calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf ·...

51
Calculating / using staggered fermions Weonjong Lee Weonjong Lee (SNU), Benasque 2004

Upload: others

Post on 17-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Calculating ε′/ε using staggeredfermions

Weonjong Lee

Weonjong Lee (SNU), Benasque 2004

Page 2: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Collaboration

• S. Sharpe (University of Washington, Seattle)

• W. Lee (Seoul National University)

• G. Fleming (Jefferson Lab)

• T. Bhattacharya (Los Alamos National Lab)R. Gupta (Los Alamos National Lab)G. Kilcup (Ohio State University)

• QCDSP support: N. Christ, G. Fleming, G. Liu,R. Mawhinney, L. Wu.

Weonjong Lee (SNU), Benasque 2004 2/51

Page 3: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Re(A2), Re(A0), and ε′/ε (Exp)

• 〈(ππ)I|HW |K0〉 = AIeiδI

• ω = ReA2ReA0

= 0.045

• ReA2 = 1.50× 10−8GeV

• ReA0 = 33.3× 10−8GeV

• ε′/ε = − ω√2|ε|

[ImA0ReA0

− ImA2ReA2

]KTeV → Re(ε′/ε) = (20.7± 2.8)× 10−4

NA48 → Re(ε′/ε) = (15.3± 2.6)× 10−4

Weonjong Lee (SNU), Benasque 2004 3/51

Page 4: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Main goals of the staggered ε′/ε

project.

• Check the results obtained using the quenched Domain-Wall fermions: → negative ε′/ε (CP-PACS, RBC).

• Calculate ε′/ε in the full QCD.

– Quenching → main systematic errors.– Using the improved actions → HYP or Fat7.

• Comparison with experiment → new physics (?)

Weonjong Lee (SNU), Benasque 2004 4/51

Page 5: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Why staggered fermions?

• Advantage:

1. Conserved U(1)V ⊗ U(1)A.2. Quark mass is protected (No Residual Mass).3. Computationally cheap (< 50× 4).4. Discretization error = O(a2).5. Easy to improve (no extra cost).

• Disadvantage

1. Broken SU(4) Flavor (Taste) Symmetry.2. Operator mixing matrix of 65536× 65536.3. NPR is impractical.

Weonjong Lee (SNU), Benasque 2004 5/51

Page 6: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

The First Stage

Perturbative matching for unimproved staggered operators

• Penguin diagrams (Sharpe, Patel, 1993)→ small (≈ 2%).

• Current-current diagrams (W. Lee, 2001)→ large (≈ 100% for [P × P ][P × P ]).

• Hence, we must improve the staggered fermion actionand operators to reduce the perturbative correction.

Weonjong Lee (SNU), Benasque 2004 6/51

Page 7: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

The Second Stage:

• Numerical study with unimprovedstaggered

• Check the previous work(Kilcup, Pekurovsky).

• Use fully one-loop matched operators.

• Nucl. Phys. B (Proc. Suppl.) 106, 311;hep-lat/0111004.

• Large quenching uncertainty.

Weonjong Lee (SNU), Benasque 2004 7/51

Page 8: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

The Third Stage:

Improving staggered fermions

• AsqTad: Fat7 + Lepage + Naik

• Fat7

• Fat7 + Lepage

• Hypercubic (HYP)

• Other possibilities: Fat7, APE

Weonjong Lee (SNU), Benasque 2004 8/51

Page 9: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Main goal of improvement:

Reduce perturbative corrections

• Key idea :

Suppress the taste changing interaction of highmomemtum gluons with quarks, using the Symanzikimprovement program and smearing.

• Numerical Studies find :

– Taste symmetry breaking substantially reduced.(Hasenfratz, Knechtli)

– Largest reduction in HYP and APE.

Weonjong Lee (SNU), Benasque 2004 9/51

Page 10: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Bilinear Operator Renormalization

• W. Lee and S. Sharpe, PRD 66, (2002), 114501.

• Fat7 and HYP are the best in reducing the size of one-loop corrections. (≤ 10% level)

• Comparable to those for Wilson and Domain WallFermions.

• This leads us to choosing HYP for our numerical study.

Weonjong Lee (SNU), Benasque 2004 10/51

Page 11: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

The Fourth Stage: Study on HYP

• W. Lee, PRD 66 (2002) 114504.

• Properties:

– Theorem 1 SU(3) Projections.– Theorem 2 Triviality of renormalization.– Theorem 3 Multiple SU(3) Projection.– Theorem 4 Uniqueness– Theorem 5 Equivalence (HYP ↔ Fat7)

• |CHYP| |Cthin|, SU(3) Projection ↔ T.I. for doublers.

• Renormalization simplified by 〈AµAν〉 → 〈BµBν〉

Weonjong Lee (SNU), Benasque 2004 11/51

Page 12: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Current-current Diagrams forHYP/Fat7

• W. Lee and S. Sharpe,PRD68, (2003) 054510;hep-lat/0306016.

• HYP/Fat7 ≈ 10%.

• Tadpole improvement:CN = 13.159CH = 1.4051

Finite correction to (O3)II

Operators [S × P ][S × P ]II

NAIVE 2× (95.6− 6CN)HYP/Fat7 2× (19.1− 6CH)

Operators [P × P ][P × P ]II

NAIVE 2× (111.3− 2CN)HYP/Fat7 2× (6.9− 2CH)

Weonjong Lee (SNU), Benasque 2004 12/51

Page 13: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Penguin Diagrams for HYP

• K. Choi and W. Lee: hep-lat/0309070.

• Theorem 1 (Equivalence):

At the one loop level, diagonal mixing coefficients areidentical between unimproved and improved staggeredoperators of HYP (I), HYP (II), Fat7, Fat7+Lepage, andFat7.

• Note that AsqTad is NOT included in the list.

• Off-diagonal mixing vanishes for Fat7, HYP (II), andFat7.

Weonjong Lee (SNU), Benasque 2004 13/51

Page 14: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

The Fifth Stage:Numerical Study with HYP staggered

• W. Lee NPB (P.S.) 128 (2004) 125, hep-lat/0310047;T. Bhattacharya, et al., hep-lat/0309105.

• β = 6.0, 163 × 64 lattice, 218 confs.

• Bare quark mass shifted by ≈ 2.5.

Zm∼= 2.5 → Zm

∼= 1.

• Small perturbative correction (≈ 10%).

• Reduced taste symmetry breaking.

Weonjong Lee (SNU), Benasque 2004 14/51

Page 15: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Re(A2), Re(A0), and ε′/ε (Exp)

• 〈(ππ)I|HW |K0〉 = AIeiδI

• ω = ReA2ReA0

= 0.045

• ReA2 = 1.50× 10−8GeV

• ReA0 = 33.3× 10−8GeV

• ε′/ε = − ω√2|ε|

[ImA0ReA0

− ImA2ReA2

]KTeV → Re(ε′/ε) = (20.7± 2.8)× 10−4

NA48 → Re(ε′/ε) = (15.3± 2.6)× 10−4

Weonjong Lee (SNU), Benasque 2004 15/51

Page 16: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Standard model HW (Theory)

• HW = GF√2VusVud

∑i

(zi(µ) + τyi(µ)

)Qi(µ)

• Current-current: Q1, Q2 = (su)L(ud)L

• QCD Penguin: Q3, Q4, Q5, Q6 = (sd)∑

q(qq)

• EW Penguin: Q7, Q8, Q9, Q10 = (sd)∑

q eq(qq)

• Group representation:

Q1, Q2, Q9, Q10 ∈ (27L, 1R) + (8L, 1R)

Q3, Q4, Q5, Q6 ∈ (8L, 1R)

Q7, Q8 ∈ (8L, 8R)

Weonjong Lee (SNU), Benasque 2004 16/51

Page 17: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Re(A0) and Re(A2) (Theory)

• Standard model:

ReAI =GF√

2|VudVus|

[ ∑i=1,2

zi〈Qi〉I + Re(τ)10∑

i=3

yi〈Qi〉I]

• 〈Qi〉I ≡ 〈(ππ)I|Qi|K0〉

• zi, yi ≈ 1 or α = 1/129

• Re(τ) = −Re(λt/λu) = 0.002

• Hence, only 〈Q1〉I and 〈Q2〉I are important in ReAI.

Weonjong Lee (SNU), Benasque 2004 17/51

Page 18: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Weonjong Lee (SNU), Benasque 2004 18/51

Page 19: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

1 2 3 4 5 6 7 8 9 10Operator ID

−1

−0.5

0

0.5

1

1.5

2

ReA

2 X

108

ReA2 X 108

Linear fit in the chiral limit

ReA2 = 1.50× 10−8GeV (Experiment), µ = 1/a

Weonjong Lee (SNU), Benasque 2004 19/51

Page 20: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Weonjong Lee (SNU), Benasque 2004 20/51

Page 21: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

1 2 3 4 5 6 7 8 9 10Operator ID

−5

0

5

10

15

20

ReA

0 X

108

ReA0 X 108

Linear fit in the chiral limit (std)

ReA0 = 33.3× 10−8GeV (Experiment), µ = mc

Weonjong Lee (SNU), Benasque 2004 21/51

Page 22: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Weonjong Lee (SNU), Benasque 2004 22/51

Page 23: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

1 2 3 4 5 6 7 8 9 10Operator ID

−5

0

5

10

15

20

ReA

0 X

108

ReA0 X 108

Linear fit in the chiral limit (std)

ReA0 = 33.3× 10−8GeV (Experiment), µ = 1/a

Weonjong Lee (SNU), Benasque 2004 23/51

Page 24: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Weonjong Lee (SNU), Benasque 2004 24/51

Page 25: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

1 2 3 4 5 6 7 8 9 10Operator ID

−10

0

10

20

30

40

ReA

0 X

108

ReA0 X 108

Lin−log fit in the chiral limit (std)

ReA0 = 33.3× 10−8GeV (Experiment), µ = 1/a

Weonjong Lee (SNU), Benasque 2004 25/51

Page 26: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Weonjong Lee (SNU), Benasque 2004 26/51

Page 27: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

1 2 3 4 5 6 7 8 9 10Operator ID

−5

0

5

10

15

20

25

30

ReA

0 X

108

ReA0 X 108

Quadratic fit in the chiral limit (std)

ReA0 = 33.3× 10−8GeV (Experiment), µ = 1/a

Weonjong Lee (SNU), Benasque 2004 27/51

Page 28: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

ε′/ε (Theory)

• Standard model:

ε′/ε = Im(V ∗tsVtd)

[P (1/2) − P (3/2)

]P (1/2) = r

10∑i=3

yi(µ) < Oi >0 (µ)(1− Ωη+η′)

P (3/2) =r

ω

10∑i=3

yi(µ) < Oi >2 (µ)

r =GFω

2|ε|ReA0

Weonjong Lee (SNU), Benasque 2004 28/51

Page 29: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

ε′/ε (Theory)

• NO contribution from 〈Q1〉I and 〈Q2〉I.

• P (1/2) is dominated by 〈Q6〉.

• P (3/2) is dominated by 〈Q8〉.

Weonjong Lee (SNU), Benasque 2004 29/51

Page 30: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Weonjong Lee (SNU), Benasque 2004 30/51

Page 31: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

1 2 3 4 5 6 7 8 9 10Operator ID

−5

0

5

10

15

P(1

/2)

P(1/2)

(Standard op)Linear fit in the chiral limit

µ = 1/a

Weonjong Lee (SNU), Benasque 2004 31/51

Page 32: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Weonjong Lee (SNU), Benasque 2004 32/51

Page 33: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

1 2 3 4 5 6 7 8 9 10Operator ID

−5

0

5

10

15

P(1

/2)

P(1/2)

(Golterman−Pallante op)Linear fit in the chiral limit

µ = 1/a

Weonjong Lee (SNU), Benasque 2004 33/51

Page 34: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Weonjong Lee (SNU), Benasque 2004 34/51

Page 35: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

1 2 3 4 5 6 7 8 9 10Operator ID

−10

0

10

20

30

40

P(1

/2)

P(1/2)

(Golterman−Pallante op)Lin−log fit in the chiral limit

µ = 1/a

Weonjong Lee (SNU), Benasque 2004 35/51

Page 36: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Weonjong Lee (SNU), Benasque 2004 36/51

Page 37: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

1 2 3 4 5 6 7 8 9 10Operator ID

−10

0

10

20

30P

(1/2

)

P(1/2)

(Golterman−Pallante op)Quadratic fit in the chiral limit

µ = 1/a

Weonjong Lee (SNU), Benasque 2004 37/51

Page 38: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Weonjong Lee (SNU), Benasque 2004 38/51

Page 39: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

1 2 3 4 5 6 7 8 9 10Operator ID

−2

0

2

4

6

8

10

12

P(3

/2)

P(3/2)

Linear fit in the chiral limit

µ = 1/a

Weonjong Lee (SNU), Benasque 2004 39/51

Page 40: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

ε′/ε (µ = 1/a, preliminary results)

• Standard Operator:

ε′/ε =

−2.4(34)× 10−4 (linear fit)−12.8(114)× 10−4 (quadratic fit)−20.1(175)× 10−4 (χ-log fit)

• Golterman-Pallante Operator:

ε′/ε =

+3.2(29)× 10−4 (linear fit)+8.8(93)× 10−4 (quadratic fit)+13.1(142)× 10−4 (χ-log fit)

Weonjong Lee (SNU), Benasque 2004 40/51

Page 41: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Calculating K → ππ on the lattice

• Calculate 〈π+|Oi|K+〉 and 〈0|Oi|K0〉 on the lattice

• Use χPT at leading order to obtain 〈π+π−|Oi|K0〉

K+ → π+

K0 → 0

=⇒ χPT =⇒ (K+ → π+π−)

• Numerical study in quenched QCD.

Weonjong Lee (SNU), Benasque 2004 41/51

Page 42: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

BK

• Fit to quenched χPT.

• BK(mK, µ = 2GeV ) = 0.580(18)

• Consistent with JLQCD resultsat a = 0.

• BK(0, RGI) = 0.298(117)

• Consistent with 1/Nc results.

Weonjong Lee (SNU), Benasque 2004 42/51

Page 43: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Finite volume effect on BK

• Fit to quenched χPT withfinite volume corrections.

• BK(mK, µ = 2GeV ) = 0.574(16)

• BK(0, RGI) = 0.252(100)

• Consistent with 1/Nc results.

Weonjong Lee (SNU), Benasque 2004 43/51

Page 44: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

〈O∆I=3/28 〉

Linear fit Chiral Log fit

Weonjong Lee (SNU), Benasque 2004 44/51

Page 45: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Lattice version of O6

• Flavor symmetry of quenched QCD = SU(3|3)

• Flavor symmetry of full QCD = SU(3)

• Hence, one may choose a singlet in SU(3)R or a singletin SU(3|3)R in quenched QCD.

• The standard operator ∈ SU(3)R.

• Golterman-Pallante operator ∈ SU(3|3)R.

Weonjong Lee (SNU), Benasque 2004 45/51

Page 46: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

〈O∆I=1/26 〉m2

Kf2 (standard op)

Linear fit Chiral Log fit

Weonjong Lee (SNU), Benasque 2004 46/51

Page 47: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

〈O∆I=1/26 〉m2

Kf2 (Golterman-Pallante op)

Linear fit Chiral Log fit

Weonjong Lee (SNU), Benasque 2004 47/51

Page 48: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

Summary and Conclusion

• HYP/Fat7 resolves the long-standing problem of largeperturbative corrections.

• The perturbative calculation for HYP/Fat7 is extended tocurrent-current diagrams and penguin diagrams.

• This allows full matching between lattice and continuummatrix elements.

• The Golterman-Pallante method prefers positive ε′/ε.

• The standard method prefer negative ε′/ε.

• This tells us that uncertainty from the quenchedapproximation is large for ε′/ε.

Weonjong Lee (SNU), Benasque 2004 48/51

Page 49: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

• We are extending the current calculation to include morequark masses and to accumulate higher statistics.

• In order to constrain the form of the fitting functions, weneed results of the staggered chiral perturbation.

• We need to check the finite volume effect (1.6 fm → 2.4fm).

• We need to extend it to weaker gauge couplings tocheck the scaling violation, which is expected to be quitesmall.

• We need to calculate ε′/ε in partially quenched QCD andfull QCD.

• We need to include the next leading order in χPT to

Weonjong Lee (SNU), Benasque 2004 49/51

Page 50: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

check the size of NLO correction.

Weonjong Lee (SNU), Benasque 2004 50/51

Page 51: Calculating 0/ using staggered fermionsbenasque.org/benasque/2004quarks/2004quarks-talks/lee.pdf · • W. Lee and S. Sharpe, PRD 66, (2002), 114501. • Fat7 and HYP are the best

RG evolution for Nf = 3

• For Nf = 3, there is a removable singularity.

• 2β0 + γ(0)8 − γ

(0)7 = 0 → singularity.

• Both the denomenator and numerator vanish.

• Final analytical form contains

ln(

αs(m2)αs(m1)

),

[ln

(αs(m2)αs(m1)

) ]2

Weonjong Lee (SNU), Benasque 2004 51/51