calculation package for gcs maxspan plus thin-film system

13
Calculation Package for GCS MaxSpan Plus Thin-Film System (Mid Row Mids) Project: Address: Update: Dsun Ellis 140 Dodge Rd, Ithaca, NY 14850 10/3/2018 By: SC General Information Setup Portrait Tilt 20 degree Clearance 36 in Panel Length 78.50 in Panel Width 39.37 in Panel Weight 50.7 lbs Space between Panels N-S 0.5 in Space between Panels E-W 0.5 in Mounting Type Bottom Number of Panels Up 2 # Number of Purlins 4 # Rail Spacing 2 ft (O.C.) No. of Panels Supported per Span 13 # No. of Panel Widths per Span 6.50 # No. of Panel Widths per Overhang 1.25 # Purlin Span Length 21.60 ft Post Adjustment Zone Length 6 in Loading Code ASCE7-10 Occupancy Category I Exposure Category C Seismic Site Class D Assumed Load Bearing Capacity of Soil 1 ksf Dead Load: 3.2 psf Ground Snow Load (Pg) 45 psf Basic Wind Speed 105 mph Hurricane Status Not Prone Seismic Design Values Ss 0.126 g S1 0.056 g Fa 1.6 Fv 2.4 SDS 0.134 g SD1 0.090 g Page 1

Upload: others

Post on 20-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Calculation Package for GCS MaxSpan Plus Thin-Film System (Mid Row Mids)

Project:

Address:

Update:

Dsun Ellis

140 Dodge Rd, Ithaca, NY 14850 10/3/2018 By: SC

General InformationSetup Portrait

Tilt 20 degree

Clearance 36 in

Panel Length 78.50 in

Panel Width 39.37 in

Panel Weight 50.7 lbs

Space between Panels N-S 0.5 in

Space between Panels E-W 0.5 in

Mounting Type Bottom

Number of Panels Up 2 #

Number of Purlins 4 #

Rail Spacing 2 ft (O.C.)

No. of Panels Supported per Span 13 #

No. of Panel Widths per Span 6.50 #

No. of Panel Widths per Overhang 1.25 #

Purlin Span Length 21.60 ft

Post Adjustment Zone Length 6 in

Loading Code ASCE7-10

Occupancy Category I

Exposure Category C

Seismic Site Class D

Assumed Load Bearing Capacity of Soil 1 ksf

Dead Load: 3.2 psf

Ground Snow Load (Pg) 45 psf

Basic Wind Speed 105 mph

Hurricane Status Not Prone

Seismic Design Values

Ss 0.126 g

S1 0.056 g

Fa 1.6

Fv 2.4

SDS 0.134 g

SD1 0.090 g

Page 1

sv
NY stamp

1. Loading Calculations

1.1 Snow Load Snow load is calculated per ASCE7

Pg (psf) 45.00

Ce 0.90 Per Table 7-2.

Ct 1.20 Per Table 7-3.

Is 0.80 Per Table 7-4.

Cs 0.91 Per Figure 7-2c.

According to equation (7-1) and (7-2)

Ps=Cs*Pf = Cs*(0.7Ce*Ct*Is*Pg) Ps = 24.74

1.2 Wind Load Wind pressure is calculated per ASCE7

V (mph) 105.00

Kd 0.85 Per Table 26.6-1

Kz 1.00 Per Wind Tunnel Test Report

Kzt 1.00 Per Section 26.8

Iw 1.00 Wind Importance Factor equals unity for ASCE7-10

According to Equation (27.3-1)

qh = 0.00256*Kd*Kz*Kzt*(V^2)*I qh = 23.99

According to equation (27.4-3)

P=qhGCN

The results of wind load factors including normal and overt urning moments provided by CPP are located in the calculation sheets. The results are given for two opposite directions of wind which causes upward and downward wind forces calculated based on worst case design wind loads. GCN is the normal force factor, GC-My is the moment at the base of the post. The factor of safety is calculated based on the worst case scenario, when the dead load and full wind loads are present. These factors are used to generate all wind load components for the following calculations.

Page 2

NOTE: The gust coefficients shown above are from wind tunnel testing performed in accordance with Section 6.6 of ASCE7-05 and Chapter 31 of

ASCE7-10

Page 3

1.3 Load Combinations:

Basic load combinations are per ASCE7-10 and ASD design method.

1 D

2 D + S

3 D + 0.60W

4 D + 0.75S + 0.45W

5 0.6D +/- 0.60W

6 D + 0.7E

1.4 Safety FactorsΩc Ωb Ωv SFFDN

Safety Factor 1.5 1.5 1.5 1.5

2.0 Analysis and Design: Geometry

20

36.00

157.51

12.00

53.00

12.00

13.50

13.50

73.4

10.00

44.6

60.6

61.1

80.0

130.5

72.9

29.4

47.7

13.50393701

NOTES:

Lref3 (in)

Tilt (degrees)

X post (in)

L1 post (in)

L2 post (in)

L post (in)

L brace1 (in)

L brace2 (in)

Brace1 Angle w/ Horiz.

Brace2 Angle w/ Horiz.

Lref (in)

Bottom Overhang (in)

Top Overhang (in)

Lref1 (in)

Lref2 (in)

Href (in)

L beam (in)

Href (in)

1. Dimensions shown herein are to connection locations and may vary slightly from out-to-out dimensions shown on assembly drawing

Page 4

2.1 Post Design (AISI S100-07)

Post Heavy W6x8.5 Grade 50

Post W6x7 Grade 50

Material Type: Pre-Galvanized Steel

Effective section properties at applied loads:

Post Heavy A (in^2) 2.52 Ix(in^4) 14.9 Iy (in^4) 1.99

Sx(t) (in^3) 5.10 Sy(l) (in^3) 1.01

Sx(b) (in^3) 5.10 Sy(r) (in^3) 1.01

Post A (in^2) 2.002 Ix(in^4) 11.955 Iy (in^4) 1.683

Sx(t) (in^3) 4.14 Sy(l) (in^3) 0.85

Sx(b) (in^3) 4.14 Sy(r) (in^3) 0.85

Combo 2 Combo 3 Combo 4 Combo 5 (Uplift)

North Row End Moment (kip-in) 4.83 57.77 46.67 -182.69

Torque (kip-in) 0.00 0.00 0.00 0.00

Axial load (kip) 7.70 5.41 9.39 -4.95

North Row Mid Moment (kip-in) 4.83 51.74 42.15 -149.51

Torque (kip-in) 0.00 0.00 0.00 0.00

Axial load (kip) 7.70 3.38 7.87 -4.54

Mid Aisle Moment (kip-in) 4.83 46.01 37.85 -114.91

Torque (kip-in) 0.00 0.00 0.00 0.00

Axial load (kip) 7.70 4.61 8.79 -2.58

Mid Row Mid Moment (kip-in) 4.83 30.26 26.04 -100.49

Torque (kip-in) 0.00 0.00 0.00 0.00

Axial load (kip) 7.70 2.98 7.57 -2.81

Mid Row End Moment (kip-in) 4.83 49.26 40.29 -144.70

Torque (kip-in) 0.00 0.00 0.00 0.00

Axial load (kip) 7.70 4.46 8.68 -4.46

South Row Mid Moment (kip-in) 4.83 30.88 26.51 -148.01

Torque (kip-in) 0.00 0.00 0.00 0.00

Axial load (kip) 7.70 4.10 8.41 -3.33

South Row End Moment (kip-in) 4.83 53.93 43.79 -171.81

Torque (kip-in) 0.00 0.00 0.00 0.00

Axial load (kip) 7.70 4.55 8.75 -5.57

Page 5

Pn/Ωc Mxn/Ωb Myn/Ωb

Post Heavy Strength Compress. 25.88 170.00 40.86

Tension 101.95

Post Strength Compress. 21.89 138.00 34.39

Tension 80.99

Combo 2 Combo 3 Combo 4 Combo 5 (Uplift)

North Row End ΩcP/Pn 0.298 0.209 0.363 0.191

1.00 1.00 1.00 1.00

ΩbMx/(R*Mnx) 0.028 0.340 0.275 1.075

ΩbMy/(R*Mny) 0.000 0.000 0.000 0.000

Post Heavy Sum 0.323 0.511 0.607 1.170 >1 NOT OK

North Row Mid ΩcP/Pn 0.298 0.131 0.304 0.175

1.00 1.00 1.00 1.00

ΩbMx/(R*Mnx) 0.028 0.304 0.248 0.879

ΩbMy/(R*Mny) 0.000 0.000 0.000 0.000

Post Heavy Sum 0.323 0.370 0.524 0.967 <1 OK

Mid Aisle ΩcP/Pn 0.298 0.178 0.340 0.100

1.00 1.00 1.00 1.00

ΩbMx/(R*Mnx) 0.028 0.271 0.223 0.676

ΩbMy/(R*Mny) 0.000 0.000 0.000 0.000

Post Heavy Sum 0.323 0.360 0.538 0.726 <1 OK

Mid Row Mid ΩcP/Pn 0.352 0.136 0.346 0.128

1.00 1.00 1.00 1.00

ΩbMx/(R*Mnx) 0.035 0.219 0.189 0.728

ΩbMy/(R*Mny) 0.000 0.000 0.000 0.000

Post Sum 0.383 0.287 0.513 0.792 <1 OK

Mid Row End ΩcP/Pn 0.298 0.172 0.335 0.172

1.00 1.00 1.00 1.00

ΩbMx/(R*Mnx) 0.028 0.290 0.237 0.851

ΩbMy/(R*Mny) 0.000 0.000 0.000 0.000

Post Heavy Sum 0.323 0.376 0.546 0.937 <1 OK

South Row Mid ΩcP/Pn 0.298 0.158 0.325 0.128

1.00 1.00 1.00 1.00

ΩbMx/(R*Mnx) 0.028 0.182 0.156 0.871

ΩbMy/(R*Mny) 0.000 0.000 0.000 0.000

Post Heavy Sum 0.323 0.261 0.463 0.935 <1 OK

South Row End ΩcP/Pn 0.298 0.176 0.338 0.215

1.00 1.00 1.00 1.00

ΩbMx/(R*Mnx) 0.028 0.317 0.258 1.011

ΩbMy/(R*Mny) 0.000 0.000 0.000 0.000

Post Heavy Sum >1 NOT OK

According to AISC 360 Specification for Structural Steel Buildings, Chapter H

Page 6

2.2 Brace Design

Shape Grade 80 ksi

Material Type:Pre-galvanized Steel

Effective section properties at applied loads

Ae (in^2) 0.68 Ixe (in^4) 2.26 Iye (in^4) 0.44

Sxe(t) (in^4) 1.01 Sye(l) (in^4) 0.67

Sxe(b) (in^4) 1.01 Sye(r) (in^4) 0.23

Loads below are for governing Brace (North or South)

kip kip-in kip-in

Axial force (kip) Combo 2 Combo 3 Combo 4 Combo 5 (Uplift) P Mx My

North Row End 0.02 0.66 0.51 2.51 2.51 0 2.01

North Row Mid 0.02 0.59 0.46 2.58 2.58 0 2.06

Mid Aisle 0.02 0.50 0.39 1.34 1.34 0 1.07

Mid Row Mid 0.02 0.36 0.28 1.66 1.66 0 1.33

Mid Row End 0.02 0.52 0.40 2.00 2.00 0 1.60

South Row Mid 0.02 0.43 0.34 1.98 1.98 0 1.59

South Row End 0.01 -0.33 -0.24 1.46 1.46 0 1.17

Pn/Ωc Mxn/Ωb Myn/Ωb

Strength 13.19 41.91 9.53

ΩcP/Pn ΩbMx/Mnx ΩbMy/Mny Sum

North Row End 0.190 0.000 0.210 0.400 <1 OK

North Row Mid 0.195 0.000 0.216 0.412 <1 OK

Mid Aisle 0.101 0.000 0.112 0.214 <1 OK

Mid Row Mid 0.126 0.000 0.139 0.265 <1 OK

Mid Row End 0.152 0.000 0.168 0.319 <1 OK

South Row Mid 0.150 0.000 0.166 0.316 <1 OK

South Row End 0.111 0.000 0.123 0.233 <1 OK

According to North American Specification for the Design of Cold-Formed Steel Structural Members

(2007 Edition), Equation C5.2.1-1-C5.2.1.3.As ΩbP/Pn>0.15, equation C5.2.1-2 should be adopted.

Cee 4.5x2.6 - 14 Ga Facing E-W

Page 7

2.3 Beam Design (AISI S100-07)

Shape Grade 80

Material Type: Pre-galvanized Steel

Local Effects Reducer 0.85

Section Properties

A (in^2) 0.79 Ix (in^4) 4.50 Iy (in^4) 1.28

Sx(t) (in^3) 1.50 Sy(l) (in^3) 0.45

Sx(b) (in^3) 1.50 Sy(r) (in^3) 0.45

Combo 2 Combo 3 Combo 4 Combo 5 (Uplift)

North Row End Moment (kip-in) 24.59 19.17 31.40 -18.11

Axial load (kip) 0.67 0.33 0.70 0.94

North Row Mid Moment (kip-in) 24.59 11.84 25.91 -16.64

Axial load (kip) 0.67 0.31 0.69 0.97

Mid Aisle Moment (kip-in) 24.59 16.28 29.24 -9.56

Axial load (kip) 0.67 0.27 0.66 0.48

Mid Row Mid Moment (kip-in) 24.59 10.38 24.81 -10.38

Axial load (kip) 0.67 0.21 0.62 0.58

Mid Row End Moment (kip-in) 24.59 15.74 28.83 -16.36

Axial load (kip) 0.67 0.27 0.66 0.71

South Row Mid Moment (kip-in) 24.59 14.44 27.86 -12.25

Axial load (kip) 0.67 0.24 0.64 0.74

South Row End Moment (kip-in) 24.59 16.09 29.09 -20.35

Axial load (kip) 0.67 0.29 0.68 0.90

According to

Pn/Ωc Mxn/Ωb Myn/Ωb

Strength 32.54 61.69 18.41

Z 6.00*2.92 - 14 Ga

6.5"

Page 8

Combo 2 Combo 3 Combo 4 Combo 5 (Uplift)

North Row End ΩcP/Pn 0.021 0.010 0.022 0.029

ΩbMx/Mnx 0.399 0.311 0.509 0.294

ΩbMy/Mny 0.000 0.000 0.000 0.000

Sum 0.419 0.321 0.531 0.323 <1 OK

North Row Mid ΩcP/Pn 0.021 0.009 0.021 0.030

ΩbMx/Mnx 0.399 0.192 0.420 0.270

ΩbMy/Mny 0.000 0.000 0.000 0.000

Sum 0.419 0.201 0.441 0.300 <1 OK

Mid Aisle ΩcP/Pn 0.021 0.008 0.020 0.015

ΩbMx/Mnx 0.399 0.264 0.474 0.155

ΩbMy/Mny 0.000 0.000 0.000 0.000

Sum 0.419 0.272 0.494 0.170 <1 OK

Mid Row Mid ΩcP/Pn 0.021 0.007 0.019 0.018

ΩbMx/Mnx 0.399 0.168 0.402 0.168

ΩbMy/Mny 0.000 0.000 0.000 0.000

Sum 0.419 0.175 0.421 0.186 <1 OK

Mid Row End ΩcP/Pn 0.021 0.008 0.020 0.022

ΩbMx/Mnx 0.399 0.255 0.467 0.265

ΩbMy/Mny 0.000 0.000 0.000 0.000

Sum 0.419 0.264 0.488 0.287 <1 OK

South Row Mid ΩcP/Pn 0.021 0.007 0.020 0.023

ΩbMx/Mnx 0.399 0.234 0.452 0.199

ΩbMy/Mny 0.000 0.000 0.000 0.000

Sum 0.419 0.241 0.471 0.221 <1 OK

South Row End ΩcP/Pn 0.021 0.009 0.021 0.028

ΩbMx/Mnx 0.399 0.261 0.472 0.330

ΩbMy/Mny 0.000 0.000 0.000 0.000

Sum 0.419 0.270 0.492 0.358 <1 OK

Page 9

2.4   Purlin Design

Grade Gauge

Heavy Grade 80 Gauge 16 - 6x2.92

Light Grade 80 Gauge 16 - 6x2.92

Effective Properties

Heavy Grade A (in^2) 0.686 Ix (in^4) 3.881 Iy (in^4) 1.06

Sx(t) (in^3) 1.294 Sy(l) (in^3) 0.363

Sx(b) (in^3) 1.294 Sy(r) (in^3) 0.363

Light Grade A (in^2) 0.686 Ix (in^4) 3.881 Iy (in^4) 1.06

Sx(t) (in^3) 1.294 Sy(l) (in^3) 0.363

Sx(b) (in^3) 1.294 Sy(r) (in^3) 0.363

Combo 2 Combo 3 Combo 4 Combo 5 (Uplift)

North Row End moment major (kip-in) 58.98 45.97 75.31 -43.44

moment minor (kip-in) 5.26 0.61 4.10 0.36

North Row Mid moment major (kip-in) 50.13 24.14 52.81 -33.91

moment minor (kip-in) 4.47 0.52 3.48 0.31

Mid Aisle moment major (kip-in) 58.98 39.05 70.12 -22.93

moment minor (kip-in) 5.26 0.61 4.10 0.36

Mid Row Mid moment major (kip-in) 40.69 17.18 41.06 -17.17

moment minor (kip-in) 4.47 0.52 3.48 0.52

Mid Row End moment major (kip-in) 58.98 37.75 69.15 -39.24

moment minor (kip-in) 5.26 0.61 4.10 0.61

South Row Mid moment major (kip-in) 50.13 29.43 56.79 -24.97

moment minor (kip-in) 4.47 0.52 3.48 0.31

South Row End moment major (kip-in) 58.98 38.59 69.78 -48.80

moment minor (kip-in) 5.26 0.61 4.10 0.36

Buckling Check (Per Equation C3.1.2.1-15):

Fc(x) (ksi) Fc(y) (ksi) Fc(x) (ksi) Fc(y) (ksi)

Heavy Grade Strength 66.80 81.08 44.46 75.43

Light Grade Strength 66.80 81.08 44.46 75.43

Mx/Ωb My/Ωb Mx/Ωb My/Ωb

kip-in kip-in kip-in kip-in

Heavy Grade Strength 54.87 18.69 36.52 17.39

Light Grade Strength 54.87 18.69 36.52 17.39

Continuous Spans End Spans

6.00"

2.92"

Page 10

Combo 2 Combo 3 Combo 4 Combo 5 (Uplift)

North Row End ΩbMx/Mnx 1.615 1.259 2.062 1.190

ΩbMy/Mny 0.303 0.035 0.236 0.021

Light Grade Sum 1.918 1.294 2.298 1.211 >1 NOT OK

North Row Mid ΩbMx/Mnx 0.914 0.440 0.962 0.618

ΩbMy/Mny 0.239 0.028 0.186 0.017

Light Grade Sum 1.153 0.467 1.149 0.635 >1 NOT OK

Mid Aisle ΩbMx/Mnx 1.615 1.069 1.920 0.628

ΩbMy/Mny 0.303 0.035 0.236 0.021

Light Grade Sum 1.918 1.104 2.156 0.649 >1 NOT OK

Mid Row Mid ΩbMx/Mnx 0.742 0.313 0.748 0.313

ΩbMy/Mny 0.239 0.028 0.186 0.028

Light Grade Sum 0.981 0.341 0.935 0.341 <1 OK

Mid Row End ΩbMx/Mnx 1.615 1.034 1.894 1.075

ΩbMy/Mny 0.303 0.035 0.236 0.035

Light Grade Sum 1.918 1.069 2.129 1.109 >1 NOT OK

South Row Mid ΩbMx/Mnx 0.914 0.536 1.035 0.455

ΩbMy/Mny 0.239 0.028 0.186 0.017

Light Grade Sum 1.153 0.564 1.221 0.472 >1 NOT OK

South Row End ΩbMx/Mnx 1.615 1.057 1.911 1.336

ΩbMy/Mny 0.303 0.035 0.236 0.021

Light Grade Sum 1.918 1.092 2.147 1.357 >1 NOT OK

Deflection Check

Allowable deflection per panel manufacturer = L/ 100 (0.01mm/mm)

Max at midspan (in) 0.918 0.758 0.855 0.726 0.843 0.815 0.851

∆ / L 0.004 0.003 0.003 0.003 0.003 0.003 0.003

Check OK OK OK OK OK OK OK

Purlin Angle Check: OK

Note:

According to North American Specification for the Design of Cold-Formed Steel Structural Members (2007

Edition), Equation C5.2.1-1-C5.2.1.3

North Row Ends North Row Mid Mid Aisles Mid Row Mid Mid Row Ends South Row MidSouth Row

Ends

The Purlin analysis above accounts for the longest acceptable purlin length for this project. Some purlins supplied for this project may be

shorter than this length due to site geometry or to match the number of panels in a rack with a client requested string size. As the shorter

purlins will have less load applied to them and a shorter unbraced length, they have sufficient structural capacty to resist the applied loads.

Page 11

3. Seismic Forces

Seismic Design Values

Ss 0.126 g

S1 0.056 g

Fa 1.6

Fv 2.4

SDS 0.13 g

SD1 0.09 g

R 1.25 Per Table 12.2-1 For Steel Ordinary Cantilever Columns

Ie1

Per Table 1.5-2

W 3.22 psf

Cs 0.11 g Per Eq. 15.4-2

V0.35 psf Per Eq. 12.8-1

Seismic force is much lower than lateral wind loads calculated for analysis.

Wind load controls the design.

Page 12

4. Foundation

Vertical Loading

Gust Coefficient (GCN) 1.08 0.96 0.63 0.64 1.03 0.72 1.26

Wind Uplift Pressure (psf) 25.82 22.93 15.00 15.23 24.62 17.35 30.17

Wind Uplift Force (k) 4.06 3.61 2.36 2.40 3.87 2.73 4.75

Downward Force1 (k) 0.54 0.54 0.54 0.54 0.54 0.54 0.54

Max Net Uplift Force (Pull out

resistance) (k)5.28 4.60 2.73 2.79 5.00 3.29 6.31

Max Net Downward Force (k) 9.22 7.80 8.68 7.80 8.56 8.33 8.62

Lateral Loading

Max Net Lateral Force (Lateral

resistance) (k) 2.29 1.97 1.90 1.31 2.11 1.64 2.59

Note:

1. Downward force includes 0.6D load combination factor

2. Max Uplift and Lateral Foundation loads shown include safety factor

Mid Row Ends South Row Mid South Row Ends

North Row Ends North Row Mid Mid Aisles Mid Row Mid Mid Row Ends South Row Mid South Row Ends

North Row Ends North Row Mid Mid Aisles Mid Row Mid

Page 13