

    K. Miyagawa

    Okayama University of Science

    K d n-

    Outline

    0n 1 GeV/cKP

  • ( , )d K n -

    Promising candidate which pins down the interaction

    and property

    Experiment E31 at J-PARK

    Motivation

    - Direct access to the resonance region via spectra

    - Hadronic probe (induced by )

    - Good-quality data

    interaction is constrained from chiral SU(3) and data around the thresholdbut models show large differences in actual predictions

    0n 1 GeV/cKP

    KN -

    1405( )L

    1405( )L

    K-

    KN

    ( I=1 amp, ) 1405( )L

  • -

    0 0 -

    ( , )d K n -

    Σ+π−

    Σ−π+

    0n 1 GeV/cKP J-PARC E31Inoue et al., HNP2017, Osaka

    KN threshold

  • Jido, Oset, sekihara Eur.Phys.J. A42, 257 (2009)

    Analyses

    Calculations of 2 step processes

    Faddeev calculations

    Ohnishi, Ikeda, Hyodo, Weise Phys.Rev. C93,025207 (2016)

    Miyagawa, Haidenbauer Phys.Rev. C85,065201 (2012)

    Miyagawa, Haidenbauer

    Kamano, Lee: Inclusion of higher partial waves up to F7/2, Phys.Rev. C94,065205 (2016)

    Kamano, Nakamura, Lee, Sato, Phys.Rev. C90,065204 (2014)

    Comprehensive Analyses of data up to W=2.1 GeVK p-

    Zhang, Tulpan, Shrestha, Manley, Phys.Rev. C88,035204 (2013)

    Back ground

    Calculation forf 2 step processes,

    First E31 data came out in 2015, 2016

    Situation changed completely by

    KN KN

    PWA byKSU (Kent State Univ.)

    Coupled Channel

    Cross sections of comparable magnitude to E31 data were obtained.

  • 0

    5

    10

    15

    20

    25

    30

    0 200 400 600 800 1000 1200

    S1/2

    P1/2

    P3/2

    D3/2

    D5/2

    F5/2

    F7/2

    G7/2

    Full

    S 1/2

    0

    2

    4

    6

    8

    10

    0 200 400 600 800 1000 1200

    S1/2

    P1/2

    P3/2

    D3/2

    D5/2

    F5/2

    F7/2

    G7/2

    Full

    Zhang, Tulpan, Shrestha, Manley, Phys.Rev. C88,035204 (2013) Partial Wave Analysis by KSU group

    K n K n- -

    0K p K n

    - total cross section

    s (

    mb

    )s

    (m

    b)

    Full

    FullS 1/2

    LABP (MeV c)

    LABP (MeV c)

    total cross section

  • Combine the KSU amplitudes up to G 7/2 and amplitudes from S-wave chiral potentials

    Our analysis

    KN KN

    KN

    2-step processes

    Faddeev calculations for higher-order processes

    - “New form” which avoids moving singularities

    extended to the relativistic case

    - boost of 2-body t-matrices based on a Poincare invariant few-body model (Keister, Polyzou)

    (Witala, GlÖckle)

  • Special kinematics of E31 and Reaction mechanism

    K-

    n

    p

    n

    p

    K-

    K d n-

    1 GeV/c

    0n 1 2 GeV/c.

    The energies related to the two-process

    , are well separated K Kn n- -

    K p -

  • -

    K-

    d

    K

    n

    N

    , KNt

    2 step processes

    0N N NK dK Kn Kt G t, ,pp y

    , NKN Kt

    N

    0

    0

    -

  • K-

    d

    0K

    n, KN

    t

    2 step processes

    , NKN Kt

    p

    n

    K-

    d

    K-

    n

    , KNt

    , NKN Kt

    p

    n

    -

    0

    0

    -

    -

    0

    0

    -

    0N N NK dK Kn Kt G t, ,pp y2 processes

  • K-

    d

    K

    n

    N

    , KNt

    Our calculations for the 2 step processes

    0N N NK dK Kn Kt G t, ,pp y

    , NKN Kt

    Partial-Wave Amplitudes by KSU

    Up to 7 2/G

    Cieply, Smejkal 2012

    Ohnishi, Ikeda, Hyodo, Weise 2016

    Oset, Ramos, Bennhold 2002

    1 2 GeV. / c

    Chiral Unitary models

  • KSU (1st ) + Cieply( 2nd )

    ( , )d K n - 1 GeV/cKP - 0n

    KN KN KN

    ds

    /dM

    d

    Wn

    [mb

    /MeV

    sr]

    0

    5

    10

    15

    20

    25

    30

    35

    1390 1410 1430 1450 1470 1490

    tfac3_correct

    tfac3_correct

    tfac3_correct

    [MeV]M

    -0 0

    -

    KN threshold 1434.6

  • Comparison with E31 preliminary data

    n -

    n -

    pure I =0

    1 GeV/cK

    P - 0n ( , )d K n -

  • 0

    1

    2

    3

    4

    1370 1390 1410 1430 1450 1470 1490

    t(1)-sqrt(2/3)*t(0)

    - t(1)-sqrt(2/3)*t(0)

    -sqrt(2/3)*t(0)

    Cieply

    0.00E+00

    2.00E-02

    4.00E-02

    6.00E-02

    8.00E-02

    1400 1420 1440 1460 1480 1500

    2

    t πΣ,KN G0 t KN,KN ΦdΣ2 processes

    t πΣ,KN 2 G0 t KN,KN Φd

    2

    K-

    p → π+ Σ-

    K-

    p → π- Σ+

    K-

    p → π0 Σ0

    K-

    p → K0bar n

    K-

    n → K-

    n

    Pronounced peaks: and QFS1405( )L

  • Contributions from higher partial-wave KN KNd

    s/d

    M

    d

    Wn

    [mb

    /MeV

    sr]

    [MeV]M

    0

    5

    10

    15

    20

    25

    30

    35

    1390 1410 1430 1450 1470 1490

    up to j=7/2

    up to j=5/2

    up to j=3/2

    ( )KN KN

  • Contributions from higher partial-wave KN KN

    up to j=7/2

    up to j=5/2

    up to j=3/2

    [MeV]M

    S wave

    up to j=1/2

    up to j=3/2

    ( )KN KN

    0

    5

    10

    1390 1410 1430 1450 1470 1490

    0

    5

    10

    15

    20

    25

    30

    35

    1390 1410 1430 1450 1470 1490

  • ( , )d K n - 1 GeV/cK

    P -

    0n

    pure I =0

    0K nK p

    -

    Comparison of the three chiral potentials

    Cieply

    Oset-Ramos

    Ohnish

    n - n -

    0 0n

    IncludeI =0, 1

  • 0( , )pd K - - 1 GeV/c

    KP - 0n

    pure I =1

    Cieply

    Oset-Ramos

    Ohnish

    Reaction with outgoing proton 0

    K pd - -

  • Comparison with the results by Kamano-Lee

    ( , )d K n -

    0( , )pd K - -

    Ours (Cieply)

    Kamano

  • Average of andns - ns -

    Cieply

    Oset-Ramos

    Ohnish

    ( I : isospin of )

    average

  • Faddeev calculation for 3 step processes

    K-

    d

    n

    N

    NN

    N

    K-

    dn

    N

    N

    K

    KK

    NN NN

    KN nK

    up to 3j

  • 1 3

    023 1

    23P-( ) ( )( ) ( )

    iG ty f y

    23P -

    3 coupled equations

    K

    N

    1 2 3

    023( ) ( ) ( )( ) ( )

    iG ty f y y

    2 3 1

    0 13G t( ) ( ) ( )( ) ( )y y y

    3 2 1

    0 12G t( ) ( ) ( )( ) ( )y y y

    Impose antisymmetry condition, when 2 and 3 are identical

    3 3 1

    012G t

    23P

    ( ) ( ) ( )( ) ( )y y y-

    1 2 3( ) ( ) ( )y y y

    1 3123

    P-( ) ( )( )y y

    Total wave function is divided to 3 components

    For particles 1,2 and 3

    Faddeev equations

    1

    2

    3

    1

    2

    3

    1

    2

    3

    N

    ( )K NN

  • 1 2

    0 2323 1NNKNN KNi NG t PKNN( ) ( )( ) ( ) ( )= + -

    {}

    3 3 1

    0 23

    2 1

    12

    12

    KNN KN KN KNN KNN

    KN N N

    G K N t P

    t

    N( ) ( ) ( )

    ,

    ( ) ( )

    ,

    ( ) ( ) ( )

    ( ) ( )S SS

    = - +

    + +

    {}

    3 3 1

    0 23

    2 1

    12

    12

    KN KNN KNNN

    N N

    G t P

    t

    N( ) ( ) ( )

    ,

    ( ) ( )

    ,

    ( ) ( ) ( )

    ( ) ( )

    S S

    S S S S

    = - +

    + +

    S

    { }1 3 20 23N N N N NG tN( ) ( ) ( ),( ) ( ) ( )S S S S S= +S

    2 3 1

    0 13N N N NG tN( ) ( ) ( )( ) ( ) ( )S S S+S=

    1 --- meson

    2,3 --- baryons

    5 coupled equations: 2 are for , the other 3 for

    Faddeev equations for KNN N- S

    NSKNN

    2323 23 23N N N Ntot

    N NV V V P, , ,( ) ( ) ( )S S S S S S= -

  • Equations for partial breakup amplitudes

    We solve the equations for breakup amplitudes

  • 2

    2

    2

    2 31

    1E E qpq p

    E E q Ep dp p

    ipT t ( )| | ( )|

    ( ) ( )aa a a

    e

    2

    2 2

    p q

    p qq q p

    qdq R q q p p q

    q p, ,( )( , , ) |

    r

    a ar

    a

    ar 3

    T

    t

    p

    qpp

    q3T

    Technicalities

    f p q( )

    Simple subtraction as in the 2-body problem can be used for integrationp

    q

    p

    2qr

    2qr

    integralq

    3 3

    2

    1

    Witala, Glöckle, Eur. Phys. A37,87 (2008)

    We extend it to the relativistic case

  • Faddeev calculation for 3 step processes

    K-

    d

    n

    N

    NN

    N

    K-

    dn

    N

    N

    K

    KK

    NN NN

    KN nK

    up to 3j

  • Inclusion of the 3rd step with interactionKN

    20n

    0n

    10n

    ds

    /dM

    d

    Wn

    [mb

    /MeV

    sr]

    [MeV]M

    0

    5

    10

    15

    20

    25

    30

    35

    1390 1410 1430 1450 1470 1490

    2step

    2step

    2step

    3step

    3step

    3step

    0

    2

    4

    6

    8

    10

    1390 1410 1430 1450 1470 1490

    c

    0.0

    0.4

    0.8

    1.2

    1390 1410 1430 1450 1470 1490

    2 step

    3 step

  • 0

    5

    10

    15

    20

    25

    30

    35

    1400 1430 1460 14900

    5

    10

    15

    20

    25

    1400 1430 1460 14900

    2

    4

    6

    8

    10

    1400 1430 1460 1490

    0

    1

    2

    3

    4

    1400 1430 1460 1490

    0.0

    0.4

    0.8

    1.2

    1400 1430 1460 1490

    0n

    20n

    10n

    5n (Lab)

    (Lab)

    15n (Lab)

    (Lab)

  • Summary of the analysis of E31

    ● Calculation for 2step and 3step processes

    ● For 1st step Kbar N→ Kbar N, PWA amplitudes by KSU

    For 2nd step , Chiral unitary model by Cieply, Ohnishi, Oset-Ramos.

    ● The 3rd steps give almost no effects at , but change lineshapes at

    ● Accurate data would pin down the Kbar N→ π Σ amplitude.

    d (K- , n) πΣ P K-=1 GeV/c θn = 0°

    ● Overall magnitude of the cross sections are well reproduced, But for all three potentials

    - peaks are too large in magnitude- poor agreement in lineshape for (interference between I=0 nad 1) n -

    1405( )L

    Θ n = 0° Θ n =2 0°

  • T.Yamaga JPS 2017J-PARC E31Kawasaki et al., MENU2016

    Σ+π−

    Σ−π+

    E15

    An enhancement in

    recently found at J-PARC

    3HeK pn- L

    dK n-

    ~40 Mev below the threshodKN

    so-called quasi-bound state ?KNN

    KNN threshold

  • K-

    d

    K

    n

    N

    , KNt

    E31 vs E15

    , NKN Kt

    N

    K-

    3 He

    K

    n

    N

    , NKN Kt

    N

    The data suggests similar reaction mechanism.

    Full treatment of this coupled system is neededKNN N-

    θn = 0°