calculus note

Upload: afeef-abu-bakar

Post on 07-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Calculus Note

    1/95

    1

    Theorem 1: Intermediate Value Theorem

    Definition: A function y=f(x) that is continuous on a closed interval [a,!

    ta"es on every value et#een f(a) and f()$

     

    If u is a numer et#een

    f (a) and f (), f (a) % u %f

    ()

    Then there is a c ∈ (a, ) such

    that

    f (c) = u$

    Al&eraic 'xamle:

    [ ] [ ]

    *, : *, +

    ( )

    *

     y x R

     f x

     x

     x

    =

    =

    =

    =<

  • 8/18/2019 Calculus Note

    2/95

    2

    imits

    Definition: a limit is the value that a function or se-uence .aroaches.

    as the inut or index aroaches some value

    'stimatin& imits from /rahs

    imits that exist:

    A) 0ontinuous unction

    2)Discontinuous unction

  • 8/18/2019 Calculus Note

    3/95

    3

    imits that don3t exist:

    A) 4um Discontinuity

    2)Involvin& Infinity

  • 8/18/2019 Calculus Note

    4/95

    4

    'stimatin& imits from Tales

    imits that exist:

    A)rom a 0ontinuous unction

  • 8/18/2019 Calculus Note

    5/95

    5

    2)rom a Discontinuous unction

    imits that do not exist:

    A) 4um Discontinuity

     2) Infinite Discontinuity

     

  • 8/18/2019 Calculus Note

    6/95

    6

    0)5ori6ontal Asymtote

    0alculatin& imits usin& Al&era

    'valuatin& imits usin& 7ustitution:

    A)8olynomial

    ( )   ( ) 

    9 9

    lim ; 9 () ;() 9 1 x

     x x x→ + − + = + − + =2)

  • 8/18/2019 Calculus Note

    7/95

    7

    ( ) ( )

    ( ) ( )

    9 9 9

    9 = 9 lim lim lim

    +  x x x

     x x x x x

     x x x x→ → →

     + −  + − +  = = = ÷ ÷   ÷ ÷− + − +        2)2y 0on>u&ate

    ?

    ? ?

    ?

    9 *lim

    ? *

    9 9 ?lim @ lim

    ?   9 ( ?)( 9)

    1 1lim

    =9

     x

     x x

     x

     x

     x

     x x x

     x   x x x

     x

    → →

     −= ÷ ÷−  

         − + −= ÷ ÷   ÷

    ÷ ÷−   + − +      

    = ÷+  0) 0ommon Denominator 

  • 8/18/2019 Calculus Note

    8/95

  • 8/18/2019 Calculus Note

    9/95

    9

    1$

    9

    9lim

    9 x

     x

     x x→

    −   ÷− −  

    is(A) *

    (2) 1

    (0)

    1

    +

    (D)∞

    (')

  • 8/18/2019 Calculus Note

    10/95

    10

    ( ) ( )( ) ( )

    ( )( )

    9

    + +;lim lim lim 9

    +  x x x

     x x x x x x

     x x x x→ → →

     − + + + +  − ÷ ÷= = = ÷ ÷ ÷− + − +      

    0ontinuity

    y Definition: The roadsE meet and the rid&esE is uilt #here the

    roads meet$

    The families of functions that are continuous: olynomial, exonential,sine, cosine, asolute value, radical, lo&arithmic, arcFtan, arcFcotan&ent,

    arcsine, arccosine

    0ontinuity #ith /rahs

    0ontinuity at a 8oint:

    I$ The function is defined at c $ That is, c is in the domain of

    definition of f(x)$

    II$

    lim ( ) x c

     f x→

    'xists$ 

    III$

    lim ( ) ( ) x c

     f x f c→

    =

    Gemovale Discontinuity:

  • 8/18/2019 Calculus Note

    11/95

    11

    4um Discontinuity:

    Infinite Discontinuity:

  • 8/18/2019 Calculus Note

    12/95

    12

    0ontinuity #ith Al&era

    0ontinuity at a oint:

    ( ) 1 f x x

    = + 0ontinuous H x = * c

    1) * *

    lim ( ) 1 lim ( ) x x

     f x f x→ − → +

    = =

    ) (*) 1 f     =

    9) *(*) lim ( ) x f f x→=

    Gemovale Discontinuity:

  • 8/18/2019 Calculus Note

    13/95

    13

    ( ) ( ) 1( ) 1

     x x f x x if x

     x

    − += = + ≠

    −Gemovale disc H x= c

    1) 

    ( )

    lim ( ) lim 1 9 x x

     f x x→ →

    = + =

    *()

    * f dne= =

    4um Discontinuity:

    1 *( )

    1 *

    if x f x

    if x

    ≥−

  • 8/18/2019 Calculus Note

    14/95

    14

    35oital3s Gule is a method for comutin& a limit of the form

    ( )lim

    ( ) x c

     f x

     g x→

    0 can e a numer,

    ∞or 

    −∞. The conditions for alyin& it are

    1$ The functions f and & are differentiale in an oen interval

    containin& c

    $ / and &3 are non6ero in the oen interval , exect ossily at c

    9$

    J( )lim

    J( ) x c

     f x

     g x→Is defined or is

    ∞or is

    −∞.

    +$ As

     x c→

    'K:

    sin( +)( )

     x f x

     x

    −=

    sin( +) *lim

    * x

     x

     x→

    −=

    sin( +) cos( +)

    lim lim + 1 x x

     x x x

     x→ →

    − −

    = =−0ontinuous H x= c

    cos( +) cos( +)lim + lim

    1 1 x x

     x x x x

    → − → +

    − −= =

    () +

    cos( +)() lim +

    1 x

     f  

     x x f  

    =

    −= =

    ultile 0hoice Buestions C

    1$ Lhich of the follo#in& isare true aout the function & if 

    ( ) 

    ( )

    =

     x g x

     x x

    −=

    + −

  • 8/18/2019 Calculus Note

    15/95

    15

    I$ & is continuous at x =

    II$ the &rah of & has a vertical asymtote at x=F9

    III$ the &rah of & has a hori6ontal asymtote at y=*

    (a) I only () II only (c) III only (d) I and II only (e) II and III only0orrect ans#er (2)

    /rah of &(x)

    $ et

    9

    ? +( )

    ?

     x x x f x

     x

    − − −=

    −$ Lhich of the follo#in&

    statements is true

    (a) f(x) has a removale discontinuity at x=F9

    () f(x) has a >um discontinuity at x=9

    (c) if f(9) = F9, then f(x) is continuous at x=9

    (d) f(x) has non removale discontinuities at x=F9 and x=9

    (e)9

    lim ( ) x

     f x→−

    = ∞

    0orrect ans#er (A)

    ( )( M)( 9)( )

    ( 9)( 9)

     x x x f x

     x x

    + − +=

    − +Therefore there is a removale

    discontinuity at x=F9

    Theorem : Differentiaility and 0ontinuity

  • 8/18/2019 Calculus Note

    16/95

    16

    Definition: If a function is differentiale at a oint x=a, then the function

    is continuous at a oint x=a

    DI'G'

  • 8/18/2019 Calculus Note

    17/95

    17

    ,

    ( ),

    () *Q R

    lim *

    1, J , H

    1,

     x

     x x y x

     x x

     yCont at x continous

     y

     x y LHD RHD Not Differentiable x

     x

    − ≥= − = − −

  • 8/18/2019 Calculus Note

    18/95

    18

    Alternate orm:

    Al&eraic 'xamle:

    ( ) ( )

    ( ) ( )lim

    : ( )

    J( ) lim lim

    J(1) (1)

     x a

     x a x a

     f x f a

     x a

     Ex f x x

     x a x a x a f x a

     x a x a

     f  

    → →

    −−

    =− +−

    = = =− −

    = =

    /rahical Illustration:

  • 8/18/2019 Calculus Note

    19/95

    19

    Derivatives to emori6e:

    Tri& unctions:

    sin( ) cos( ) csc( ) csc( ) cot( )

    cos( ) sin( ) sec( ) sec( ) tan( )

    tan( ) sec ( ) cot( ) csc ( )

    d d  x x x x x

    dx dx

    d d  x x x x x

    dx dx

    d d  x x x xdx dx

    = = −

    = − =

    = = −

    Inverse Tri& unctions:

  • 8/18/2019 Calculus Note

    20/95

    20

    1 1

    1 1

    1 1

    1 1sin ( ) csc ( )

    1 1

    1 1cos ( ) sec ( )1 1

    1 1tan ( ) cot ( )

    1 1

    d d  x x

    dx dx x x x

    d d  x xdx dx x x x

    d d  x x

    dx x dx x

    − −

    − −

    − −

    = = −− −

    = − =− −

    = = −+ +

    'xonential and o&arithmic unctions

    ln( )

    1 1ln lo&

    ln

     x x x x

    a

    d d e e a a a

    dx dx

    d d  x x

    dx x dx x a

    = =

    = =

    Derivative 7tructures:8roduct Gule:

    J

    ( )

    J( ) J( ) ( )

    J( )

     x

     x x

     x x

    h x xe

    h x x e x e

    h x e xe

    =

    = +

    = +Buotient Gule:

  • 8/18/2019 Calculus Note

    21/95

    21

    1( )

    9

    ( 9) [ 1! ( 1) [ 9!J( )

    ( 9)

    ()( 9) ( 1)(1) MJ( )

    ( 9) ( 9)

     x f x

     x

    d d  x x x xdx dx f x

     x

     x x f x

     x x

    +=

    − + − + −=

    −− − + −

    = =− −

    8o#er Gule:

    1

    1

    1+

    J

    J 1

    h

    h

     y x

     y hx

     y x y x

    =

    =

    ==0hain Gule:

    (9 1)

    J (9 1)(9)

    J =(9 1) 1; =

     y x

     y x

     y x x

    = +

    = += + = +

  • 8/18/2019 Calculus Note

    22/95

    22

    Imlicit Gule:

    ( ) ( )

    @ @1 @ *

     x y xy

    dy dy y x x y x ydx dx

    dy dy xy x y xy

    dx dx

    dy xy y

    dx x xy

    + =

     + + + = ÷ ÷  

    + + +

    − −=

    +Derivative of an Inverse (not tri&):

    1( ) ( ) ( )

    J(9) Q

    9 M

    1 1 1J( ) J(M)= ?

    1J(9) = J( )

    J( )

     f x x g x f x

     g 

     x x

     f x f   x

     so g g x f x

    −= + ==

    = + =

    = = =+

    = =

    ultile 0hoice Buestions C9:

    1$ ind dydx

    1

    1

     x y

     x

    +=

  • 8/18/2019 Calculus Note

    23/95

    23

    (a)( )

     

    +

    1

     x

     x

    −  ()

    ( ) 

    +

    1

     x

     x−  (c)

    ( )

    9

    +

    1

     x

     x

    −(d) 

    ( )

    1

     x

     x−(e)

    ( )+

    1   x−

    0orrect Ans#er is 2

    (1 ) (1 )( )J

    (1 )

     x x x x y

     x

    − − + −=

    $ If

    ( ) dy

     x y x ydx

    + = −, #hat is the value of

    d y

    dxat the oint (9,*)

    (a) F1*9 () * (c) (d) 1*9 (e) Pndefined

    0orrect Ans#er is A

    ( )( ) ( )(1 )

    ( )

    ( )( ) ( )(1 )

    ( )

    1*9S *

    9

    dy x y

    dx x y

    dy dy x y x y

    d y dx dx

    dx x y

     x y x y x y x y

    d y   x y x y

    dx x y

    d ywhen x y then

    dx

    −=

    +

    + − − − +

    = +− −

    + − − − ++ +=

    +

    = = =Derivative D

  • 8/18/2019 Calculus Note

    24/95

    24

    , *( )

    , *

     x x f x x

     x x

    ≥= = −

  • 8/18/2019 Calculus Note

    25/95

    25

    I9( ) g x x=

    1I9

    9

    J( )

    9   9 g x x

     x

    −= =

  • 8/18/2019 Calculus Note

    26/95

    26

    Vertical Tan&ent:

    9( ) f x x=

    I99  

    1 1J( )

    9   9 f x x

     x−= =

  • 8/18/2019 Calculus Note

    27/95

    27

    Discontinuity:

    , *( )

    , *

     x x f x

     x x

    + ≥= 

    − = 

  • 8/18/2019 Calculus Note

    28/95

    28

    GB C1:

    1?? A2 9

    0onsider the curve defined y

    9; 1+? x xy y− + + = −

    (a) ind

    dy

    dx() Lrite an e-uation for the line tan&ent to the curve at the oint

    (+,F1)$

    (c) There is a numer k  so that the oint (+$, k ) is on the curve$

    Psin& the tan&ent line found in art (), aroximate the

    value of k  

    (d) Lrite an e-uation that can e solved to find the actual value

    of k  so that the oint (+$, k ) is on the curve

    (e) 7olve the e-uation found in art (d) for the value of k $

    7olution:

  • 8/18/2019 Calculus Note

    29/95

    29

    (a)

    1= 9 *

    1=

    9

    dy dy x y x y

    dx dx

    dy x y

    dx x y

    − + + + =

    −=

    +

    ()(+, 1)

    =+ 9 1 9( +)

    * 9

    dy y x

    dx −

    += = + = −

    +

    (c)1 9(+$ +) $+ $+ y y k + = − = − ≈ −

    (d)

    9;(+$) (+$) 1+?k k − + + = −

    (e)$9M9k  = −

    ultile 0hoice Buestions C+:

    1$( ) sin , J( ) If f x x x then f x= + =

    (a)1 cos x+

     () 1 cos x−

    (c)cos x

    (d)sin cos x x x−

    (e)sin cos x x x+

    0orrect ans#er is A

    J( ) sin 1 cosdy dy

     f x x x xdx dx

    = + = +

    $ The tan&ent to the curve

    ? * y xy− + =is vertical #hen

    a$ y=*

     $ y=9 S 9−

  • 8/18/2019 Calculus Note

    30/95

    30

    c$ y=1

    d$ y=F9S9

    e$ none of these

    0orrect ans#er is 0 ? *

    *

    J *

     y xy

    dy dy y y x

    dx dx

    dy y

    dx y x

     sub x y y y

    is where y is vertical  y y

    − + =

    − + =

    =+

    ==

    Theorem 9: ean Value Theorem

    Definition: If y = f(x) is continuous at every oint of the closed interval

    [a, ! and differentiale at every oint of its interior (a, ) then there is at

    least one oint c at #hich

    ( ) ( )J( )   f b f a f cb a

    −=−

    /rahically sea"in&, if A and 2 are t#o oints on a differentiale curve

    then some#here et#een oints A and 2 there is at least one tan&ent line

  • 8/18/2019 Calculus Note

    31/95

    31

    to the curve that is arallel to

    the chord A2$

    Al&eraic 'xamle:

    0onsider the function( ) 9 f x x=on the interval

    [1, !

    ( ) ( ) M 9 M1;

    1 +

     f b f a

    b a

    − −= = =

    − −

    Theorem +: Golle3s Theorem:

    Definition: If f(x) is continuous on [a, ! and differentiale on (a, )$ If

    f (a) =f () then there is at least one oint c in (a, ) #here f (c)=*

    ( ) ( ) ( ) ( ) * f b f a when f b f ab a

    − = =−

  • 8/18/2019 Calculus Note

    32/95

    32

    Al&eraic examle:

    9( ) + ( ) (*) * If f x x x and f f  = − − = =, find the value of c that

    satisfies the conclusion of Golle3s Theorem$

    J( ) *

    J( ) 9 +

    J( ) *

    9 + * 1$1M 1$1M

     f c

     f x x

     f x

     x x and 

    =

    = −=

    − = = −

    0=F1$1M c c is on the interval of [F, *!

    AG0IG0

    /rahical:

    AG0:

  • 8/18/2019 Calculus Note

    33/95

    33

    ( ) ( ) f b f a RC 

    b a

    −=

    IG0:

    ( ) ( )lim x

     f x h f x IRC  h→∞

    + −=

    Al&eraic AG0:

    8olynomial:

    9( ) 1 int [,9!

    (9) () ; ?1?

    9 9

     f x x over erval 

     f f   RC 

    = +− −

    = = =− −

     

  • 8/18/2019 Calculus Note

    34/95

    34

    ( ) sin int [ , != +

    ( ) ( ) = =+ =

    + =

     f x x over erval 

     f f   RC 

    π π 

    π π 

    π π    π 

    =

    − −= =−

    8iece#ise:

    , *( ) int [ 1,1!

    , *

    (1) ( 1)1

    1 1

     x x x f x over erval 

     x x

     f f   RC 

      − − <= −

    + ≥− −

    = =− −

    7ecant:

    ( ) sin int ,= +

    = = 1( )

    =

    1 = =

    ( ) =

     f x x over erval 

    m f  

     y x

    π π 

    π 

    π 

    π 

    π 

    =

    −= =

    − = −

    Al&eraic IG0

  • 8/18/2019 Calculus Note

    35/95

    35

    8olynomial:

    * *

    ( ) ( )lim lim

    J

    h h

     y x

     x h x h x h xh h

     y x

    → →

    =

    + − += ==

     

  • 8/18/2019 Calculus Note

    36/95

    36

    Tan&ent e-uation

  • 8/18/2019 Calculus Note

    37/95

    37

    /rahs:

    Tales:

  • 8/18/2019 Calculus Note

    38/95

    38

    ind AGO0 et#een x= and x=+

    (+) () +; 9*?

    +

     f f  − −= =

    −Aroximate IGO0 at x=+

    () (9) 9; 9=J(+) 1

    9

     f f   f  

      − −≈ = =

    ultile 0hoice Buestions C:

    1$ Lhat is the Instantaneous Gate of 0han&e of y=ln(+)

    (a) * () U (c)1 (d) e (e) non existent

    0orrect ans#er is 2

    *ln(+ ) ln(+) 1lim

    +hhh→ + − =

    $

    The tale &ives the values of function f that is differentiale on the

    interval [*, 1!$ Lhat is the est aroximation of f3 ($)

    (a) $ ()1$*; (c)$?9 (d)1$MM (e) $;;0orrect ans#er is 0

    ($9) ($1)J($)

    $9M $1M1

     f f   f  

      −≈

  • 8/18/2019 Calculus Note

    39/95

    39

    GB C:

    **M A29

    The #ind chill is the temerature, in de&rees ahrenheit (°), a human

    feels ased on the air temerature, in de&rees ahrenheit, and the #indvelocity v, in miles er hour (mh)$ If the air temerature is 9°, then

    the #ind chill is &iven y

    $1=( ) $= $1! v v= −and is valid for

    =*v≤ ≤

    (a) ind L3 (*)$ Psin& correct units , exlain the meanin& of

    L3(*) in terms of the #ind chill

    () ind the avera&e rate of chan&e of !  over the interval =*v≤ ≤

    $

    ind the value of v at #hich the instantaneous rate of chan&e ofL is e-ual to the avera&e rate of chan&e of L over interval

    =*v≤ ≤

    (c) Over the time interval* +t ≤ ≤

    hours, the air temerature is a

    constant 9°$ At time t=*, the #ind velocity is v = * mh$ If

    the #ind velocity increases at a constant rate of mh er hour,

    #hat is the rate of chan&e of the #ind chill #ith the resect to

    time at t=9 hoursQ Indicate units of measure$

    7olution

    (a)

    $;+J(*) $1@$1= @ * $;!    −= − = − #hen v=* mh, the

    #ind chill is decreasin& at $;°mh

    () The AG0 of L over the interval

    =*v≤ ≤is

    (=*) ()$9

    =*

    ! ! −= −

    (=*) ()J( ) 9$*11

    =*

    ! ! ! v when v

    −= =

  • 8/18/2019 Calculus Note

    40/95

    40

    (c)

    $1=( ) $= $1(* )! v t = − +   9;$?

    d! 

    dt  == −

    °hr 

    The irst Derivative:

    Increasin&Decreasin&:

    f(x) is increasin& #hen f 3(x) *

    f(x) is decreasin& #hen f 3(x) % *

    axin:

    If f (c) = * or D

  • 8/18/2019 Calculus Note

    41/95

    41

    The 7econd Derivative:

    0oncave P0oncave Do#n:

    f 3(x) is increasin& or f (x) * then f(x) is concave u

    f (x) is decreasin& or f (x)%* then f(x) is concave do#n

    8oint of Inflection:

    If f (c) = * and chan&es from W to X OG X to W at x=c , then f(c) has a

     oint of inflection$

    OG 

    f (x) has an extremum then f(x) has a oint of inflection$

  • 8/18/2019 Calculus Note

    42/95

    42

    9

    ( ) 1 ( 9, 9)

    J( ) 9 *

    JJ( ) =

    JJ(*) *

    H * I JJ( )

     f x x x on

     f x x

     f x x

     f  

     #$I x b c f x sign changes from to

    = − + −

    = − =

    ==

    = − +

    ultile 0hoice Buestions C:

    1$ The &rah of

    + 9 9 1= + +; y x x x= − + +is concave do#n for 

    (a)x % * ()x *(c) x % F or x F9 (d) x%9 or x (e)9 % x %

    0orrect ans#er is e

    + 9 9

    9 1= + +; J 1 +; +;

    JJ 1(9 ; +) * JJ *

    9

    JJ

    9

     y x x x y x x x

     y x x y when x and x

     x is negative from to on y so y is CD

    = − + + = − +

    = − + = = = =

    $

  • 8/18/2019 Calculus Note

    43/95

    43

    The &rah of the function f is sho#n aove$ or #hich of the follo#in&

    values of x if f (x) ositive and increasin&

    (a)a () (c)c (d)d (e)e

    e c f is increasin& thus f (x) is ositive and f is concave u thus f (x)

    is increasin&

    Theorem : 'xtreme Value TheoremDefinition: if a realFvalued function f is continuous in the closed and

     ounded interval [a,!, then f must attain a maximum and a minimum,

    each at least once$

    That is, there exist numers c and d in [a,! such that

  • 8/18/2019 Calculus Note

    44/95

    44

    ( ) ( ) ( ) [ , ! f c f x f d for all x a b≥ ≥ ∈

    Al&eraic 'xamle:

    ind the in and ax values of

    + 9( ) 9 1 f x x x= − −on [F,!

    + 9

    9

    ( ) 9 1

    J( ) + ?

    ?*

    +

     f x x x

     f x x x

     x and x

    = − −

    = −

    = = 2ecause x=?+ is not in the interval [Y,!,

    the only critical oint occurs at x = * #hich is (*,Y1)$ The function

    values at the endoints of the interval are f()=Y? and f(Y)=9?Z hence,

    the maximum function value 9? at x = Y, and the minimum function

    value is Y? at x = $

    'xtrema

    Asolute vs$ Gelative 'xtrema:

    et f e a function defined on some interval and c e a numer in thatinterval$

    An asolute maximum of the function f occurs at (c,f(c)) if( ) ( ) f x f c≤

    for every x value in the interval$

  • 8/18/2019 Calculus Note

    45/95

    45

    An asolute minimum of the function f occurs at (c,f(c)) if ( ) ( ) f x f c≥

     

    for every x value in the interval$

    The oint (c,f(c)) is a relative maximum of a function f if there exists an

    oen interval (a,) in the domain of f containin& c such that( ) ( ) f x f c≤

     

    for all x in (a,) 

    The oint (c,f(c)) is a relative maximum of a function f if there exists an

    oen interval (a,) in the domain of f containin& c such that ( ) ( ) f x f c≥  for all x in (a,) 

    9 Lays to ind 'xtrema:

    0omarison of unction values:

  • 8/18/2019 Calculus Note

    46/95

    46

    9

    ( ) 1 [ 9,9!

    J( ) 9

     f x x x on

     f x x

    = − + −

    = −

    ( ) $*;;M ( ) $*;;M

    9 9

    ( 9) * (9)

     f f  

     f f  

    = − − =

    − = − =

    As ax Value = at x =9 Gelative ax =F$*;;M at x=

    9

    As in value = F* at x=F9 Gelative in=$*;;M at

    9−

    As ax c hi&hest y value Gelative ax c f (x) &oes W to X 

    As ix c lo#est y value Gelative in c f (x) &oes X to W

  • 8/18/2019 Calculus Note

    47/95

    47

    irst Derivative Test:

    If f (c) = * or D

  • 8/18/2019 Calculus Note

    48/95

    48

    %F (x)

    1$ 3(c) = *

    A =

    − = − < = −

    GB C9:

  • 8/18/2019 Calculus Note

    49/95

    49

    1?;? 209

    0onsider the function f is defined y( ) cos [*, ! x f x e x with the domain   π =

    (a) ind the asolute maximum and minimum values of f(x)() ind the intervals on #hich f is increasin&

    (c) ind the xFcoordinate of each oint of inflection on &rah of f 

    7olution:

    (a)

    ( ) cos [*, !

    J( ) sin cos [cos sin !

    J( ) * sin cos , ,+ +

     x

     x x x

     f x e x with the domain

     f x e x e x e x x

     f x when x x x

    π 

    π π 

    =

    = − + = −= = =

    ax:

    e   π   in:

    I +

    e   π −

    ()

    Increasin& on

    [*, !,[ , !

    + +

    π π π 

    (c)

    JJ( ) [ sin cos ! [cos sin ! sinJJ( ) * *, ,

     x x x

     f x e x x e x x e x f x when x

     #$I at x

    π π 

    π 

    = − − + − = −= =

    =

  • 8/18/2019 Calculus Note

    50/95

    50

    otion on a ine:

    ovin& eftGi&ht:

    Velocity = v (t) = s3 (t)8article ovin& Gi&ht: v (t) *

    8article ovin& eft: v (t) % *

    8article at Gest: v (t) = *

    0han&e Direction:

    The article chan&es direction #hen v (t) or s3 (t) chan&es direction from

     ositive to ne&ative or ne&ative to ositive

    ( ) 9 1 s t t t = − −

    T 7(t) V(t)=tF9

    7eed=( )v t  V3(t)=A(t

    )

    A(t)=

    8article3s otion

    * F1 F9 9 ovin& eftAccel$ To Gi&ht

    7lo#in& Do#n

    1 F+ F1 1 ovin& eft

    Accel Gi&ht

    7lo#in& Do#n

    1$ F9$ * * 0han&es

    Direction

    F9 1 1 ovin& Gi&htAccel$ Gi&ht

    7eedin& u

    9 F1 9 9 ovin& Gi&ht

    Accel$ Gi&ht

  • 8/18/2019 Calculus Note

    51/95

    51

    7eedin& u

    7eed u7lo# Do#n:

    A(t) % * A(t) * A(t)=*

    V(t) % * 7eedin& P 7lo#in& Do#n 0onstant

    Velocity eft

    V(t) * 7lo#in& Do#n 7eedin& P 0onstant

    Velocity Gi&ht

    V(t) = * 7toed

    Accel eft

    7toed

    Accel Gi&ht

    7toed

     

  • 8/18/2019 Calculus Note

    52/95

    52

    Dislacement vs$ Total Distance:

    9

    ( ) [*, !

    ( ) 9

    ( ) * $;1=+? S

    (*) ($;1=+?) * () 1*

    : ( ) ( )

    1* ;

    tan : ( ) ( )

    1* 1

     x t t t 

    v t t 

    v t when t changes sign

    v v v

     Dis%lacment s f t t f t 

    units dis%laced 

    &otal Dis ce f t t f t  

    units traveled 

    = − += −= =

    = − = =

    ∆ = + ∆ −− + =

    + ∆ +

    + =

  • 8/18/2019 Calculus Note

    53/95

    53

    GB C+

    ** A2 9

    A article moves alon& the xFaxis so that its velocity v at time t, for 

    * t ≤ ≤is &iven y

    ( ) ln( 9 9)v t t t  = − +$ The article is at the osition

    x=; at time t=*

    (a) ind the acceleration of the article at time t=+

    () ind all times t in the oen interval* t < <

     at #hich the

     article chan&es direction$ Durin& #hich time intervals , for * t ≤ ≤

     does the article travel to the left

    (c) ind the osition of the article at time t=

    (d) ind the avera&e seed of the article over the interval* t ≤ ≤

    7olution:

    (a) a(+)=v (+)=

    M

    ()

    ( ) ln( 9 9)

    ( ) *

    9 9 1

    ( )( 1) * 1,

    ( ) * * 1

    ( ) * 1

    ( ) *

    v t t t  

    v t 

    t t 

    t t t 

    v t for t  

    v t for t  

    v t for t  

    = − +=

    − + =− − = =

    > < <

    < < <> < <

    The article chan&es direction H t=1,

    The article travels to the left #hen 1 % t %

  • 8/18/2019 Calculus Note

    54/95

    54

    (c)

    1

    *

    *

    ( ) (*) ln( 9 9)

    () ; ln( 9 9) ;$9=;

     s t s u u du

     s u u du

    = + − +

    = + − + =

    ∫ ∫ 

    (d)

    *

    1( ) $9M*

    v t dt   =∫ 

    Alications of Differential 0alculus

    ineari6ation:

    '-uation of tan&ent at x=a

    1 1( )

    ( ) J( )( )

    ( ) J( )( )

    ( ) ( ) ( ) J( )( )

     y y m x x

     y f a f a x a

     y f a f a x a

     f x L x f a f a x a

    − = −− = −= = −

    ≈ = = −

    ind the ineari6ation of f(x) at x=*

  • 8/18/2019 Calculus Note

    55/95

    55

    1I

    ( ) 1

    1 1J( ) (1 )

      1

    (*) 1 * 1 1

    1 1J(*)

    1 *

    1

    1 ( *)

    1( ) 1

     f x x

     f x x x

     f  

     f  

     y x

     y L x x

    = +

    = + =+

    = + = =

    = =+

    − = −

    = = +

    Differential:

    J( )

    J( )

    J( )

    dy f x

    dx

    dy f x dx

     Estimated Change dy f a dx

    =

    ==

     bsolute Error ctual Estimate= −

    'stimate the chan&e in the function value #hen x chan&es from to $*

  • 8/18/2019 Calculus Note

    56/95

    56

    9

    9 $* $*

    9 9

    (9 9)

    (9() 9)($*) $+

     y x x dx

    dy x

    dxdy x dx

    dy E'&I"&ED CHN(E  

    = − − = =

    = −

    = −

    = − =

    Actual 0han&e:

    9

    9

    () 9()

    ($*) $* 9($*) $+=

    $+= $+=

    $+= $+ $*1

     y

     y

     Error 

    = − == − =− == − =

    Gelated Gates 8rolems

    :

    :

    :

    S

     )ind Rate

    !hen Not Rate

    (iven Rate

     ) ( relatein an e*uation

  • 8/18/2019 Calculus Note

    57/95

    57

    1$ A hot air alloon is risin& and is trac"ed y a ran&e finder **ft$

    from the lift off oint$ Lhen the ran&e finder elevation an&le is+

    π 

    the an&le is increasin& at a rate of $1+ radians er minute$ 5o# fastis the alloon risin& at that momentQ

    :

    :+

    : $1+ I min

    dh )ind 

    dt 

    !hen

    d (iven rad  dt 

    π θ 

    θ 

    =

    =

    tan ** tan**

    **sec

    ** sec ($1+) 1+*+

    hh

    d dh

    dt dt  

    dh

    dt 

    θ θ 

    θ θ 

    π 

    = =

      = ÷

        = = ÷  

    The alloon is risin& at a rate of 1+*ftmin #hen+

    π θ  =

    $ Later runs into the tan", #hich is a cone #ith the radius of ft and

    the hei&ht of 1*ft, at a rate of 

    9? I min ft $ 5o# fast is the #ater

    level risin& #hen the #ater is ft deeQ

  • 8/18/2019 Calculus Note

    58/95

    58

    9

    :

    : =

    : ? I min

    dh )ind 

    dt 

    !hen h ft  

    dv(iven ft  dt 

    =

    =

    9

    1

    1*

    1

    9

    1 1

    9

    1

    1

    r r h

    h

    v r h

    v h h

    v h

    π 

    π 

    π 

    = =

    =

     =   ÷  

    =

    1

    +1

    ? (=)+

    1

    dv dhh

    dt dt  dh

    dt 

    dh

    dt 

    π 

    π 

    π 

    =

    =

    =

    The #ater level is risin& at a rate of

    1

    π ftmin #hen the #ater level

    is ft$

    Otimi6ation 8rolems:

    1$ A cylindrical tin can is to hold * cuic centimeters of >uice$

    5o# should the can e constructed (dimensions: r and h) in

  • 8/18/2019 Calculus Note

    59/95

    59

    order to minimi6e the amount of material needed in its

    construction$

    Z + r h ' r rhπ π π = = +

    *

    *

    + r h r h

    hr 

    π π 

    π 

    = =

    =

    in: 7urface Area

    *

    1**

    1**J + *

    1$??=

    *9$??

    (1$??=)

    J(1$??=) *

    JJ(1$??=) *

    min H 1$??=

    ' r rh

    ' r r  r 

    ' r r 

    ' r 

    r r 

    h

    'EC$ND DERI+&E&E'& 

    '

    '

    π π 

    π π π 

    π 

    π 

    π 

    = +  = +   ÷  

    = +

    = − =

    =

     = = ÷

     

    =

    >∴ =

    $ Le #ant to construct a ox #hose ase len&th is 9 times the

     ase #idth$ The material used to uild the to and ottom cost

  • 8/18/2019 Calculus Note

    60/95

    60

    1* I   ft and the material used to uild the sides costs

    = I   ft $ If 

    the ox must have a volume of

    9* ft determine the dimensions

    that #ill minimi6e the cost to uild the ox$

    1*( ) =( ) =* +;

    ** 99

    C lw wh lh w wh

    lwh w h hw

    = + + = +

    = = =

  • 8/18/2019 Calculus Note

    61/95

    61

    ( )

    9 9

    9 9

    :* ;**( ) =* +; =*

    9

    1* ;**J( ) 1* ;** JJ( ) 1* 1=**

    ;**1* ;** * 1$;;1

    1*

    1$;;1

    9 9(1$;;1) :$=+=9:*

    +$M*:*9 1$;;1

    (1$;;1) [=9M$=*

    C w w w ww w

    wC w w w C w ww

    w w

    w

    l w

    h

    − −

     = + = + ÷  

    −= − = = +

    − = = =

    =

    = = == =

    =

    /rah f(x) from f3(x) 8rolems:

    1$

  • 8/18/2019 Calculus Note

    62/95

    62

    (a) & increasin& : &3* : (F,) , (,9$)

    () & decreasin& : &3%* : (FM,F),(9$,+)(c)ax: &3=* and chan&es si&n W to F : x= 9$

    (d)in: &3=* and chan&es si&n X to W : x=F

    (e)0oncave u : &3 increasin& , &33*: [FM,F! [F,*! [,9!

    (f) 0oncave do#n : &3 decreasin& , &33%* : [*,! [9,+!

    (&)8OI: x= * , ,9

    $

  • 8/18/2019 Calculus Note

    63/95

    63

    (a) f(x) increasin& : f3 * : (a,c) (e, ∞

    ) (aove xFaxis)

    () f(x) decreasin& : f3%* (−∞

    ,a) (c,e) (elo# xFaxis)

    (c)f(x) max : f3=* And chan&es from W to F : x=c(d)f(x) min : f3=* And chan&es from X to W : x=a,e

    (e)f(x) concave u : f3 increasin& :(−∞

    ,),(d,∞

    )

    (f) f(x) concave do#n: f3 decreasin& : (,d)

    (&)8OI : maxmin of f3: x= ,d

    GB C

  • 8/18/2019 Calculus Note

    64/95

    64

    1?; A2

    The alloon sho#n is in the shae of a cylinder #ither the hemisherical

    ends of the same radius as that cylinder$ The alloon is ein& inflated at

    the rate of =1π  cuic centimeters er minute$ AT the instant the radius

    of the cylinder is 9 centimeters$ The volume of the alloon is1++π 

    cuic

    centimeters and the radius of the cylinder is increasin& at the rate of

    centimeters er minute$ (The volume of a cylinder isr hπ 

    and the

    volume of a shere is

    9+

    9r π 

    )

    (a) At this instant, #hat is the hei&ht of the cylinder 

    () At this instant, ho# fast is the hei&ht of the cylinder increasin&Q

    7olution:

    (a)

    9

    9

    +

    9

    +1++ (9) 9

    91

    + r h r  

    h

    h

    π π 

    π π π 

    = +

    = +

    =

    At this instant, the hei&ht is 1 centimeters$

    ()

    +

    =1 (9) (9)(1)() + (9) ()

    d+ dh dr dr  r rh r  

    dt dt dt dt  

    dh

    dt 

    dh

    dt 

    π π π 

    π π π π  

    = + +

    = + +

    =

    At this instant, the hei&ht is increasin& at the rate of

    centimeters er minute$

  • 8/18/2019 Calculus Note

    65/95

    65

    Theorem : undamental Theorem of 0al$:

    8art 1:

    Definition: If f is continuous on [a,! then the function

    ( ) ( ) x

    a f x f t dt = ∫ 

    has a derivative at every art in [a,! and

    ( ) ( )df d 

     f t dt f xdx dx

    = =

    Al&eraic 'xamle:

    ind the derivative of the function of &(x)

    +

    9

    +

    ( )

    J( )

     x

     g x t dt 

     g x x

    ==∫ 

  • 8/18/2019 Calculus Note

    66/95

    66

    8art :

    Definition: If f is continuous on [a,! and if is any antiFderivative of f

    on [a,! then

    ( ) ( ) ( )b

    a f t dt ) b ) a= −∫ 

    Al&eraic 'xamle:

    [ ]**

    I

    *

    cos( ) sin( ) sin( ) sin(*) sin( )

    cos( ) sin 1

     x  xt dt t x x

    t dt π  π 

    = = − =

     = = ÷  

    ∫ 

    ∫ 

  • 8/18/2019 Calculus Note

    67/95

    67

    [ ]   **1

    *

    1arctan( ) arctan( )

    1

    1arctan(1)

    1 +

     x  xdt t x

    dt  x

    π 

    = =+

    = =+

    ∫ 

    ∫ 

    GB C

    ** A2 +

    et f e a function that is continuous on the interval [*,+)$ The function f 

    is t#ice differentiale exect x= $ The function f and its derivatives

    have the roerties indicated in the tale aove, #here D

  • 8/18/2019 Calculus Note

    68/95

    68

    maximum or a relative minimum at each of these values$ 4ustify

    your ans#er 

    (d) or the function & defined in art (c) m find all values of x, for

    * %x % +, at #hich the &rah of & has a oint of inflection$

    4ustify your ans#er$

    7olution:

    (a) f has a relative maximum at x= ecause f chan&es from

     ositive to ne&ative at x=

    ()

    (c)J( ) ( ) * 1,9 g x f x at x= = =

    &3 chan&es from ne&ative to ositive at x=1 so & has arelative minimum at x=1$ &3 chan&es from ositive to

    ne&ative at x=9 so & has a relative maximum at x=9

    (d) The &rah of & has aoint of inflection at x= ecause

    &33=f3 chan&es si&n at x=

  • 8/18/2019 Calculus Note

    69/95

    69

    The Difference et#een \AntiFDerivatives:

    9

    +

    1

    +

    dy x

    dx

     x y x c

    = +

    = + +

    Indefinite Inte&rals:

    *

    9

    ( ) ( )

    J( ) ( )

    cos( ) sin( )

    9

     x

     g x f t dt 

     g x f x

     x dx x C 

     x x x x x C 

    =

    =

    = +

    + − = + − +

    ∫ 

    ∫ 

    ∫ Definite Inte&rals:

  • 8/18/2019 Calculus Note

    70/95

    70

    11

    9 9

    9

    J( ) ( )

    ( ) ( ) ( ) ( )

    += + = ;+

    b b

    aa

     ) x f x

     f x dx ) x ) b ) a

     x x dx x x x−−

    =

    = = −

     − + = − + = − + − − − − = ÷ ÷ ÷  

    ∫ 

    ∫ Accumulation unction:

    *( ) ( )

    () +

     s t f x dx

     s

    =

    =

    ∫ 

    ultile 0hoice Buestions CM:

    1$

    ;

    * 1

    dx

     x+∫ 

    (a)1()9

    (c)

    (d)+

    (e)

    0orrect ans#er is D

    ;;

    *   * 1 = +

    1

    dx x

     x

    = + = − =

    +

    ∫ 

    $

    1

    * 1 x x dx is− +∫ 

    (a)F1

    ()F1

  • 8/18/2019 Calculus Note

    71/95

  • 8/18/2019 Calculus Note

    72/95

    72

    1 1

    1 1

    1 1

    1 1sin ( ) csc ( )

    1 1

    1 1cos ( ) sec ( )1 1

    1 1tan ( ) cot ( )

    1 1

     x C dx x C dx x x x

     x C dx x dx x x x

     x C dx x dx x x

    − −

    − −

    − −

    + = + = −− −

    + = − =− −

    + = = −+ +

    ∫ ∫ 

    ∫ ∫ 

    ∫ ∫ 'xonential and o&arithmic unctions:

    ln( )

    1 1ln lo&

    ln

     x x x x

    a

    e C e dx a C a a dx

     x C dx x C dx x x a

    + = + =

    + = + =

    ∫ ∫ ∫ ∫ 

    8o#er Gule:

    Lhat is

    9 x dx∫ Q

    Le can use the 8o#er Gule, #here n=9

    1

    +9

    ( 1)

    +

    nn   x

     x dx C n

     x x dx C 

    +

    = ++

    = +

    ∫ ∫ 

  • 8/18/2019 Calculus Note

    73/95

    73

    Lhat is

     x dx∫ Q

    Le can use the 8o#er Gule, #here n=1

    1

    1$$

    ( 1)

    1$

    nn   x x dx C 

    n

     x x dx C 

    +

    = ++

    = +

    ∫ 

    ∫ PF7ustitution:

    Inte&rate( ) ( )

     M  x x x dx+ +∫ 

    ( ) ( )  ( )

    ;;

    M M

    :

    ( :)

    : : :

    ; ;

    u x x

    du x dx

     x xu x x x dx u du C C 

    = +

    = +

    ++ + = = + = +∫ ∫ 

    ultile 0hoice Buestions C;:

    1$

    sec tan x xdx =

    ∫ (a)

    sec x C +

    ()tan x C +

  • 8/18/2019 Calculus Note

    74/95

    74

    (c)

    tan

     xC +

    (d)

    sec

     x

    C +

    (e)

    sec tan

     x xC +

    0orrect ans#er is A

    sec tan sec

    sec sec tan

     x xdx x C 

    dy x x x

    dx

    = +

    =

    ∫ 

    $

    ;

    * 1

    dx

     x=

    +∫ (a)1

    ()9

    (c)(d)+

    (e)

    0orrect ans#er is D

    ?; ?1I 1I

    * 1   1 +

    1

    1 (;) ? (*) 1

    dxu u

     x

    u x du dx u u

    − = = = +

    = + = = =

    ∫ ∫ 

    8roerties of Definite Inte&rals:

  • 8/18/2019 Calculus Note

    75/95

    75

    1$ $ Le can interchan&e the limits on any

    definite inte&ral, all that #e need to do is tac" a minus si&n onto the

    inte&ral #hen #e do$

    $ $ If the uer and lo#er limits are the same then

    there is no #or" to do, the inte&ral is 6ero$

    9$ , #here c is any numer$ 7o, as #ith

    limits, derivatives, and indefinite inte&rals #e can factor out a

    constant$

    +$ $ Le can rea"

    u definite inte&rals across a sum or difference$

    $ #here c is any numer$

    This roerty is more imortant than #e mi&ht reali6e at first$ One of 

    the main uses of this roerty is to tell us ho# #e can inte&rate a

    function over the ad>acent intervals, [a,c! and [c,b!$

  • 8/18/2019 Calculus Note

    76/95

    76

    1$

    1

    * 1 x x dx is− +∫ 

    (a) F1

    () F1(c) ]

    (d) 1

    (e)

  • 8/18/2019 Calculus Note

    77/95

    77

    1 1 1sin( 9) sin cos cos( 9)

    1

    9

     x dx udu u C x

    u x du dx du dx

    + = = − + = − + +

    = + = =

    ∫ ∫ 

    Arox$ Areas: GA, GGA, GA

    rom '-uation

    The velocity of an o>ect in motion is modeled y the function

    ( ) +v t t t  = −$ ind the aroximate total distance traveled in the first +

    seconds usin& Giemann 7ums #ith + suintervals$

    GA:

    [ ] [ ]

    + *1

    +

    (*) (1) () (9) 1 * 9 + 9 1*

     x

     LR" x v v v v

    −∆ = =

    ∆ + + + = + + + =

  • 8/18/2019 Calculus Note

    78/95

    78

    GGA:

    [ ] [ ]

    + *1

    +

    (1) () (9) (+) 1 9 + 9 * 1*

     x

     RR" x v v v v

    −∆ = =

    ∆ + + + = + + + =

    GA:

    [ ] [ ]

    + *1

    +

    ($) (1$) ($) (9$) 1 1$M 9$M 9$M 1$M 11

    -

     "R" - v v v v

    −= =

    + + + = + + + =

  • 8/18/2019 Calculus Note

    79/95

    79

    rom Tale:

    The Tale elo# sho#s the velocity of a model train en&ine movin&

    alon& a trac" for 1* seconds$ 'stimate the distance traveled y the

    en&ine usin& 1* suintervals of the len&th 1 usin& GA and GGA

    Time (sec) Velocity (insec) Time

    (sec)

    Velocity

    (insec)

    * * 11

    1 1 M

    ;

    9 1* ?

    + 1* *

    1

    [ ] [ ]

    [ ] [ ]

    1

    (*) (1) ()$$$ (?) 1 * 1 1* : 1 11 = = ;M

    (1) () (9)$$$ (1*) 1 1 1* : 1 11 = = * ;M

     LR" t v v v v in

     RR" t v v v v in

    ∆ =

    = ∆ + + + = + + + + + + + + + =

    = ∆ + + + = + + + + + + + + + =

     

  • 8/18/2019 Calculus Note

    80/95

    80

    [ ] [ ]

    (*) () (+)$$$ (1*) * : 11 * ;*

     "R" t v v v v in

    ∆ =

    = ∆ + + + = + + + + + =

    rom /rah:

    [ ]( ) 1 *,  f x x on= + 

    To estimate, divide u intosuintervals

    et3s use + intervals

    GGA:

  • 8/18/2019 Calculus Note

    81/95

    81

    GGA uses the ri&ht

    endoint of each interval to

    define the hei&ht of the

    rectan&le

    The #idth of each rectan&le

    is ]

    GA:

    GA uses the left endoint

    of each su interval to define

    the hei&ht of the rectan&le$

    The #idth of each rectan&le

    is ]

  • 8/18/2019 Calculus Note

    82/95

    82

    GA:

    GA uses the midoint of

    each su interval to define

    the hei&ht of the rectan&le

    The #idth of each rectan&le

    is ]

    ore rectan&les = etter estimate

    Trae6oidal Arox$:

    rom '-uation:

    4ust li"e in the other rules #e rea" u the interval [a,!

    into n suintervals of #idth

     

  • 8/18/2019 Calculus Note

    83/95

    83

    Psin& n=+ aroximate the value of the follo#in& inte&ral:

    *

     xe dx∫ 

    ( )

    *

    * $ 1 1$

    *

    * 1

    +

    1I *$=++?*

     x

     x

    e dx

     x

    e dx e e e e e

    −∆ = =

    ≈ + + + + =

    ∫ 

    ∫ 

    rom Tale

    T (sec) * 1 9* 9 * *

    V(t)

    (ftsec)

    * 9* * 1+ 1* * 1*

    A car travels on a strai&ht trac"$ Durin& the time interval * * ^ ^t

    seconds, the car3s velocity v, measured in feet er second is a continuous

    function$

    Aroximate

    =*

    9*( )v t dt ∫ 

    usin& a trae6oidal aroximation #ith 9

    suintervals determined y the tale

  • 8/18/2019 Calculus Note

    84/95

    84

    ( ) ( ) ( ) ( ) ( )

    =*

    9*( )

    1 1 11+ 1* 1* 1 1* 1* 1;

    v t dt 

      ft = + + + =

    ∫ 

    otion on a ine usin& Inte&ration

    8osition:

    J( ) ( )

    ( ) ( )

     x t v t so

    v t dt x t C  

    =

    = +∫ 

    Dislacement vs$ Total Distance:

    Dislacement:

    ( )b

    av t dt ∫ 

    Total Distance:

  • 8/18/2019 Calculus Note

    85/95

    85

    ( )b

    av t dt  ∫ 

    ind the total distance traveled y a ody and the odyJs dislacement

    for a ody #hose velocity is v (t) = sin 9t on the time interval

    *

    t    π ≤ ≤

    Dislacement:

    I I

    **=sin 9 cos 9 cos 9( ) cos 9(*)

    t dt t  

    π  π     π  

    = − = − − − =∫ 

    Total Distance:

    I9 I I9 I

    * I9* I9

    I

    *

    =sin 9 * *,9

    (*, ) ( ) * ( , ) ( ) *9 9

    =sin 9 = sin 9 cos 9 cos 9 =

    = sin 9 =

    t t 

    v t v t  

    t dt t dt t t  

    $R

    t dt 

    π π  π π 

    π π 

    π 

    π 

    π π π 

    = =

    > <

    − = − + =

    =

    ∫ ∫ 

    ∫ 

    Differential '-uations:

    Definition: A differential e-uation is the relationshi satisfied y the

    function and its derivative$

    7olvin& Differential '-uations:1$ ind the articular solution to y=f(x) to the differential e-uation

    1dy y

    dx x

    −=

    #ith the initial condition f()=*

  • 8/18/2019 Calculus Note

    86/95

    86

    ( )

    1

    1 1

    1

    1 1

    1

    1ln 1

    1

    1

    ( ) 1 , *

    C c C  x x

     x

    dy dx

     y x

     x y C C 

     x

     y e e e k e

    k e

     f x e x

    − −+

     − ÷  

    =−

    −− = + = +

    −− = = = ±

    = −

    = − >

    ∫ ∫ 

    $ ind the articular solution to y=&(x) to the differential e-uation

    dy xydx

    −=

    #ith the initial condition f(F1)=

    1

    +

    1 1 1Z

    + +

    +

    1

    dy xdx

     y

     xC 

     y

    C C 

     y x

    = −

    − = − +

    − = − + = −

    =+

    ∫ ∫ 

    Dra#in& a 7loe ield

  • 8/18/2019 Calculus Note

    87/95

    87

    Analysis of a 7loe ield

    indin& the solution at (1, 1)

    ultile 0hoice Buestions C1*:

  • 8/18/2019 Calculus Note

    88/95

    88

    1$ The acceleration a(t) of a ody movin& in a strai&ht line is &iven

    terms of time t y a=;Ft$ If the velocity of the ody is at t=1

    and if s(t) is the distance of the ody from the ori&in at the time

    t, #hat is s(+)Fs()

    (a) *

    () +

    (c) ;

    (d) 9

    (e) +

    0orrect ans#er is D

    +   + 9

    ( ) ( ) ; = ; 9

    (1) ;(1) 9(1) *

    ; 9 * + * 9

    v t a t dt tdt t t C  

    v C c

    t t dt t t t  

    = = − = − += − + = ∴ =

    − + = − + =

    ∫ ∫ 

    ∫ $

    Lhat differential e-uation is onthe sloefieldQ

    (a) xy

    () yx

    (c) xy

    (d) yW

    (e) xWy

    0orrect ans#er is A2c hori6ontal asymtotes at y=x and hori6ontal

    asymtotes

    GB CM:

  • 8/18/2019 Calculus Note

    89/95

    89

    0onsider the differential e-uation

    ( 1)dy

     x ydx

    = −

    (a) On the axes rovided, s"etch a sloe field for &iven differential

    e-uations at the t#elve oints indicated

    () Lhile the sloe field in art (a) is dra#n at only 1 oints, it is

    defined at every oint in the xyFlane$ Descrie all oints in the

    xyFlane for #hich the sloes are ositive

    (c) ind the articular solution y=f(x) to the &iven differential

    e-uation #ith the initial condition f(*)=9

    7olution:

    (a)

    () 7loes are ositive at the oints (x,y) #here* 1 x and y≠ >

    (c)

    9

    9

    9

    9

    1

    9

    1

    9

    *

    1

    9

    ( 1)

    1ln 1

    9

    1

    1 ,

    1

     xC 

     xC 

     x

    dy x dx

     y

     y x C 

     y e e

     y .e . e

     .e . 

     y e

    =−

    − = +

    − =

    − = = ±

    = =

    = +

    ∫ ∫ 

  • 8/18/2019 Calculus Note

    90/95

    90

    Alications of Inte&rals:

    Avera&e value of a function:

    ( )

    ( )

    I 9

    11

    ( ) = cos 1,

    1 1 = = cos sin( ) 1$=*??9

      M 9 ( 1)

    avg 

     f t t t t on

     f t t t t t 

    π 

    π π π − −

    = − + −

     = − + = − + = − ÷  − −

      ∫ 

    Areas:

    To find the area under the curve

    you do

    ( ) ( )

    ( ) ( )

    ( ) ( )b

    a

    b

    a

      f x g x dx $R

      /%%er )unc Lower )unc dx

    = −

    = −

    ∫ 

    ∫ 

    To find the area in et#een a curve

    you do

    ( ) ( )

    ( ) ( )

    ( ) ( )d 

    c

    c

      f y g y dx $R

      Right )unc Left )unc dx

    = −

    = −

    ∫ 

    ∫ 

  • 8/18/2019 Calculus Note

    91/95

    91

    'xamle:

    ( )   ( )

    *

    1 9$*? x  x xe dx−= + − =

    ∫ Volumes:

    Dis":

    ind the Volume &enerated y revolvin& the re&ion ounded y

    9 , 9, 1*, 9 y x the line y and the line x above the line y= = = =

    ( ) 1*

    19 9 *+$9*?+ x dxπ = − =∫ 

  • 8/18/2019 Calculus Note

    92/95

    92

    Lasher:

    ind the Volume &enerated y revolvin& the re&ion ounded y

     y x x= + + and the line + y x= − + aout the xFaxis

    $=1

    9$=1

    $=1

    9$=1

    +

    ( )

    (( +) ( ) ) M;$?9

     R x

    r x x

    + R r dx

    + x x x dx

    π 

    π 

    = − +

    = + +

    = −

    = + − + + =

    ∫ 

    ∫ 

    7hells:

    Gectan&le arallel to axis of rotation ( )( )+ shell rad shell height  π =

  • 8/18/2019 Calculus Note

    93/95

    93

    ind an exression for the volume &enerated y revolvin& the re&ion

     ounded y

    9  y x x y x= + =and revolved aout the xFaxis

    ( )( )( )

    9

    1$9;1?==9

    *

    ( )

    ( ) $9=

    r x h x x x

    + x x x x dxπ 

    = = + −= + − =∫ 

    0ross 7ections:

    ind the cross sections of

    +

     y x

     y

    = +=

    usin& 7-uares, '-uilateral Trian&les,

    and 7emi 0ircles

    7-uares:

    ( )( )

    + ( )

    =$*99

     s x x

      s x

    + x dx−

    = − + = −

    = = −

    = − =∫ 

    'BT:

  • 8/18/2019 Calculus Note

    94/95

    94

    ( )

    ( )

    + ( )

    9 9

    + +

    9 $=1M+

     s x x

      s x

    + x dx−

    = − + = −

    = = −

    = − =∫ 

    7emiF0ircle:

    ( )

    ( )

    + ( )

    ; ;

    $9=?9;

     s x x

      d x

    + x dx

    π π 

    π −

    = − + = −

    = = −

    = − =∫ 

    GB C;

    7olution

    (a)

    ( ) ( )( )1 1

    * *( ) ( ) 1 9 1 1$199 rea f x g x dx x x x x dx= − = − − − =∫ ∫ 

  • 8/18/2019 Calculus Note

    95/95

    95

    ()

    ( ) ( )( )

    ( )( )

    1

    *

    1

    *

    ( ) ( )

    ( 9( 1) ) (1 ) 1=$M1?

    +olume g x f x dx

     x x x x dx

    π 

    π 

    = − − − =

    − − − − − =

    ∫ 

    ∫ 

    (c)

    ( )

    ( ) ( )( )

    1

    *

    1

    *

    ( ) ( )

    1 9 1 1

    +olume h x g x dx

    kx x x x dx

    = −

    − − − =

    ∫ 

    ∫