calibraonoftheobservingsimulaonsystem experiment(osse ......calibraonoftheobservingsimulaonsystem...

1
Calibra’on of the Observing Simula’on System Experiment (OSSE) use to assess the Impact of Geosta’onary Hyperspectral Data Agnes Lim, James Jung, Allen Huang and Zhenglong Li Coopera7ve Ins7tute for Meteorological Satellite Studies Mo’va’on To demonstrate and access the impact of high temporal, high spa’al and high spectral satellite infrared radiances on regional; NWP analyses and forecasts. Acknowledgements : The T511NR was provided by Erik Andersson, ECMWF. Simulated observa7ons for 20052006 was provided by Michiko Masutani, NCEP/EMC through the Joint OSSE. We would also like to thank Jack Woollen NCEP/EMC for the assistance rendered in genera7ng the 3hour BUFR files. 1. Observing Simula’on System Experiment (OSSE) Aim to assess the impact of a hypothe’cal data type on a forecast system. Methodology (Figure 1) Nature run Simulate exis’ng observa’ons. Control run assimila’ng simulated exis’ng observa’ons. Simulate candidate observa’ons. Perturba’on run with the addi’on of simulated candidate observa’ons. Comparison of forecast skill between the control and perturba’on run. 2. Nature Run (NR) A long, uninterrupted forecast generated by state of the art numerical weather predic’on (NWP) model at the highest resolu’on possible. ECMWF Nature Run (NR) Horizontal resolu’on: T511 (40km). Number of ver’cal levels: 91. Period covers 2005051020060531 (3hour write ups). 3. Simula’on of observa’ons for exis’ng observing systems Noise free conven’onal and exis’ng satellite sensors based on the NR ’me period were provided by NOAA/NCEP. Conven’onal data Rawinsonde : ver’cally correlated Gaussian errors added to T, q, u and v component of winds. Other datasets Noncorrelated Gaussian random errors with standard devia’on based on GSI observa’onal error table. Satellite Data – sum of Gaussian random error with standard devia’on based on sensor NEDT and forward model error. No spa’al and spectral correla’ons. 5. Assimila’on System, NWP model and its configura’on GSI3DVAR, DTC version 3.2. WRFARW version 3.2.1. 250 by 200 by 75 gridpoints with a horizontal resolu’on of 80km. Model top at 1hPa. Ini’al and boundary condi’ons from GFS T254 from GDAS analyses or OSSE T126 analyses. 7. Calibra’on Verifies that the simulated data impact is comparable to that of real observa’ons. Innova’ons (OB) and analysis errors (OA) of observa’on type from OSSE should be sta’s’cally similar to that of real world assimila’on. Standard devia’on of OB and OA for radwinsode (T and q) show largest difference between REAL and OSSE occurs near the surface (Figure 2). Standard devia’on of OB and OA for nonsurface sensi’ve channels were predy similar between REAL and OSSE (Figure 3). Sta’s’cal proper’es of analysis increments for OSSE and real world should match. Largest differences in analysis increments over land surface and these loca’ons are approximate loca’ons of rawinsondes (Figure 4). Figure 1 Elements of the GEOHyperspectral OSSE Figure 2 Standard devia’on of (a) temperature [K] and (b) moisture )g/kg) for rawinsondes as a func’on of pressure for REAL (black), OSSE observa’ons with no errors added (red) and OSSE observa’ons with errors added (blue). 8. Next step As the performance of assimila’ng exis’ng observing network in the OSSE does not match the REAL. Adjustments of synthe’c errors added to simulated observa’ons, star’ng from rawinsondes. Longer calibra’on ’me period and other verifica’on sta’s’cs. Single case study with the addi’on of geosta’onary hyperspectral infrared data. Figure 4 Temporal standard devia’on of analysis increments for temperature [K] and ucomponent wind [m/s]. 6. Experimental Design Experiment ’me period : 15 – 28 September 2005 5 weeks of bias coefficients spin up for REAL and OSSE from 5 August – 14 September 2005. Data assimilated : Conven’onal data, AMSUA from NOAA15 and AQUA, AMSUB and HIRS3 from NOAA17 and AIRS from AQUA. Email : [email protected] Components of GEOHYPERSPECTRAL Sensor OSSE ECMWF Nature Run OSSE Impact Assessment Valida’on and Refinement DA System NWP Model Current System: Rawinsondes, Surface, Aircra\, Satellite winds Microwave radiances (AMSUA, AMSUB Infrared Radiances (HIRS3, AIRS) Future System: Geohyperspectral imager IASI like) Genera’ng Simulated Observa’ons GSI WRF4DVAR UKMO Unified Model WRF UKMO Unified Model (a) (b) Figure 3 Standard devia’on of OB [K] and OA [K] for different channels on NOAA15 AMSUA for REAL (black), OSSE observa’ons with no errors added (red), OSSE observa’ons with errors added (blue) and NEDT (magenta). 4. Geosta’onary Hyperspectral Data An IASilike sensor placed in the geosta’onary orbit. Simulated sensor will have observa’ons every 3 hours. Simulated geo hyperspectral data treated as a thinned dataset. Clear sky RT model SARTA V1.07 (Strow et al. 2003) Cloudy sky RT model (Wei et al. 2004) Input: cloudtop pressure, cloud op’cal thickness, cloud phase, par’cle radius, Single layer model. REAL OSSE : Observa’ons with no errors added OSSE : Observa’ons with errors added Temperature @ 500 hPa Uwind @ 250 hPa

Upload: others

Post on 05-Nov-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CalibraonoftheObservingSimulaonSystem Experiment(OSSE ......CalibraonoftheObservingSimulaonSystem Experiment(OSSE)usetoassesstheImpactof* Geostaonary* HyperspectralData Agnes&Lim,&James&Jung,&Allen&Huang&and&Zhenglong&Li

Calibra'on  of  the  Observing  Simula'on  System  Experiment  (OSSE)  use  to  assess  the  Impact  of  

Geosta'onary  Hyperspectral  Data  Agnes  Lim,  James  Jung,  Allen  Huang  and  Zhenglong  Li      

Coopera7ve  Ins7tute  for  Meteorological  Satellite  Studies    

Mo'va'on  To  demonstrate  and  access  the  impact  of  high  temporal,  high  spa'al  and  high  spectral  satellite  infrared  radiances  on  regional;  NWP  

analyses  and  forecasts.  

Acknowledgements   :  The  T511NR  was  provided  by  Erik  Andersson,  ECMWF.  Simulated  observa7ons  for  2005-­‐2006  was  provided  by  Michiko  Masutani,  NCEP/EMC  through  the  Joint  OSSE.  We  would  also  like  to  thank  Jack  Woollen  NCEP/EMC  for  the  assistance  rendered  in  genera7ng  the  3-­‐hour  BUFR  files.  

1.  Observing  Simula'on  System  Experiment  (OSSE)  §  Aim  to  assess  the  impact  of  a  hypothe'cal  data  type  on  a  forecast  system.  §  Methodology  (Figure  1)  

§  Nature  run  Simulate  exis'ng  observa'ons.  §  Control  run  assimila'ng  simulated  exis'ng  observa'ons.  §  Simulate  candidate  observa'ons.  §  Perturba'on   run   with   the   addi'on   of   simulated   candidate  observa'ons.    §  Comparison   of   forecast   skill   between   the   control   and   perturba'on  run.  

2.  Nature  Run  (NR)  §  A   long,   uninterrupted   forecast   generated   by   state   of   the   art   numerical  

weather  predic'on  (NWP)  model  at  the  highest  resolu'on  possible.    §  ECMWF  Nature  Run  (NR)  

§   Horizontal  resolu'on:  T511  (40km).  §   Number  of  ver'cal  levels:  91.  §   Period  covers  20050510-­‐20060531    (3-­‐hour  write  ups).  

3.  Simula'on  of  observa'ons  for  exis'ng  observing  systems  •  Noise  free  conven'onal  and  exis'ng  satellite  sensors  based  on  the  NR  'me  

period  were  provided  by  NOAA/NCEP.  •  Conven'onal  data  

•  Rawinsonde  :  ver'cally  correlated  Gaussian  errors  added  to  T,  q,  u  and  v  component  of  winds.  

•  Other   datasets   –   Non-­‐correlated   Gaussian   random   errors   with  standard  devia'on  based  on  GSI  observa'onal  error  table.  

•  Satellite   Data   –   sum   of   Gaussian   random   error   with   standard   devia'on  based   on   sensor   NEDT   and   forward  model   error.   No   spa'al   and   spectral  correla'ons.  

5.  Assimila'on  System,  NWP  model  and  its  configura'on  •  GSI-­‐3D-­‐VAR,  DTC  version  3.2.  •  WRF-­‐ARW  version  3.2.1.  •  250  by  200  by  75  gridpoints  with  a  horizontal  resolu'on  of  80km.    •  Model  top  at  1hPa.  •  Ini'al  and  boundary  condi'ons  from  GFS  T254  from  GDAS  analyses  or  OSSE  

T126  analyses.  

7.  Calibra'on  •  Verifies   that   the   simulated   data   impact   is   comparable   to   that   of   real  

observa'ons.  •  Innova'ons  (O-­‐B)  and  analysis  errors  (O-­‐A)  of  observa'on  type  from  OSSE  

should  be  sta's'cally  similar  to  that  of  real  world  assimila'on.    •  Standard  devia'on  of  O-­‐B  and  O-­‐A   for   radwinsode   (T  and  q)   show   largest  

difference  between  REAL  and  OSSE  occurs  near  the  surface  (Figure  2).  •  Standard  devia'on  of  O-­‐B  and  O-­‐A  for  non-­‐surface  sensi've  channels  were  

predy  similar  between  REAL  and  OSSE  (Figure  3).  •  Sta's'cal  proper'es  of  analysis  increments  for  OSSE  and  real  world  should  

match.  •  Largest   differences   in   analysis   increments   over   land   surface   and   these  

loca'ons  are  approximate  loca'ons  of  rawinsondes  (Figure  4).  

Figure  1  Elements  of  the  GEO-­‐Hyperspectral  OSSE  

Figure  2     Standard  devia'on  of   (a)   temperature   [K]  and   (b)  moisture   )g/kg)   for  rawinsondes  as  a   func'on  of  pressure   for  REAL   (black),  OSSE  observa'ons  with  no  errors  added  (red)  and  OSSE  observa'ons  with  errors  added  (blue).  

8.  Next  step  •  As  the  performance  of  assimila'ng  exis'ng  observing  network  in  the  OSSE  

does  not  match  the  REAL.  •  Adjustments  of   synthe'c  errors  added   to   simulated  observa'ons,   star'ng  

from  rawinsondes.    •  Longer  calibra'on  'me  period  and  other  verifica'on  sta's'cs.  •  Single  case  study  with  the  addi'on  of  geosta'onary  hyperspectral  infrared  

data.  

Figure   4   Temporal   standard   devia'on   of   analysis   increments   for  temperature  [K]  and  u-­‐component  wind  [m/s].  

6.  Experimental  Design  •  Experiment  'me  period    :  15  –  28  September  2005  •  5  weeks  of  bias  coefficients  spin  up  for  REAL  and  OSSE  from  5  August  –  14  

September  2005.  •  Data   assimilated   :   Conven'onal   data,   AMSU-­‐A   from  NOAA-­‐15   and  AQUA,  

AMSU-­‐B  and  HIRS-­‐3  from  NOAA-­‐17  and  AIRS  from  AQUA.    

Email  :  [email protected]  

Components  of  GEO-­‐HYPERSPECTRAL  Sensor  OSSE  

ECMWF  Nature  Run  

OSSE  Impact  Assessment  

Valida'on  and  

Refinement  

DA  System  

NWP  Model  

Current  System:    Rawinsondes,  Surface,  Aircra\,  Satellite  winds  Microwave  radiances  (AMSU-­‐A,  AMSU-­‐B    Infrared  Radiances  (HIRS-­‐3,  AIRS)    Future  System:    Geo-­‐hyperspectral  imager  IASI-­‐like)  

Genera'ng  Simulated  Observa'ons  

GSI  WRF-­‐4DVAR  UKMO  Unified  Model  

WRF  UKMO  Unified  Model  

(a)  

(b)  

Figure   3   Standard   devia'on   of   O-­‐B   [K]   and  O-­‐A   [K]   for   different   channels   on  NOAA-­‐15  AMSU-­‐A   for   REAL   (black),  OSSE   observa'ons  with   no   errors   added   (red),    OSSE  observa'ons  with  errors  added  (blue)  and  NEDT  (magenta).  

4.  Geosta'onary  Hyperspectral  Data  •  An  IASi-­‐like  sensor  placed  in  the  geosta'onary  orbit.      •  Simulated  sensor  will  have  observa'ons  every  3  hours.    •  Simulated  geo  hyperspectral  data  treated  as  a  thinned  dataset.  •   Clear  sky  RT  model  -­‐  SARTA  V1.07  (Strow  et  al.  2003)  •  Cloudy   sky   RT   model   (Wei   et   al.   2004)   -­‐   Input:   cloud-­‐top   pressure,  

cloud   op'cal   thickness,   cloud   phase,   par'cle   radius,   Single   layer  model.  

REAL  

OSSE  :  Observa'ons  with  no  errors  

added  

OSSE  :  Observa'ons  with  errors  added  

Temperature    @  500  hPa         U-­‐wind    @  250  hPa