cahmda/dafoh workshop sept 8-12 2014 austin, tx · •variable variance multipliers [leisenring and...

43
Combined Data Assimilation and Multi-modeling in Seasonal Hydrologic Forecasting: A More Complete Characterization of Uncertainty Hamid Moradkhani Remote Sensing and Water Resources Lab Civil and Environmental Engineering CAHMDA/DAFOH Workshop Sept 8-12, 2014 Austin, TX

Upload: others

Post on 22-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Combined Data Assimilation and Multi-modeling in Seasonal

Hydrologic Forecasting:

A More Complete Characterization of Uncertainty

Hamid Moradkhani

Remote Sensing and Water Resources Lab

Civil and Environmental Engineering

CAHMDA/DAFOH Workshop

Sept 8-12, 2014

Austin, TX

Page 2: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

• A general lack of information and skillful modeling frameworks leads to forecast products that do not have sufficient ability to be relied upon on an entirely deterministic manner.

• Uncertainty is pervasive throughout hydrologic forecasting.

Page 3: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Difficulties in Hydrologic Predictions

Space-time variability of climatic inputs

Heterogeneity of the land surface condition:

vegetation, land use, soils, snow extent, etc.

Selection of one or multiple plausible model/s

that can provide reliable and skillful prediction

under all circumstances

Page 4: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Parameter Estimation: Improve estimates of a set of poorly known model

parameters leading to a model solution that is close to the measurements.

All errors in the model are associated with uncertainties in the

selected model parameters.

The model initial conditions, boundary conditions, and the model

structure are all exactly known

State Estimation using Data Assimilation: Defined as finding the estimate

of the model state that in some weighted measure best fits the observation,

the initial and boundary conditions.

Combined Parameter and State Estimation: An improved state estimate

and a set of improved model parameters are searched for simultaneously.

Global Optimization or Ensemble Inference / Data Assimilation?

Page 5: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Limitations of Most Calibration Techniques

In the case of insufficient availability of historical

data (e.g. ungauged or recently gauged basins)

batch calibration cannot be properly applied

Incapability in investigating the possible temporal

variations of model parameters

Non-uniqueness of solution (Ill-posed inverse problem)

Mostly provide just a single solution ignoring the

uncertainty sources

Page 6: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Some Benefits of Data Assimilation

Provides a framework for quantifying uncertainty

Can be used to calibrate models (dual state-

parameter estimation framework)

Can be used to estimate the uncertainty in system

states for initializing the forecasts

Can be used to reduce model uncertainty

Page 7: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Quantifying Uncertainties in Operational Settings

• Problem: Current operational streamflow forecasting

system does not yet account for all sources of uncertainty

• Goal: Move towards a more complete accounting of all

sources of uncertainty in forecasting system

– Meteorological Forcing

– Model states/parameters (e.g., Moradkhani et al., 2005; AWR; 2012,

WRR)

– Initial Land Surface Condition (DeChant and Moradkhani, 2011, HESS;

2014, JOH)

– Hydrologic model structure (Parrish et al., 2012, WRR)

Page 8: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Bayesian Inference

The Prior Probability describes what you first knew.

Multiply this by a term that describes the effect of your new

information, and the result is what you know after you have taken

into account your new information.

DataP

XDataPXPDataXP

,|,|,

Likelihood

EvidencePrior ProbabilityPosterior Probability

Page 9: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

• Utilize land surface observations to reduce the uncertainty in our

probabilistic state estimates through sequential Bayes theorem

Ensemble Data Assimilation

1

1111

11111

)|()|(

)|()|()|(

tx

ttttt

tttttt

dxYxpxyp

YxpxypYxp

t t+1

Discrete representation of

continuous random state

variable, xt+1

xt xt+1

Observation

The Forecast (prior distribution) p(xt+1|Yt)

p(yt+1|xt+1)

t+2

Page 10: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Resampling Step

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Calculate Kalman

Gain

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Update Step

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Sequential Importance

Sampling Step

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Data Assimilation by the Ensemble Kalman Filter and Particle Filter

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Time

Flo

w

Time

Flo

w

Current ObservationCurrent Predictive BoundsPast Predictive Bounds

Current ObservationCurrent Predictive Bounds

Past Observation

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Perturbed Parameters

Time

Flo

w

Current ObservationCurrent Predictive Bounds

Time

Flo

w

Current ObservationCurrent Predictive BoundsPast Predictive Bounds

Current ObservationCurrent Predictive Bounds

Past Observation

Time

Flo

w

Time

Flo

w

Current ObservationCurrent Predictive BoundsPast Predictive Bounds

Current ObservationCurrent Predictive Bounds

Past Observation

Time

Flo

w

Current ObservationCurrent Predictive Bounds

tititititi uxfx ,,,1,, ,,

)()|(1

itt

N

i

ittt xxwYxp

i

t

i

t xx )|()|(. i

tt

i

t

i

tt

i

t xypN

MwxypMw

tititxytiti yyKxx ,,,, ' N

wi

t

1

Page 11: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

)()|(1

1

i

tt

N

i

i

ttt xxwYxp

)()|(1

i

tt

N

i

i

ttt xxwYxp

),,( 1

i

t

i

t

i

t uxfx

Forecast (Prior)Density

Analysis (Posterior)Density

i

t

i

t xx )|()|(. i

tt

i

t

i

tt

i

t xypN

MwxypMw

Sampling Importance Resampling (SIR)

Uniform CDF

Particles CDFParticles and weights

Resampled Particlesequally weighted

},{ i

k

i

k wx

}1

,{p

j

kN

x

i

kx j

kx

Particle Filter

p

i

kN

x1

p

i

kN

x1

,1

p

i

kN

x1

,ˆ1

i

k

i

k wx 11,ˆ

i

k

i

k wx ,ˆ

Moradkhani et al. 2005, WRR

Nwi

t

1

Page 12: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Implementation of Sequential Data Assimilation

Parameters θ

X (t)

Hydrologic Model

State(Prognostic Variable)

Uncertain Observations O(t)Streamflow

SWE

SCA

Uncertain Model Output y(t)Snowfall

Rainfall

Melt

SWE

SCA

Pack heat deficit

Data Data

AssimilationAssimilation

Forcing data I(t)Temperature

Precipitation

P(X)

P(o)

P(y)

P(I)

P(θ)

UpdatingUpdating

ForecastingForecasting

Page 13: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Calibration Replicate Method for DA

October 1948 August 1981

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Jan 1950 Jan 1960 Jan 1970 Jan 1980

1-Jan-1950 1-Jan-1960 1-Jan-1970 1-Jan-19800

500

1000

1500

Stre

amfl

ow

(cf

s)a)

b)

1 7 13 19

1 7 13 19

October 1948 August 1981

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Jan 1950 Jan 1960 Jan 1970 Jan 1980

1-Jan-1950 1-Jan-1960 1-Jan-1970 1-Jan-19800

500

1000

1500

Stre

amfl

ow

(cf

s)

a)

b)

1 7 13 19

1 7 13 19

DeChant and Moradkhani (2012), WRR

Page 14: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

EnKF vs. PF DeChant and Moradkhani (2012), WRR

Page 15: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

• Makes the assumption that

errors are Gaussian and

states/parameters are linearly

correlated with prediction

– Allows for direct adjustment to

states/parameters for

characterizing the posterior

distribution

– Not susceptible to sample

impoverishment

• Hydrologic modeling

problems are typically non-

Gaussian

– Leads to overconfident

predictions

EnKF vs. PF

Most general solution

available for data assimilation

Theoretically more accurate in

the non-Gaussian problems

Requires extra attention to

avoid sample impoverishment

Effective adjustment to

parameters is a difficult task

Results are less overconfident

than the EnKF

Particle filter approaches

optimal solution

EnKF PF

Page 16: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

What’s New?

• PF is more reliable than EnKF, but still overconfident

– PF approaches reliable distribution (EnKF does not)

– Parameter distribution tends to be overconfident

– Requires large ensemble size to avoid overconfidence

• Need larger parameter moves

– This is difficult to achieve without moving parameters outside posterior

• Two solutions

– Automatic tuning of parameter perturbation value

• Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH]

– Ensure parameters remain within posterior

• Markov Chain Monte Carlo step can reject poor parameter moves

[Moradkhani et al., 2012, WRR]

Page 17: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Flo

w

Observation

tt-Lag

Variable Variance Multipliers

Automatic tuning of parameter perturbation value

ttt yy '̂

tttt

ttttt

yyifyy

yyifyyub

'''

'''25

75

11ˆ

:)(

:)(

tlagt

tlagt

tub

medianer

Flo

w

tt-Lag

Flo

w

tt-Lag

Flo

w

Interquartile

Expected Value

Observation

tt-Lag

Uncertainty Bound (ub)

Flo

w

tt-Lag

Interquartile

Expected Value

Observation

Uncertainty Bound (ub)

Residual (R)

Flo

w

Interquartile

Expected Value

Observation

tt-Lag

Uncertainty Bound (ub)

Residual ( )

Flo

w

Interquartile

Expected Value

Observation

tt-Lag

Uncertainty Bound (ub)

Residual ( )

Flo

w

Interquartile

Expected Value

Observation

tt-Lag

Uncertainty Bound (ub)

Residual ( )

Flo

w

Interquartile

Expected Value

Observation

tt-Lag

Uncertainty Bound (ub)

Residual ( )

Flo

w

Interquartile

Expected Value

Observation

tt-Lag

Uncertainty Bound (ub)

Residual ( )̂

tlagttt sers :)(

St : updated variance multiplier

Leisenring and Moradkhani (2012), JOH

Page 18: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Evolution of ensemble data assimilation for

uncertainty quantification using the particle filter-

Markov chain Monte Carlo method

WATER RESOURCES RESEARCH, 2012

Page 19: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Sequential Importance

Sampling Step

Resampling Step

Proposal DistributionResampled ParticleProposal Particle

Resampled ProbabilityProposal Probability

Time

Flo

w

Current Observation

Current Predictive Bounds

1)

2)

3)

4)

Acceptance Probability

Time

Flo

w

Current Observation

Current Predictive Bounds

Sequential Importance

Sampling Step

Time

Flo

w

Current Observation

Current Predictive Bounds

1)

Sequential Importance

Sampling Step

Resampling Step

Time

Flo

w

Current Observation

Current Predictive Bounds

1)

2)

Sequential Importance

Sampling Step

Resampling Step

Proposal DistributionResampled ParticleProposal Particle

Time

Flo

w

Current Observation

Current Predictive Bounds

1)

2)

3)

Sequential Importance

Sampling Step

Resampling Step

Acceptance/Rejection Sampling

Proposal Distribution

Posterior Density

Accepted ParticleRejected Particle

Resampled ParticleProposal Particle

Resampled ProbabilityProposal Probability

Time

Flo

w

Current Observation

Current Predictive Bounds

1)

2)

3)

4)

5)

6)

Acceptance Probability

Combining Particle Filter with MCMC

Sequential Importance

Sampling Step

Resampling Step

Acceptance/Rejection Sampling

Proposal Distribution

Posterior Density

Accepted ParticleRejected Particle

Resampled ParticleProposal Particle

Resampled ProbabilityProposal Probability

Time

Flo

w

Time

Flo

w

Current Observation

Current Predictive Bounds

Past Predictive Bounds

Current Observation

Current Predictive Bounds

Past Observation

1)

2)

3)

4)

5)

6)

Acceptance Probability

Sequential Importance

Sampling Step

Resampling Step

Acceptance/Rejection Sampling

Proposal Distribution

Posterior Density

Accepted ParticleRejected Particle

Resampled ParticleProposal Particle

Resampled ProbabilityProposal Probability

Time

Flo

w

Time

Current Observation

Current Predictive Bounds

Past Predictive Bounds

Current Observation

Current Predictive Bounds

Past Observation

1)

2)

3)

4)

5)

6)

Acceptance Probability

Flo

w

MCMC Sampling

Sequential Importance

Sampling Step

Time

Flo

w

Current Observation

Current Predictive Bounds

1)

Sequential Importance

Sampling Step

Resampling Step

Acceptance/Rejection Sampling

Proposal Distribution

Posterior Density

Accepted ParticleRejected Particle

Resampled ParticleProposal Particle

Resampled ProbabilityProposal Probability

Time

Flo

w

Time

Flo

w

Current Observation

Current Predictive Bounds

Past Predictive Bounds

Current Observation

Current Predictive Bounds

Past Observation

1)

2)

3)

4)

5)

6)

Acceptance Probability

Sequential Importance

Sampling Step

Resampling Step

Acceptance/Rejection Sampling

Proposal Distribution

Posterior Density

Accepted ParticleRejected Particle

Resampled ParticleProposal Particle

Resampled ProbabilityProposal Probability

Time

Flo

w

Time

Current Observation

Current Predictive Bounds

Past Predictive Bounds

Current Observation

Current Predictive Bounds

Updated Expected Value

1)

2)

3)

4)

5)

6)

Acceptance Probability

Flo

w

Variable Variance Multipliers

Sequential Importance

Sampling Step

Resampling Step

Acceptance/Rejection Sampling

Proposal Distribution

Posterior Density

Accepted ParticleRejected Particle

Resampled ParticleProposal Particle

Resampled ProbabilityProposal Probability

Time

Flo

w

Current Observation

Current Predictive Bounds

1)

2)

3)

4)

5)

6)

Acceptance Probability

Moradkhani et al. (2012), WRR

Page 20: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Extra Considerations

Must create effective proposal distribution

𝜃𝑝

𝑖,𝑡= 𝜃+

𝑖,𝑡−1+ 𝜀𝑖,𝑡−1 𝜀𝑖,𝑡−1~𝑁 0, 𝑠𝑉𝑎𝑟 𝜃−

𝑖,𝑡−1

Tune jump rate “s” with VVM methodology to ensure wide enough

proposal distribution

Proposal parameter probability is not readily available

Requires assumption about filtering posterior to include all prior

information 𝑃 𝜃𝑖,𝑡|𝑦1:𝑡−1

Here Gaussian assumption for simplicity

𝜇𝑡 = 𝑖=1𝑁 𝑤+𝑖,𝑡−1 𝜃

−𝑖,𝑡−1

𝜎2𝑡 = 𝑖=1𝑁 𝑤+𝑖,𝑡−1 𝜃

−𝑖,𝑡−1 − 𝜇𝑡

2

Posterior is proportional to product of likelihood and prior

𝑃 𝜃𝑖,𝑡|𝑦1:𝑡 ∝ 𝐿 𝑦′𝑡 − 𝑦𝑡|𝑅𝑘 ∗ 𝑁 𝜃𝑖,𝑡 , 𝜇𝑡 , 𝜎2𝑡

Page 21: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Experiment

• Perform state-parameter estimation with PF-SIR, and

PF-MCMC with VVM

– Use time-lagged replicates [DeChant and Moradkhani,

2012] to increase the number of calibration runs

– Perform experiments in both a calibration and validation

phase

• Calibration tests streamflow prediction during

parameter estimation

• Validation uses stochastic parameter estimates from

calibration

• Perform experiments with HyMod model

– Data from the leaf river basin

– Validate with one day ahead prediction of streamflow

Page 22: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Synthetic Experiment

PF-SIR PF-MCMC

Page 23: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Verification using QQ plot

Page 24: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Predictive QQ plots of the three filters for state-parameter estimation

Page 25: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Performance Measures in Real Streamflow Data Assimilation

Page 26: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Historical Simulation

Q

SWE

SM

Historical Data

Past Future

SNOW-17 / SAC

1. Run hydrologic model up to the start of the forecast period to estimate basin initial conditions;

Typical Streamflow Forecasting Method…Courtesy of M. Clark

Page 27: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Historical Simulation

Q

SWE

SM

Historical Data Forecasts

Past Future

SNOW-17 / SAC SNOW-17 / SAC

1. Run hydrologic model up to the start of the forecast period to estimate basin initial conditions;

2. Run hydrologic model into the future, using an ensemble of local-scale weather and climate forecasts.

Approach ignores uncertainty in initial conditions as well as

uncertainty in the land model used to produce the forecast

Typical Streamflow Forecasting Method…

Page 28: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Ensemble Streamflow Prediction

Noisy Forcing +

Observation

Spin-Up/

Data Assimilation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive

Uncertainty

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

ata

Ass

imil

ati

on

Spin-Up Start

Ensemble Streamflow Prediction

Noisy Forcing +

Observation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive

Uncertainty

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

ata

Ass

imil

ati

on

Spin-Up Start

Ensemble Streamflow PredictionSpin-Up/

Data Assimilation

Resampled Historical ForcingObserved Forcing

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

ata

Ass

imil

ati

on

Spin-Up Start

Combining Data Assimilation and ESP

Ensemble Streamflow Prediction

Noisy Forcing +

Observation

Spin-Up/

Data Assimilation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive

Uncertainty

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

ata

Ass

imil

ati

on

Spin-Up Start

Page 29: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Study Area-Upper Colorado River Basin

Page 30: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Seasonal Cumulative Streamflow Prediction

Page 31: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

More complete Characterization of Uncertainty by Data Assimilation and Multimodeling

Parrish, M., H. Moradkhani, and C.M. DeChant (2012), Towards Reduction of

Model Uncertainty: Integration of Bayesian Model Averaging and Data

Assimilation, Water Resources Research, 48, W03519,

doi:10.1029/2011WR011116.

DeChant C.M., and H. Moradkhani (2014), Toward a Reliable Prediction of

Seasonal Forecast Uncertainty: Addressing Model and Initial Condition

Uncertainty with Ensemble Data Assimilation and Sequential Bayesian

Combination, Journal of Hydrology, special issue on Ensemble Forecasting and

data assimilation, DOI: 10.1016/j.jhydrol.2014.05.045.

Page 32: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Hydrologic Models of Different Complexities…

Q

B

QR

tq

R

IA

F

i

t

API

SAC-SMA

VIC PRMS

1

2

i

n0

h1(p)

h2(p)

hj(p)

hn(p)

w1

wn

w2

wj

1,

1

2,

2

j,

j

n,

n

Q1,

Q2…

Qp

1

w0

Bias

ANN

Page 33: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Sequential Bayesian Combination

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

PosteriorTime

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

PriorTime

Flo

wF

low

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

Flo

w

Time

Flo

w

Time

Flo

w

Mo

de

l 1

Mo

de

l 2

Mo

de

l 3

Prior

Bayesian Model Averaging

Weighted Average

Page 34: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Ensemble Streamflow Prediction

Noisy Forcing +

Observation

Spin-Up/

Data Assimilation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive

Uncertainty

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

ata

Ass

imil

ati

on

Spin-Up Start

Ensemble Streamflow Prediction

Noisy Forcing +

Observation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive

Uncertainty

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

ata

Ass

imil

ati

on

Spin-Up Start

Bayesian Model Averaging

Ensemble Streamflow Prediction

Noisy Forcing +

Observation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive

Uncertainty

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

ata

Ass

imil

ati

on

Spin-Up Start

Ensemble Streamflow Prediction

Noisy Forcing +

Observation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive

Uncertainty

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

ata

Ass

imil

ati

on

Spin-Up Start

Ensemble Streamflow Prediction

Noisy Forcing +

Observation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive

Uncertainty

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

ata

Ass

imil

ati

on

Spin-Up Start

Bayesian Model Averaging

Combining PF-SBC with ESP

Ensemble Streamflow Prediction

Noisy Forcing +

Observation

Spin-Up/

Data Assimilation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive

Uncertainty

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

ata

Ass

imil

ati

on

Spin-Up Start

Ensemble Streamflow PredictionSpin-Up/

Data Assimilation

Resampled Historical ForcingObserved Forcing

Predictive

Uncertainty

Forecast Start Forecast End

Tra

dit

ion

al

ES

PE

SP

wit

h D

A a

nd

BM

A

Spin-Up Start

Page 35: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Modeling Cases

Two Models

1) Variable Infiltration Capacity (VIC)

Physically-based distributed model

2) National Weather Service (NWS) models

Conceptual semi-distributed models

Three cases for forecast spin-up

1) Open Loop (no assimilation)

2) Passive Microwave Brightness Temperature (TB)

3) Land Surface Temperature (LST) with TB

Page 36: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Combination of DA, Multi-modeling and ESP

Page 37: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Study Area

Page 38: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Water Supply Forecasting Experiment

Generate multiple seasonal (3-month) volumetric streamflow

forecasts for the Upper Colorado River Basin

Start dates on the 1st and 15th of January through June

Years of study from 2003 through 2008

72 total streamflow forecasts for each location

Does the DA reduce the overconfidence related to ignoring initial

condition uncertainty?

Can Sequential Bayesian Combination improve the accounting of

model uncertainty?

Page 39: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Sequential Bayesian Combination Weights

Page 40: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Exceedance Ratios

Page 41: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Spatially Distributed 99% Exceedance Ratio

Page 42: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Reliability

Page 43: CAHMDA/DAFOH Workshop Sept 8-12 2014 Austin, TX · •Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH] –Ensure parameters remain within posterior •Markov Chain

Water Supply Forecasting Conclusions

ESP produces overconfident seasonal

streamflow forecasts– Incomplete accounting of all uncertainty sources

Data assimilation generally improves reliability,

but remains overconfident– Model uncertainty not effectively managed

DA-SBC leads to a most reliable forecasts– Model itself is a major source of uncertainty!