calculation note by eng. magdy mahmoud

Upload: magdymahmoud

Post on 02-Jun-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    1/64

    Graduation Project Eng. Magdy Mahmoud

    1. Design criteria.

    2. Lateral loads.

    2-1. Wind loads calculation

    2-2. Seismic loads

    3. 3D finite element model (SAP2000, Ver.16).

    4. Design of vertical elements (CSI, Ver.9).4-1. Columns

    4-2. Shear walls and core

    5. Design of horizontal elements (SAP2000, Ver.16).

    5-1. Design of slabs

    5-2. Design of stairs

    5-3. Design of beams6. Design of foundation (SAP2000, Ver.16).

    6-1. Shallow foundation (Raft)

    6-2. Deep foundation (Pile cap)

    7. Structural drawings list of project.

    TABLE OF CONTANINET

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    2/64

    Graduation Project Eng. Magdy Mahmoud

    1. DESIGN CRITERIA

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    3/64

    Graduation Project Eng. Magdy Mahmoud

    1-1. DESCRIPTION OF PROJECT:

    The building's plot is nearly a rectangular shape with dimensions of 21.1 m

    X 38.69 m

    No Minimum required set-back, the building has two neighbours plots

    The proposed building consists of the following floors:

    1- Basement floor - Car parking with 2.7 m height occupying the full plot

    area.

    2- Ground floor - Main lobbies, commercial stores.

    3- Nine Typical floors.

    1-2. STRUCTURAL SYSTEM:

    Reinforced concrete slabs supported cast-in-situ Columns and Walls.

    Raft foundation will be used to support the building.

    The lateral stability is provided by Cast in-situ frames and/or Core walls.

    1-3. DESIGN STANDARD AND CODES:

    Egyptian code of practice (ECCS 203 - 2007, 2010),Design and

    construction of Concrete Structures.

    Egyptian code of practice (ECP 203-2007),Loading for Buildings.Egyptian code of practice (ECP 201-2012),Loading for Buildings.

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    4/64

    Graduation Project Eng. Magdy Mahmoud

    1-4. MATERIALS:

    1-4-1. CONCRETE:

    The characteristic concrete cube compressive strength after 28 days shall

    be as follows:

    Plain concrete and Blinding = 20 N/mm2

    Raft Foundation = 25 N/mm2

    Reinforced Slabs and Beams = 25 N/mm2

    Cast in-situ Columns and Walls = 25 N/mm2

    Own weight of reinforced concrete = 25 KN/m3

    Own weight of plain concrete = 22 KN/m3

    1-4-2. STEEL REINFORCEMENT:

    High yield steel T

    - Specified characteristic strength FY = 360 N/mm2

    - Minimum elongation on gauge length = 14%

    1-5. CONCRETE COVER TO STEEL REINFORCEMENT:

    Concrete cover to steel reinforcement shall be provided to protect the

    reinforcement against corrosion and fire.Adopted fire rating requirements:

    Load bearing walls & columns = 2 hrs. fire rating

    Floor construction including beams = 2 hrs. fire rating

    Shafts and stair walls = 2 hrs. fire rating

    According to fire resistance requirements adopted and as listed in table

    3.4 (BS 8110-Part 1:1997):

    Cast in-situ Beams simply supported = 30 mmCast in-situ Beams continuous = 25 mm

    Cast in-situ slabs simply supported = 30 mm

    Cast in-situ slabs continuous = 25 mm

    Columns & walls = 30 mm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    5/64

    Graduation Project Eng. Magdy Mahmoud

    1-6. LOADS:

    1-6-1. Vertical loads (in excess of self-weight of members):

    A- Basement:

    Finishes = 1.50 kN/m2

    Services & False ceiling = 0.50 kN/m2

    Dead Load = 4.50 kN/m2

    Live Load = 5.00 kN/m2

    A- Ground:

    Finishes = 1.50 kN/m2

    Services & False ceiling = 0.50 kN/m2

    Live Load = 5.00 kN/m2

    B- Typical Floors:

    Finishes = 1.50 kN/m2

    Services & False ceiling = 0.50 kN/m2

    Live Load = 2.00 kN/m2

    C- Stairs loads:

    Finishes = 2.00 kN/m2

    Live Load = 3.00 kN/m2

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    6/64

    Graduation Project Eng. Magdy Mahmoud

    2. LATERAL LOADS

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    7/64

    Graduation Project Eng. Magdy Mahmoud

    2-1.Wind loads

    F= C K q

    Where:

    C=1.3

    Where 0.8 for compression+0.5 for suctionK= 1.0 for 0-30m, 1.05 for (30-50)

    Area B (Suburban Exposure)

    q= 0.5x10-3 V2CtCs

    Where:-

    Air Density =1.25 Kg/m3

    V Wind Velocity =30 m/sec at TantaCt Earth topography = 1.00 in flat land

    Cs Structure height =1.00 for structures heights no exceed 60m

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    8/64

    Graduation Project Eng. Magdy Mahmoud

    Calculations of wind loads

    Area B

    Height of Building = 32.80m

    Width of Building = 38.70m

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    9/64

    Graduation Project Eng. Magdy Mahmoud

    -2. Seismic Loads

    2-2-1.Equivalent static load

    According to the ECP1993 using Equivalent static load- see attached

    calculation in next calculation

    -Y-Y Direction

    -X-X Direction

    -Overturning Moment

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    10/64

    Graduation Project Eng. Magdy Mahmoud

    Equivalent Static Seismic Loads

    Base Shear Basic Equiation:

    where:Z = Seismic Intensity Factor 0.1 first zone

    0.2 second zone

    Enter value of Z 0.2 0.3 third zone

    I = Building Importance Factor 1.25

    1

    Enter value of I 1

    K = Structural System Coefficient 1.33

    Frames only:0.67 ductile frames

    0.80 non-ductile frames

    Enter value of K 1 1.00

    C = 1/ [15 sqrt( T )] C < = 0.12

    where T:

    Enter "1" for case (a) or "2" for case (b) 2

    Enter No. of floors 11 T = 0.1 N

    Calculated "T" =

    Calculated "C" =

    Chosen "C"

    Enter value of H 33 T = 0.09 H / sqrt(B) Case (b): for other systemsEnter value of B 21.75

    Calculated "T" = 0.637

    Calculated "C" = 0.084

    Chosen "C" 0.084

    S = Soil Coefficient 1.00

    1.15

    Enter value of S 1.15 1.30 loose or weak soil > 15m

    W = Weight of the building

    Enter weight of each floor in the followig table

    V = Z . I . K . C . S . W

    Emergancy buildings: Hospitals, fire

    stations, Police stations, emergancy

    centers, communication building

    Other buildings: Residential, commercial,

    public

    Box using shear walls or braced frames

    depends on lateral load resisting

    system and its ductility

    Mixed system (shear walls and frames)

    = Permenant loads + 1/2 LL; for buildings

    with storage loads > 500 kg/m2

    Case (a): for building with

    frames able to carry all the

    lateral force; where N = number

    of floors

    H = Height of building above

    foundation level

    B = width of building in the

    direction of Earthquake

    Rock, very dense > 15m, mid-dense < 15m

    above better soil conditions

    Mid-dense or dense > 15m, or loose soil

    above better soil conditions

    = Permenant loads; for building with live

    loads less or equal 500 kg/m2

    Y-YDirection

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    11/64

    Graduation Project Eng. Magdy Mahmoud

    Over turning moment in Y- Dir

    Floor No Force oneach floor

    Height (H)

    fromfoundation over turningmoment

    1 1 3.0 4.122716764

    2 4 6.0 22.19656789

    3 5 9.0 46.77437678

    4 7 12.0 83.62691607

    5 9 15.0 131.1099955

    6 11 18.0 189.2236152

    7 12 21.0 257.967775

    8 14 24.0 337.342475

    9 16 27.0 427.3477152

    10 18 30.0 527.9834955

    11 19 33.0 639.249816

    0 0 0 0

    0 0 0 0

    total 10 2666.945465

    Lateral Load Distribution:

    Entered and Calculated Coefficient:

    Floor No. Floor

    Load (W)

    Height (H)

    from

    foundation

    Wi x Hi Force on

    each

    floor

    1 474 2.7 1280 1

    Z 0.20 2 594 5.8 3445 4

    I 1.00 3 550 8.8 4840 5K 1.00 4 550 11.8 6490 7

    C 0.08 5 550 14.8 8140 9

    S 1.15 6 550 17.8 9790 11

    W 6018.00 7 550 20.8 11440 12

    8 550 23.8 13090 14

    V = 115.63 9 550 26.8 14740 16

    10 550 29.8 16390 18

    Additional force at roof level (Ft) = 0.07 T . V 11 550 32.8 18040 19

    (max. 0.25 V ; = 0 if T

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    12/64

    Graduation Project Eng. Magdy Mahmoud

    X-X Direction

    Equivalent Static Seismic Loads

    Base Shear Basic Equiation:

    where:Z = Seismic Intensity Factor 0.1 first zone

    0.2 second zone

    Enter value of Z 0.2 0.3 third zone

    I = Building Importance Factor 1.25

    1

    Enter value of I 1

    K = Structural System Coefficient 1.33

    Frames only:0.67 ductile frames

    0.80 non-ductile frames

    Enter value of K 1 1.00

    C = 1/ [15 sqrt( T )] C < = 0.12

    where T:

    Enter "1" for case (a) or "2" for case (b) 2

    Enter No. of floors 11 T = 0.1 N

    Calculated "T" =

    Calculated "C" =

    Chosen "C"

    Enter value of H 33 T = 0.09 H / sqrt(B) Case (b): for other systems

    Enter value of B 38.8

    Calculated "T" = 0.477

    Calculated "C" = 0.097

    Chosen "C" 0.097

    S = Soil Coefficient 1.00

    1.15

    Enter value of S 1.15 1.30 loose or weak soil > 15m

    W = Weight of the building

    Enter weight of each floor in the followig table

    = Permenant loads; for building with live

    loads less or equal 500 kg/m2

    = Permenant loads + 1/2 LL; for buildings

    with storage loads > 500 kg/m2

    Emergancy buildings: Hospitals, fire

    stations, Police stations, emergancy

    centers, communication building

    Other buildings: Residential, commercial,

    public

    Box using shear walls or braced frames

    Mixed system (shear walls and frames)

    V = Z . I . K . C . S . W

    depends on lateral load resisting

    system and its ductility

    Mid-dense or dense > 15m, or loose soil

    above better soil conditions

    H = Height of building above

    foundation level

    B = width of building in the

    direction of Earthquake

    Case (a): for building with

    frames able to carry all the

    lateral force; where N = number

    of floors

    Rock, very dense > 15m, mid-dense < 15m

    above better soil conditions

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    13/64

    Graduation Project Eng. Magdy Mahmoud

    Over turning moment in X- Dir

    Floor NoForce oneach floor

    Height (H)from

    foundationover turning

    moment

    1 2 3.0 5.233206761

    2 4 6.0 26.23227693

    3 6 9.0 54.65057693

    4 8 12.0 97.15658121

    5 10 15.0 151.8071581

    6 12 18.0 218.6023077

    7 14 21.0 297.5420299

    8 16 24.0 388.6263248

    9 18 27.0 491.8551924

    10 20 30.0 607.2286325

    11 22 33.0 734.7466454

    0 0 0 0

    0 0 0 0

    total 10 3073.680933

    Lateral Load Distribution:

    Entered and Calculated Coefficient:

    Floor No. Floor

    Load (W)

    Height (H)

    from

    foundation

    Wi x Hi Force on

    each

    floor

    1 474 3.0 1422 2

    Z 0.20 2 594 6.0 3564 4

    I 1.00 3 550 9.0 4950 6K 1.00 4 550 12.0 6600 8

    C 0.10 5 550 15.0 8250 10

    S 1.15 6 550 18.0 9900 12

    W 6018.00 7 550 21.0 11550 14

    8 550 24.0 13200 16

    V = 133.63 9 550 27.0 14850 18

    10 550 30.0 16500 20

    Additional force at roof level (Ft) = 0.07 T . V 11 550 33.0 18150 22

    (max. 0.25 V ; = 0 if T

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    14/64

    Graduation Project Eng. Magdy Mahmoud

    Loads

    At X Direction

    At Y Direction

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    15/64

    Graduation Project Eng. Magdy Mahmoud

    2-2-2.Response spectrum

    A- Response spectrum types

    B- Selected soil type

    Value of damping coefficient =1Value of ag/g

    Ag/g =0.125

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    16/64

    Graduation Project Eng. Magdy Mahmoud

    C- Response modification factor R- (Reduction factor)

    R=5

    E- Importance Factor

    Ordinary Residential BuildingI = 1

    F- Modelling Requirements

    The mathematical model of the physical structure shall include all elements of the lateral force-resisting

    system. The model shall also include the stiffness and strength of elements, which are significant to the

    distribution of forces and shall represent the spatial distribution of the mass and stiffness of the structure.

    In addition, stiffness properties shall consider the effects of cracked sections. A reduction factor of

    Calculated story drift shall not exceed 0.01 times the story height.

    Calculated Total drift at the final floor shall not exceed H/500, where H is the total Height of Building.

    G- Total Weight of Building

    Due toOrdinary Residential Building

    So Wt =D.L +0.25 L.L

    Beam Ieff/Ig 0.5

    Column Ieff/Ig 0.7

    Wall Ieff/Ig 0.7

    Slabs Ieff/Ig 0.25

    Reduction factor of stiffness properties

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    17/64

    Graduation Project Eng. Magdy Mahmoud

    The Egyptian code of loads (201-2012)

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    18/64

    Graduation Project Eng. Magdy Mahmoud

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    19/64

    Graduation Project Eng. Magdy Mahmoud

    T1= 0 0.1 0.25 0.4 0.75 1 1.2 1.3 2 3 4

    SR 0.1875 0.46875 0.46875 0.292969 0.15625 0.117188 0.097656 0.08321 0.035156 0.02 0.02

    hiWi

    (ton) hi wi Fi (ton) Base Monet

    2.7 866 2338.2 4.519231928 12.20192621

    5.8 884 5127.2 9.909762185 57.47662068

    8.8 841 7400.8 14.30413637 125.8764

    11.8 841 9923.8 19.18054649 226.3304486

    14.8 841 12446.8 24.05695662 356.0429579

    17.8 841 14969.8 28.93336674 515.013928

    20.8 841 17492.8 33.80977687 703.2433589

    23.8 841 20015.8 38.68618699 920.7312504

    26.8 841 22538.8 43.56259712 1167.477603

    29.8 841 25061.8 48.43900724 1443.482416

    32.8 841 27584.8 53.31541737 1748.74569

    Summations 9319 164900.6 318.717 7276.6226

    SOIL TYPE A,B,C or D = c

    ZONE 1,2,3,4,5A or 5B = 2

    REDUCTION FACTOR (R) = 5

    Total Weight of building (TON)= 9319

    TOTAL HEIGHT of building (m)= 32.8

    IMPORTANCE FACTOR 1 or 1.2 = 1

    Input Data

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    RESPONSE SPECTRUM CURVE

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    20/64

    Graduation Project Eng. Magdy Mahmoud

    1.8. LOAD COMBINATIONS

    E1 = 1.12 D.L. & 1.28 L.L & 0.8 EQx1E2 = 1.12 D.L. & 1.28 L.L & -0.8 EQx1E3 = 1.12 D.L. & 1.28 L.L & 0.8 EQx2E4 = 1.12 D.L. & 1.28 L.L & -0.8 EQx2E5 = 1.12 D.L. & 1.28 L.L & 0.8 EQY1E6 = 1.12 D.L. & 1.28 L.L & -0.8 EQY1E7 = 1.12 D.L. & 1.28 L.L & 0.8 EQY2E8 = 1.12 D.L. & 1.28 L.L & -0.8 EQY2

    E9 = 0.9 D.L. & 1.3 EQX1E10 = 0.9 D.L. & -1.3 EQX1E11 = 0.9 D.L. & 1.3 EQX2E12 = 0.9 D.L. & -1.3 EQX2E13 = 0.9 D.L. & 1.3 EQY1E14 = 0.9 D.L. & -1.3 EQY1E15 = 0.9 D.L. & 1.3 EQY2E16 = 0.9 D.L. & - 1.3 EQY2

    Because of wind is not affected in EgyptWe designed under seismic loads only

    P= 0.8(1.4 DL+1.6 LL+ lateral)

    P= (0.9DL +1.3 Lateral)

    Case (2)

    Case (3)

    P= (1.4 DL+1.6LL)Case (1)

    Combinations for Lateral Loads

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    21/64

    Graduation Project Eng. Magdy Mahmoud

    3.3D FINITE ELEMENT MODEL

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    22/64

    Graduation Project Eng. Magdy Mahmoud

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    23/64

    Graduation Project Eng. Magdy Mahmoud

    Max drift in X Direction= 0.03576m

    Max drift in Y Direction= 0.04042m

    Allowable DriftD=H/500

    =32.8/500=0.0656 m

    Hense, Drift due to Seismic is less than allowabeSafe Drift.

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    24/64

    Graduation Project Eng. Magdy Mahmoud

    4. DESIGN OF VERTICAL ELEMENTS

    DESIGN OF COLUMNS

    DESIGN OF SHEAR WALLS

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    25/64

    Graduation Project Eng. Magdy Mahmoud

    4.1 DESIGN OF COLUMNS

    Material Properties:

    Fcu= 250.00 kg/cm2

    Ec = 221359.40 kg/cm2

    Fy = 3600.00 kg/cm2

    Es = 2000000.00 kg/cm2

    Bracing System:

    Braced in both X and Y directions

    Geometry:

    Rectangular column

    Column Type:

    Short Column

    Reinforcement:Confinement: Tied

    Cover = 25.00 mm

    Steel Area: 8 16

    Steel Ratio = .77%

    Min Steel Ratio = 0.60%

    Max Steel Ratio = 4.00%

    Stirrups: 2 8

    Stirrups Spacing = 16.60 cm

    C1 (30x50) cm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    26/64

    Graduation Project Eng. Magdy Mahmoud

    Material Properties:

    Fcu= 250.00 kg/cm2

    Ec = 221359.40 kg/cm2

    Fy = 3600.00 kg/cm2

    Es = 2000000.00 kg/cm2Bracing System:

    Braced in both X and Y directions

    Geometry:

    Rectangular column

    Column Type:

    Short Column

    Reinforcement:

    Confinement: TiedCover = 25.00 mm

    Steel Area: 12 16

    Steel Ratio = 1.15 %

    Min Steel Ratio = 0.60%

    Max Steel Ratio = 4.00%

    Stirrups:3 8

    Stirrups Spacing = 16.60 cm

    C2 30x70 cm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    27/64

    Graduation Project Eng. Magdy Mahmoud

    Material Properties:

    Fcu= 250.00 kg/cm2

    Ec = 221359.40 kg/cm2

    Fy = 3600.00 kg/cm2

    Es = 2000000.00 kg/cm2Bracing System:

    Braced in both X and Y directions

    Geometry:

    Rectangular column

    Column Type:

    Short Column

    Reinforcement:

    Confinement: TiedCover = 25.00 mm

    Steel Area: 14 16

    Steel Ratio = 0.94 %

    Min Steel Ratio = 0.60%

    Max Steel Ratio = 4.00%

    Stirrups: 3 8

    Stirrups Spacing = 16.60 cm

    C3 30x100 cm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    28/64

    Graduation Project Eng. Magdy Mahmoud

    Material Properties:

    Fcu= 250.00 kg/cm2

    Ec = 221359.40 kg/cm2

    Fy = 3600.00 kg/cm2

    Es = 2000000.00 kg/cm2Bracing System:

    Braced in both X and Y directions

    Geometry:

    Rectangular column

    Column Type:

    Short Column

    Reinforcement:

    Confinement: TiedCover = 25.00 mm

    Steel Area: 18 16

    Steel Ratio =1.01%

    Min Steel Ratio = 0.60%

    Max Steel Ratio = 4.00%

    Stirrups: 3 8

    Stirrups Spacing = 16.60 cm

    C4 (30x120) cm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    29/64

    Graduation Project Eng. Magdy Mahmoud

    Material Properties:

    Fcu= 250.00 kg/cm2

    Ec = 221359.40 kg/cm2

    Fy = 3600.00 kg/cm2

    Es = 2000000.00 kg/cm2Bracing System:

    Braced in both X and Y directions

    Geometry:

    Rectangular column

    Column Type:

    Short Column

    Reinforcement:

    Confinement: TiedCover = 25.00 mm

    Steel Area: 20 16

    Steel Ratio =1.03%

    Min Steel Ratio = 0.60%

    Max Steel Ratio = 4.00%

    Stirrups: 3 8

    Stirrups Spacing = 16.60 cm

    C5 (30x130) cm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    30/64

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    31/64

    Graduation Project Eng. Magdy Mahmoud

    Material Properties:

    Fcu= 250.00 kg/cm2

    Ec = 221359.40 kg/cm2

    Fy = 3600.00 kg/cm2

    Es = 2000000.00 kg/cm2Bracing System:

    Braced in both X and Y directions

    Geometry:

    Rectangular column

    Column Type:

    Short Column

    Reinforcement:

    Confinement: TiedCover = 25.00 mm

    Steel Area: 24 16

    Steel Ratio =0.80%

    Min Steel Ratio = 0.60%

    Max Steel Ratio = 4.00%

    Stirrups: 2 8

    Stirrups Spacing = 16.60 cm

    C7 (40x150) cm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    32/64

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    33/64

    Graduation Project Eng. Magdy Mahmoud

    Basic Design ParametersCaption = SW2Default Concrete Strength, Fc = 250 kg/cm^2Default Concrete Modulus, Ec = 240000 kg/cm^2Maximum Concrete Strain = 0.003 in/in

    Rebar Set = userDefault Rebar Yeild Strength, Fy = 3600 kg/cm^2Default Rebar Modulus, Es = 2000000 kg/cm^2Default Cover to Rebars = 2.50 cmMaximum Steel Strain = Infinity

    Transverse Rebar Type = Ties

    Total Shapes in Section = 1Consider Slenderness = No

    Cross-section ShapesShape Width Height Conc Fc S/S Curve

    cm cm kg/cm^2RectangularShape 30.00 360.00 250.00 PCA Parabola

    Rebar PropertiesBasic Section Properties:Total Width = 30.00 cmTotal Height = 360.00 cmCenter, Xo = 0.00 cmCenter, Yo = 0.00 cm

    X-bar (Right) = 15.00 cm

    X-bar (Left) = 15.00 cmY-bar (Top) = 180.00 cmY-bar (Bot) = 180.00 cm

    Transformed Properties:Base Material = fc' = 250 kg/cm^2

    Area, A = 1.08E+04 cm^2Inertia, I33 = 1.17E+08 cm^4Inertia, I22 = 8.10E+05 cm^4Inertia, I32 = 0.00E+00 cm^4

    Radius, r3 = 103.92 cm

    Radius, r2 = 8.66 cm

    3.60

    0.3

    0

    8

    12

    8

    12

    6

    12m

    6

    12m

    SW2 (30x360) cm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    34/64

    Graduation Project Eng. Magdy Mahmoud

    Basic Design ParametersCaption = SW3Default Concrete Strength, Fc = 250 kg/cm^2Default Concrete Modulus, Ec = 240000 kg/cm^2Maximum Concrete Strain = 0.003 in/in

    Rebar Set = User

    Default Rebar Yeild Strength, Fy = 3600 kg/cm^2Default Rebar Modulus, Es = 2000000 kg/cm^2Default Cover to Rebars = 2.50 cmMaximum Steel Strain = Infinity

    Transverse Rebar Type = Ties

    Total Shapes in Section = 1Consider Slenderness = No

    Cross-section ShapesShape Width Height Conc Fc S/S Curve

    cm cm kg/cm^2

    RectangularShape 30.00 407.00 250.00 PCA Parabola

    Rebar PropertiesBasic Section Properties

    Total Width = 30.00 cmTotal Height = 407.00 cmCenter, Xo = 0.00 cmCenter, Yo = 0.00 cm

    X-bar (Right) = 15.00 cmX-bar (Left) = 15.00 cm

    Y-bar (Top) = 203.50 cmY-bar (Bot) = 203.50 cm

    Transformed Properties:Base Material = fc' = 250 kg/cm^2

    Area, A = 1.22E+04 cm^2Inertia, I33 = 1.69E+08 cm^4Inertia, I22 = 9.16E+05 cm^4Inertia, I32 = 0.00E+00 cm^4

    Radius, r3 = 117.49 cmRadius, r2 = 8.66 cm

    0.

    30

    4.07

    8

    16

    8

    16

    6

    16m

    6

    16m

    SW3 (30x407) cm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    35/64

    Graduation Project Eng. Magdy Mahmoud

    Basic Design ParametersCaption = SW4Default Concrete Strength, Fc = 250 kg/cm^2Default Concrete Modulus, Ec = 240000 kg/cm^2Maximum Concrete Strain = 0.003 in/in

    Rebar Set = UserDefault Rebar Yeild Strength, Fy = 3600 kg/cm^2Default Rebar Modulus, Es = 2000000 kg/cm^2Default Cover to Rebars = 2.50 cmMaximum Steel Strain = Infinity

    Transverse Rebar Type = Ties

    Total Shapes in Section = 1Consider Slenderness = No

    Cross-section ShapesShape Width Height Conc Fc S/S Curve

    cm cm kg/cm^2Rectangular

    Shape 30.00 252.00 250.00 PCA Parabola

    Basic Section Properties:Total Width = 30.00 cmTotal Height = 252.00 cmCenter, Xo = 0.00 cmCenter, Yo = 0.00 cm

    X-bar (Right) = 15.00 cmX-bar (Left) = 15.00 cmY-bar (Top) = 126.00 cmY-bar (Bot) = 126.00 cm

    Transformed Properties:Base Material = fc' = 250 kg/cm^2

    Area, A = 7,560.0 cm^2Inertia, I33 = 4.00E+07 cm^4Inertia, I22 = 5.67E+05 cm^4Inertia, I32 = 0.00E+00 cm^4

    Radius, r3 = 72.746 cmRadius, r2 = 8.66 cm

    2.52

    0.3

    0

    6

    12m

    6

    12m

    4

    12

    4

    12

    SW4 (30x252) cm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    36/64

    Graduation Project Eng. Magdy Mahmoud

    Basic Design ParametersCaption = SW5Default Concrete Strength, Fc = 250 kg/cm^2Default Concrete Modulus, Ec = 240000 kg/cm^2Maximum Concrete Strain = 0.003 in/in

    Rebar Set = User

    Default Rebar Yeild Strength, Fy = 3600 kg/cm^2Default Rebar Modulus, Es = 2000000 kg/cm^2Default Cover to Rebars = 2.50 cmMaximum Steel Strain = Infinity

    Transverse Rebar Type = Ties

    Total Shapes in Section = 1Consider Slenderness = No

    Cross-section ShapesShape Width Height Conc Fc S/S Curve

    cm cm kg/cm^2

    RectangularShape 30.00 412.00 250.00 PCA Parabola

    Basic Section Properties:Total Width = 30.00 cmTotal Height = 412.00 cmCenter, Xo = 0.00 cmCenter, Yo = 0.00 cm

    X-bar (Right) = 15.00 cmX-bar (Left) = 15.00 cmY-bar (Top) = 206.00 cmY-bar (Bot) = 206.00 cm

    Transformed Properties:Base Material = fc' = 250 kg/cm^2

    Area, A = 1.24E+04 cm^2Inertia, I33 = 1.75E+08 cm^4Inertia, I22 = 9.27E+05 cm^4Inertia, I32 = 0.00E+00 cm^4

    Radius, r3 = 118.93 cmRadius, r2 = 8.66 cm

    0.

    30

    4.12

    8

    16

    8

    16

    6

    16m

    6

    16m

    SW5 (30x412) cm

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    37/64

    Graduation Project Eng. Magdy Mahmoud

    Basic Design ParametersCaption = coreDefault Concrete Strength, Fc = 250 kg/cm^2Default Concrete Modulus, Ec = 240000 kg/cm^2Maximum Concrete Strain = 0.003 in/in

    Rebar Set = UserDefault Rebar Yeild Strength, Fy = 3600 kg/cm^2Default Rebar Modulus, Es = 2000000 kg/cm^2Default Cover to Rebars = 2.50 cmMaximum Steel Strain = Infinity

    Transverse Rebar Type = Ties

    Total Shapes in Section = 1Consider Slenderness = No

    Cross-section ShapesShape Width Height Conc Fc S/S Curve

    cm cm kg/cm^2Rectangular

    Shape 318.00 190.00 250.00 PCA Parabola

    Basic Section Properties:Total Width = 318.00 cmTotal Height = 190.00 cmCenter, Xo = 158.70 cmCenter, Yo = 60.80 cm

    X-bar (Right) = 159.30 cmX-bar (Left) = 158.70 cmY-bar (Top) = 129.20 cm

    Y-bar (Bot) = 60.80 cm

    Transformed Properties:Base Material = fc' = 250 kg/cm^2

    Area, A = 1.62E+04 cm^2Inertia, I33 = 5.55E+07 cm^4Inertia, I22 = 2.44E+08 cm^4Inertia, I32 = 0.00E+00 cm^4

    Radius, r3 = 58.603 cmRadius, r2 = 122.826 cm

    1.90

    3.18

    1.90

    0.250.25

    6 22

    6 226 22

    6 22

    6 12 m

    6 18 m6 18 m

    6 12 m

    CORE

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    38/64

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    39/64

    Graduation Project Eng. Magdy Mahmoud

    SW3

    SW4

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    40/64

    Graduation Project Eng. Magdy Mahmoud

    SW5

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    41/64

    Graduation Project Eng. Magdy Mahmoud

    5. DESIGN OF HORIZONTAL ELEMENTS

    DESIGN OF SLABS

    DESIGN OF STAIRS

    DESIGN OF BEAMS

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    42/64

    Graduation Project Eng. Magdy Mahmoud

    Thickness of two way slabs

    =L/35 Simply supported

    =L/40 Continuous from one side

    =L/45 Continuous from two sides

    Take T=12cm for all slabs

    Check Deflection

    Allowable deflection = L/250

    =3.32/250 =0.013m

    So actual deflection is .00794 < allowable

    Safe deflection

    5-1-1.Solid Slab (Typical Floors)

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    43/64

    Graduation Project Eng. Magdy Mahmoud

    Design of Section

    Use lower mesh in both directions (11, 22)610 /m`

    Fcu= 25 N/mm 2

    Fy= 360 N/mm 2

    cover = 20 mm

    slabs Mu (Kn.m/m') b (mm) t (mm) d (mm) C1 J As (mm 2) As min As choose safty

    1 3.7 1000 120 100 8.220 0.825 124.6 180.0 180.0

    10 safe

    2 1.6 1000 120 100 12.500 1.825 24.4 180.0 180.0

    10 safe

    3 5.3 1000 120 100 6.868 2.825 52.1 180.0 180.0

    10 safe

    4 2.1 1000 120 100 10.911 3.825 15.3 180.0 180.0

    10 safe

    Rft.

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    44/64

    Graduation Project Eng. Magdy Mahmoud

    Thickness of slab without drop panel

    =L/32 External panel

    =L/36 Internal panel

    Take T=18cm for all slabs

    Check Deflection

    Allowable deflection = L/360

    =3.32/360 =0.0092m

    So actual deflection is .0012 < allowable

    Safe deflection

    5-2-2.Flat Slab (First Floor)

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    45/64

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    46/64

    Graduation Project Eng. Magdy Mahmoud

    a=c+d/2

    =.3+0.16/2=0.38 m

    b= c+d

    =1+0.16=1.16 m

    Anet=2*3.46-0.38*1.16= 6.83 m2

    b0 =1.16+2*0.38=1.92 m

    Q=Wu *Anet=( 0.18*2.5+0.15+0.2)*6.83= 5.464 ton

    qb = Q*103 / bo* d = 5.464*104 / 1920 *160 =0.178 MPa

    =1.29 MPa

    qall 0.8(*d/b0 + 0.2) =1.1 MPa

    0.316(a/b +0.5) =2.2 Mpa1.6 MPa

    qall= 1.1 MPa qp

    Safe Punching

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    47/64

    Graduation Project Eng. Magdy Mahmoud

    Column 2

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    48/64

    Graduation Project Eng. Magdy Mahmoud

    a=c+d/2

    =.3+0.16=0.46 m

    b= c+d

    =0.7+0.16=0.86 m

    Anet=2.52*4-0.46*0.86= 9.68 m2

    b0 =2*0.86+2*0.46=2.64 m

    Q=Wu *Anet

    =( 0.18*2.5+0.15+0.2)*9.68= 7.744 ton

    qb = Q*103 / bo* d = 7.744*104 / 2640 *160 =0.183 kg/cm2

    =1.29 MPaqall 0.8(*d/b0 + 0.2) =1.44 MPa

    0.316(a/b +0.5) =3.05 Mpa1.6 MPa

    qall= 1.1 MPa qp

    Safe Punching

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    49/64

    Graduation Project Eng. Magdy Mahmoud

    Thickness of slab without drop panel

    =L/32 External panel

    =L/36 Internal panel

    Take T=18cm for all slabs

    Check Deflection

    Allowable deflection = L/360

    =3.32/360 =0.0092m

    So actual deflection is .0021 < allowable

    Safe deflection

    5-1-2.Flat Slab (Ground Floor)

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    50/64

    Graduation Project Eng. Magdy Mahmoud

    5-2. DESIGN OF STAIRS

    Using SAP2000V16

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    51/64

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    52/64

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    53/64

    Graduation Project Eng. Magdy Mahmoud

    Using Eng M.Zaghlal Program

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    54/64

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    55/64

    Graduation Project Eng. Magdy Mahmoud

    Input data

    MU 8.8 t.m fy 3600 Kg/cm2

    QU 9 t fcu250 Kg/cm

    2

    b 12 cm Es2E+06 Kg/cm

    2

    t 70 cm d 65 cm

    * Design of Beams

    concrete Fcu = 250 kg/cm2

    Steel Fy = 3600 kg/cm2

    Sec.Ult.

    Moment

    Mu (m.t)

    Breadth

    b (cm)

    Depth t

    (cm)

    C1 JAs

    (cm)

    Rft. Notes

    2 8.8 12 70 4.087 0.807 4.33 12 4 12 safe

    * Check Of shear in beams

    Concrete Fcu = 250 kg/cm2

    Concrete qall= 10.607 kg/cm2

    Stirrups Fy = 2400 kg/cm2

    Sec.

    Ult.Shear Breadth

    b (cm)Deptht (cm)

    qu As(cm)

    NO. ofBranch

    Stirrups Notes

    Qu(ton)

    (kg/cm

    2)

    2 9 12 70 10.714 0.031 2 8 6 8 safe

    0.12

    0.70

    6 8 m

    4 12

    4 12

    Sec Beam (B2)

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    56/64

    Graduation Project Eng. Magdy Mahmoud

    Input data

    MU 13 t.m fy 3600 Kg/cm2

    QU 9 t fcu 250 Kg/cm2

    b 12 cm Es2E+06 Kg/cm

    2

    t 70 cm d 65 cm

    * Design of Beams

    concrete Fcu = 250 kg/cm2

    Steel Fy = 3600 kg/cm2

    Sec.Ult.

    MomentMu (m.t)

    Breadthb (cm)

    Depth t(cm)

    C1 JAs

    (cm) Rft. Notes

    3 13 12 70 3.363 0.773 6.67 162 16

    2 12

    safe

    ( With the same way shear in beam safe at 6 8/ m\ )

    0.12

    0.70

    6 8 m

    2 16

    2 12

    2 16

    2 12

    Sec Beam (B3)

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    57/64

    Graduation Project Eng. Magdy Mahmoud

    Input data

    MU 15 t.m fy 3600 Kg/cm2

    QU 10 t fcu 250 Kg/cm2

    b 12 cm Es

    2E+06 Kg/cm2

    t 70 cm d 65 cm

    * Design of Beams

    concrete Fcu = 250 kg/cm2

    Steel Fy = 3600 kg/cm2

    Sec.Ult.

    MomentMu (m.t)

    Breadthb (cm)

    Depth t(cm)

    C1 JAs

    (cm) Rft. Notes

    4 15 12 70 3.130 0.756 7.88 16 4 16 safe

    (With the same way shear in beam safe at 6 8/ m\ )

    0.12

    0.7

    0

    6 8 m

    4 16

    4 16

    Sec Beam (B4)

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    58/64

    Graduation Project Eng. Magdy Mahmoud

    Input data

    MU 18 t.m fy 3600 Kg/cm2

    QU 13.8 t fcu 250 Kg/cm2

    b 25 cm Es

    2E+06 Kg/cm2

    t 70 cm d 65 cm

    * Design of Beams

    concrete Fcu = 250 kg/cm2

    Steel Fy = 3600 kg/cm

    2

    Sec.Ult.

    MomentMu (m.t)

    Breadthb (cm) Depth t

    (cm)C1 J

    As(cm)

    Rft. Notes

    1 17 25 70 4.244 0.812 8.31 16 5 16 safe

    * Check Of shear in beams

    Concrete Fcu = 250 kg/cm2

    Concrete qall= 10.607 kg/cm2

    Stirrups Fy = 2400 kg/cm2

    Sec.

    Ult.Shear Breadth

    b (cm)Deptht (cm)

    qu As(cm)

    NO. ofBranch

    Stirrups Notes

    Qu(ton) (kg/cm2)

    1 13.8 25 70 7.886 0.031 2 8 6 8 safe

    0.70

    6 8 m

    2 16

    6 16

    0.25

    2 12

    Sec Beam (B5)

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    59/64

    Graduation Project Eng. Magdy Mahmoud

    FINAL DESIGN OF BEAMS

    * Design of Beams

    concrete Fcu = 250 kg/cm2

    Steel Fy = 3600 kg/cm2

    Sec.Ult.

    MomentMu (m.t)

    Breadthb (cm)

    Depth t(cm)

    C1 JAs

    (cm) R.F.T Notes

    1 4.4 12 70 5.780 0.826 2.11 12 2 12 safe

    2 8.8 12 70 4.087 0.807 4.33 12 4 12 safe

    3 13 12 70 3.363 0.773 6.67 162 162 12

    safe

    4 15 12 70 3.130 0.756 7.88 16 4 16 safe

    5 18 12 70 2.858 0.728 9.82 16 6 16 safe

    * Check Of shear in beams

    Concrete Fcu = 250 kg/cm2

    Concrete qall= 10.607 kg/cm2

    Stirrups Fy = 2400 kg/cm2

    Sec.

    Ult.Shear Breadth

    b (cm)Deptht (cm)

    qu As(cm)

    NO. ofBranch

    Stirrups Notes

    Qu(ton) (kg/cm2)

    1 5 12 70 5.952 0.004 2 8 6 8 safe

    2 9 12 70 10.714 0.031 2 8 6 8 safe

    3 9 12 70 10.714 0.031 2 8 6 8 safe

    4 10 12 70 11.905 0.038 2 8 6 8 safe

    5 13.5 25 70 7.714 0.029 2 8 6 8 safe

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    60/64

    Graduation Project Eng. Magdy Mahmoud

    DESIGN OF FOUNDATION

    DESIGN OF RAFT

    DESIGN OF PILE CAP

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    61/64

    Graduation Project Eng. Magdy Mahmoud

    Thickness of Raft

    Mx=72.25 ton.m

    D=

    D= =80.64 cmTake D=110 cm

    Check Stress under raft due to axial loads only

    -Get eccentricity

    Normal=-13558.7 t

    Mx=151826.11 t.m Y`= Mx/N = 11.2 m

    My=22692.8 t.m X`= My/N =19.28 m

    ex= 19.28-19.08 = 0.2 m

    ey = 11.2-11.07 = 0.13 m

    In order to eliminate eccentricity in Y Direction

    We took 30cm projection of raft in street in Y Direction so Mx= zero

    -Get Additionalmoments due to eccentricity

    MY= N*ey

    = 13558.7*0.2=2711.74 t.m

    Drawing showing that

    6-1.SHALLOW FOUNDATION (RAFT)

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    62/64

    Graduation Project Eng. Magdy Mahmoud

    Center of Mass and Center of Area

    19.08

    0.13

    0.20

    11.

    07

    0.30

    X

    Y

    5.29

    9.45

    9.70

    X

    Y

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    63/64

    Graduation Project Eng. Magdy Mahmoud

    Get Properties of Section

    Area =821 m2

    Iy =100367 m4

    X =18.84 m

    -Allowable stress

    qall =qallnet +s*DF-p.c* tp.c- R.c* tR.c L.L

    =15 + 1.8*4.12.2*.3 -2.5*1.1 -.5 = 18.47 t/m2

    -Actual stress

    Fmax

    = -

    * x

    = - - = -17.15 t/m2 < -18.47t/m2

    Less than allowable (safe)

    Fmin= -

    +

    * x

    = - + = -16.12 t/m2 < zero

    No tension stress (safe)

    2.70

    1.10

    0.30

    4.10

    0.5 ton / m

  • 8/11/2019 Calculation Note by Eng. Magdy Mahmoud

    64/64

    Pile capManual Calculations

    6-2.Deep FOUNDATION (Pile Cap)