calibrationand dynamic matching in data convertersweb.ece.ucdavis.edu/~lewis/213/isscc16.pdf ·...

43
Calibration and Dynamic Matching in Data Converters Kenneth C. Dyer, John P. Keane 1 , and Stephen H. Lewis 2 1 Keysight Technologies Inc., Santa Clara, CA USA 2 University of California, Davis, CA USA 1

Upload: phamdung

Post on 01-Aug-2018

229 views

Category:

Documents


1 download

TRANSCRIPT

Calibration and Dynamic Matching in Data Converters

Kenneth C. Dyer, John P. Keane1, and Stephen H. Lewis2

1 Keysight Technologies Inc., Santa Clara, CA USA

2 University of California, Davis, CA USA

1

Outline

• Calibration of DAC Mismatch

• Dynamic Element Matching

• Calibration of Pipelined ADCs

• Calibration of Time-Interleaved ADCs

2

ADCs use DACs

Vin +

Comparator

LogicOut

DAC

SAR ADC

Vin+ Σ

Integrator

∫+−

Comparator

DAC

Dig.Filter

Out

∆Σ ADC

• DACs can limit ADC performance

• DAC calibration improves ADCs

3

Laser Trimming an R-2R Ladder DACIout

2RN−2

RN−1 ≈ R RN ≈ R

IN−2

BN−2

2RN−1

IN−1

BN−1

2RN

IN

BN

IT

2R

Cal

• Holloway and Norton, ISSCC76 [1]

• If IN−1 < IN + IT , trim RN

• If IN−1 > IN + IT , trim 2RN−1

• Single-pass trim (start on right and move to left) improves linearity

4

Fuse Trimming• Early ref: McGlinchey, ISSCC82 [2] (Trims at wafer sort)

R0

VBIAS1

VBIAS3

SR bitEnableF0

VDD=5 V R1Poly

Output

SR bitEnableF1

• de Wit et al., JSSC 4/93 [3] (Uses low volt pulses after packaging)

• Fuses may not open completely and may heal

• Blow either R0 or R1 and compare to each other

• Customers like trimming

5

Analog Foreground Cal. of Capacitor Mismatch

C1

VFS

Vtop = 0

C2

t < 0

C1

Vtop

C2

VFSt > 0

t

VtopC2>C1

C1>C2

2C C

Vtop

C C

SwitchArray

R-StrDAC

Calib.RAM• Lee et al., JSSC 12/84 [4]

• Used to improve linearity in a charge-redistribution SAR ADC

• Vtop driven back to zero by R-string DAC (low DNL)

• Errors measured at powerup and can be remeasured any time

• Does not require lasers or non-volatile memory

• Does not require special fab or test equipment

6

Analog Background Cal. of Current Mismatch

+Vgs1−

I1

+Vgsi−

Ii

+Vgsn−

In

Switch array

Iout To calibrate Ii

Ii = Iref

Iref

+Vgsi−

• Groeneveld et al., JSSC 12/89 [5]

• Adjusts each Vgs to set I1 = ... = Ii = ... = In = Iref

• Uses an extra current source

• Early example of background calibration

7

Quadratic Voltage Coefficient

AnalogInput

Digital Output

Ideal

With QVC

V1

Dv1

V2

Dv2

Vr

DvrVrh

R1

R2

Vrl

+V1−+V2−

Vr

+

To top plate of main array

Cg

VoNonlin Function GenVo=k(V

2r − V2

in)Vin

Vr

VnVp• Tan et al., JSSC 12/90 [6]

• C ≈ C0(1 + α1V + α2V2)

• Quadratic VC causes 3rd order error (Q =∫C · dV )

• Cancel error with equal and opposite correction voltage

• Cal on chip with V1 ≈ V2 ≈ Vr/2 and V1 + V2 = Vr

• Use error= Dv1 + Dv2 − Dvr to set Cg to cal gain

8

Digital Foreground Calibration of DAC Mismatch

Vin Σ H1(z)4-bitADSC

24×16-bitEPROM

Out

4-bitDAC

4 16

4

• Cataltepe et al., ISCAS 1989 [7]

• If loop gain→ ∞, DAC output= Vin on average

• If DAC is nonlinear, ADSC output has inverse nonlinearity

• Program EPROM with same nonlinearity to linearize the modulator

• Reconfigure as a single-bit∆Σ to measure DAC in foreground

• In∆Σ converter, downsample after EPROM

• Early example of on-chip digital foreground calibration

9

Dynamic Element Matching

IMirror

I1 ≈ I/2

I2 ≈ I/2Switches

I3

I4

Clk

• van de Plassche, JSSC 12/76 [8]

• Use matched elements with time-division multiplexing

• I3 = I4 on average even if I1 6= I2

10

Dynamic Matching in a Delta-Sigma DAC

Dig.In3 3-to-7Decoder

7

Randomizer

Unit Element1

Unit Element8

8Σ Analog

Out1

RNG

12

• Carley and Kenney, CICC 1988 [9]

• Randomize DAC elements

• Decorrelate DAC elements usage from input

• Nonlinearity improves on average

• Nonlinearity→ white noise

• ILA (Leung and Sutarja, TCASII 1/92 [10]) gives shaped noise

11

Data-Weighted Averaging

VDD

+VO−

Code = 110 VDD

+VO−

Code = 011

0 0.05 0.1 0.15 0.2 0.25−160−140−120−100−80−60−40−20

0

fin/fs

dB

FixedRandomDWA

• Baird and Fiez, JSSC 12/95 [11]

• Only care about low-freq. noise→ shape error to high freq.

• Use DAC elements in sequence

• Higher-order shaping is possible

12

Pipelined ADC

VinSHA

Stage

1

Σ G

SHA

Vo1Vin1

ADSC DAC

d1

−VDAC1

Stage

N

+

• Insensitive to offset errors with redundancy

• Main Performance limitations:

Interstage gain errors

DAC nonlinearity

13

Ratio-Independent Gain

Vi

φ1

C2

+∞

C1

C2

+

φ2

C1

Vo=C2

C1Vi

Vi

φ3

C2

+∞

C1

C2

+

φ4

C1

Vo=2Vi

• Li et al., JSSC 12/84 [12]

• Requires high open-loop gain and 4 clock phases

• Reference Refreshing, Shih et al., JSSC 8/86 [13]

• Correlated Double Sampling, Nagaraj et al., TCAS 5/87 [14]

• Error Averaging, Song et al., JSSC 12/88 [15]

• Customers like these techniques, which improve linearity14

Analog Calibration of a Pipelined ADCφ1

C1 C2 C3 C4

VR

−+

CF

φ2

C1 C2 C3 C4

−+

Logic

CFVR

• Lin et al., JSSC 4/91 [16]

• Op amp is offset canceled with aux. input

• Compare each samp. cap to CF and adjust to match

• Use opamp as comparator preamp (Threshold= VR )

15

Digital Calibration of a Pipelined ADC

Vi

SHA

1

1-bADSC0 1-b

DAC+VR/2−VR/2

−Σ

+ Vi ± VR/2SHA

< 2

Vi

Ideal

Code

Vi

Missing Codes

Code

Vi

Missing Dec Lev

Code

• Karanicolas et al., JSSC 12/93 [17]

• Digital cal. does not create or move decision levels

• Set interstage gain < 2 to avoid missing decision levels

• Add extra stages to introduce redundancy

• Then calibration can be done digitally

16

Add Dither to ADC Input

Vin 1SHA+

Σ+

Σ G ADSC2

ADSC1 DAC1−

+Dout

×Accum

DACGain

RNG

DACDither

+

• Jewett et al., ISSCC97 [18]

• Subtractive dither improves DNL and SFDR

• Accumulator adjusts gain of dither DAC to remove dither

17

Add Dither to ADSC Output

1

SHA+

Σ G1 ADC2

Vin

ADSC1+

Σ DAC1−

+Σ Dout

RNG

+

+

×+

Σ

+

×

Accum

1/G1

µ

• Hilton, HP Journal 10/93 [19]

• Siragusa et al., Elect. Let. 3/00 [20]

• Accum adjusts 1/G1 until G1 → G1• Increases required DAC resolution

18

Add Dither to ADSC Input

1

SHA+

Σ G1 ADC2

Vin+

Σ

ADSC1 DAC1

Dout×

× Accum1/G1

−µRNG ×−

0.25 ×

+

• Li and Moon, TCASII 9/03 [21]

• Accum adjusts 1/G1 until G1 → G1• Low complexity but only calibrates for Vin near ADSC1 thresholds

• Fetterman et al., CICC 5/99 [22] (dither without calibration)19

Redundant Residue Mode

Voi

−VR

Vini

−0.5VR 0

Mode= 0

0.5VR VR

VR

0

−VR

Mode= 1

• Murmann and Boser, JSSC 12/03 [23]

• Requires about 1 extra bit of resolution

• Equivalent to adding dither to ADSC and DAC inputs

• Ideally both modes give identical results

• Background calibrates for gain errors and variation

• Shows that calibration can reduce power dissipation

20

Tracking Bandwidth

VinN-bitADC

Dout

(Vin + ǫ · Dither)

× µAccum

Dither

Dither

Weight

n

EnlargeTconverge

• Weight[n + 1] = Weight[n] + µ(Vin + ǫ · Dither) · Dither

• Steady state SNR ∝ 1/µ: Need small µ ∝ 1/22N

• Tracking Bandwidth∝ µ: Need large µ ∝ 1/Tconverge

• Can improve by removing Vin before correlation

21

Two-Channel or Split ADC Architecture

Vin

ADC1

Dither1

+Σ × Dout

0.5

ADC2

Dither2

+Σ Ddither

+

• Li and Moon, TCASII 9/03 [21] and McNeill et al., JSSC 12/05 [24]

• Reduces Vin in Ddither

• Increases tracking bandwidth dramatically

• Requires little extra power dissipation if noise limited

22

Calibrating with a Parallel ADC

SHA

FastInaccurateADC

fs

DSP

↓M

Σe+

−SlowCalibratedADC

fs/M

Dout

Vin

fs

• Wang et al. CICC 9/03 [25] and Chiu et al. TCASI 1/04 [26]• Uses Vin to calibrate• Input SHA is not required (Wang et al., JSSC 10/09 [27])• Slow ADC:

− Needs high linearity (achieved through calibration)− Can have high noise & low power dissipation− Can have low resolution with enough dither

23

DEM and ADC Calibration

SHA +Σ

+Σ G1 ADC2

+Vin

ADSC1 DAC1 DAC2 DAC3− − −

+

Σ

RNG1+ −

Σ

RNG2−

B

×

ErrorTable

·−

Σ

+Σ Dout

×

µ

H

+

+

• Use DEM for DAC inside ADC: Hilton, HPJ 10/93 [19] Galton, TCASI 3/00 [28]• DAC element control bits B are uncorrelated with ADC input, so canmeasure DAC mismatch in background by correlating with ADC output

• Can then correct digitally and remove with lookup table• Residual DAC nonlinearity appears as noise

24

Time-Interleaved ADCs

Vin(t)

AnalogDemux

fs

ADC1

ADC2

ADCMDigitalMux

fs/M

fs = 1/T

Dout(nT)

• Black and Hodges, JSSC 12/80 [29]

• Increases throughput by M

• Channel offset mismatches→ Periodic additive pattern

• Channel gain mismatches→ Amplitude modulation

• Channel sample-time errors→ Phase modulation

25

Chopper-Based Offset Calibration

×

C[m]

SHA1 ADC1Analog

Input

Chopping SHAS1

Y1×

C[m]

a1

Notch Filter

×

Accum

V1

µ

• van der Ploeg et al., JSSC 12/01 [30] and Jamal et al., JSSC 12/02 [31]

• C[m]= ±1 (Random, Zero Mean)

• Cancels SHA & ADC Offsets w/o Spectral Nulls

• Apply separately to each channel

• Used by Janssen et al. [32] and Setterberg et al., ISSCC13 [33]

26

Input Dither to Measure Channel Gain

Vin+

Σ ADC ×+

Σ Dout

GA

RNG

1-b DAC

+

GD×

−µ

Accum

G

• Fu et al., JSSC 12/98 [34]

• GA · G = 1/GD

• Calibrates gain mismatch with interleaved channels

• Used by Setterberg et al., ISSCC13 [33]

27

Extra Parallel Channel for Timing Calibration

Vin(t)

φ1ADC1

φMADCM

MuxDout(nT)

Timing CalPhase Gen.ClkIClkQ

φ1 φM

ClkIfs

1-bitFlash ADC

• El-Chammas and Murmann, JSSC 4/11 [35]

• Uses parallel flash channel to calibrate timing errors by

maximizing correlation between flash ADC and interleaved channels28

Find Derivative ( D) for Timing Calibration

Vin(t)

∆R φ0

CADCt

φ0

CADC0

CADCi

−ΣD

× ×

µ

Accum

∆tiDelayφi

+

+Σe

• Stepanovic and Nikolic, JSSC 4/13 [36]

• ADCt and ADC0 are ref ADCs that can sample at same time as any ADCi• e = −D∆t→ ∆t [new]= ∆t [previous]± µ · (de2/d∆t)• ∆t [new]= ∆t [previous]+ µ · 2 · e · D

• D(s) = sC∆R/((1 + sCR)(1 + sC(R + ∆R)))

29

Flash-Assisted Time-Interleaved ADCs

Vin(t)

φ1ADC1

φ2ADC2

φMADCM

Calib.Dout(nT)

φ

fs

FlashADC Offset Corr.

Timing Corr.ClockGen

φ1

φM

• Use flash ADC to calibrate offset and timing errors

• Sung et al., A-SSCC 2013 [37] and Lee et al., ISSCC14 [38]

• Sung et al., ISSCC15 [39], (uses interleaved folding flash ADC)30

First-Rank SHA

Vin(t)

fs

SHA

1

AnalogDemux

ADC1

ADC2

ADCMDigitalMux

fs/M

fs = 1/T

Dout(nT)

• Poulton et al., JSSC 12/87 [40]

• First-rank SHA sets sampling instants

• Reduces jitter but requires high power dissipation

• Used by Setterberg et al., ISSCC13 [33]

(14-bit 2.5-GS/s ADC with 70 fs RMS jitter and SHA power= 2.5 W)

31

Analog Calibration

Vin+ Σ × ADC Channel Dout

Voff

DAC

−Voff

G

DAC

G

Clock

∆t

• Advantages:

Increases dynamic rangeDoes not require extra bits to reduce errors below 1 LSBReduces latencyCan work both above and below Nyquist

• Disadvantages:

Increases design and verification timeSensitive analog circuits must accommodate correction circuitsDifficult to move to new processes

32

Digital Calibration

Vin ADC Channel+ Σ × Dig. Delay Dout

Clock Voff

G T iming

• Advantages:

Simplifies verification and portability to new processesSimplifies changes to sensitive analog circuitsDigital circuits scale in advanced processes

• Disadvantages:

Reduces dynamic rangeIncreases latency (big problem in communications applications)Timing error calibration limits bandwidth to one Nyquist zone

33

Types of Interleaved CalibrationsAuthor Year Offset Cal. Gain Cal. Timing Cal.

Poulton [40] 1987 Analog FG Analog FG First-Rank SHA

Dyer [41] 1998 Analog BG Analog BG First-Rank SHA

Fu [34] 1998 Digital BG Digital BG First-Rank SHA

Poulton [42] 2002 Digital FG Digital FG Analog FG

Jamal [31] 2002 Digital BG Digital BG Digital BG

El-Chammas [35] 2011 Analog FG Analog FG Analog BG

Doris [43] 2011 Analog FG Analog FG NA

Stepanovic [36] 2013 Digital BG Digital BG Analog BG

Janssen [32] 2013 Analog+Dig BG Analog BG NA

Setterberg [33] 2013 Digital BG Digital BG First-Rank SHA

Le Dortz [44] 2014 Digital BG Digital BG Digital BG

Kull [45] 2014 Digital FG Analog FG Analog FG

Lee [38] 2014 Analog FG NA Analog BG

Sung [39] 2015 Analog BG NA Analog BG

34

Problematic Signals for Background Calibration• Customers expect consistent convergence time and tracking rate

regardless of input

• Some inputs cause slow tracking and/or misconvergence due to

− Highly non-uniform sample distribution

(DC inputs, steps, slow NRZ data, burst mode data)

− Periodic components at certain frequencies

(Harmonics of fS/N for N interleaved channels)

− Inputs exceeding the full-scale range

− Inputs correlated with dither

• Subtractive dither and/or chopping can help

• Customers must be aware of any remaining signal dependence

35

Uniformly Distributed Multi-level Dither

Vin Σ Stage1

Σ Stage2

Σ Stage3

L1 levels L2 levels L3 levels

• Add dither in analog domain and subtract in digital domain

• With binary dither, convergence depends on input signal amplitude

Panigada et al., JSSC 12/09 [46] and Rakuljic et al., TCASI 3/13 [47]

• Multilevel dither: Levy, TCASI 11/13 [48] and Ali et al., JSSC 12/14 [49]

• Levy: use co-prime dither: L1 = 3, L2 = 5, L3 = 7, and L4 = 9

• Ali: use L1 = 9, L2 = 3, and L3 = 3

36

Conclusion

• Calibration has evolved from factory trimming to embedded

calibration to foreground calibration to background calibration

• All these techniques are used today

• Customers like the improvements from the newest techniques

but prefer no cal, factory cal, or embedded cal

• The flexibility of general-purpose converters is important

but so are the improvements from foreground and background cal

• Ultimately, application-specific specialization is inevitable

37

References

[1] P. Holloway and M. Norton, “A High-Yield, Second Generation 10-Bit Monolithic DAC,” IEEE InternationalSolid-State Circuits Conference, pp. 106–107, Feb. 1976.

[2] G. McGlinchey, “A Monolithic 12b 3µs ADC,” IEEE International Solid-State Circuits Conference, pp.80–81, Feb. 1982.

[3] M. de Wit, K.-S. Tan, and R. K. Hester, “A Low-Power 12-b Analog-to-Digital Converter with On-ChipPrecision Trimming,” IEEE J. of Solid-State Circuits, vol. 28, No. 4, pp. 455–461, Apr. 1993.

[4] H.-S. Lee, D. A. Hodges, and P. R. Gray, “A Self-Calibrating 15 Bit CMOS A/D Converter,” IEEE J. ofSolid-State Circuits, vol. SC-19, No. 6, pp. 813–819, Dec. 1984.

[5] D. W. J. Groeneveld, H. J. Schouwenaars, H. A. H. Termeer, and C. A. A. Bastiaansen, “A Self-CalibrationTechnique for Monolithic High-Resolution D/A Converters,” IEEE J. of Solid-State Circuits, vol. 24, No. 6,pp. 1517–1522, Dec. 1989.

[6] K.-S. Tan, S. Kiriaki, M. de Wit, J. W. Fattaruso, C.-Y. Tsay, W. E. Matthews, and R. K. Hester, “ErrorCorrection Techniques for High-Performance Differential A/D Converters,” IEEE J. of Solid-State Circuits,vol. 25, No. 6, pp. 1318–1327, Dec. 1990.

[7] T. Cataltepe, A. R. Kramer, L. E. Larson, G. C. Temes, and R. H. Walden, “Digitally Corrected Multi-bit Σ∆

Data Converters,” IEEE International Symposium on Circuits and Systems, pp. 647–650, May 1989.

[8] R. J. van de Plassche, “Dynamic Element Matching for High-Accuracy Monolithic D/A Converters,” IEEEJ. of Solid-State Circuits, vol. SC-11, No. 6, pp. 795–800, Dec. 1976.

38

[9] L. R. Carley and J. Kenney, “A 16-bit 4’th Order Noise-Shaping D/A Converter,” IEEE Custom IntegratedCircuits Conference, pp. 21.7.1–21.7.4, May 1988.

[10] B. H. Leung and S. Sutarja, “Multibit Σ-∆ A/D Converter Incorporating A Novel Class of Dynamic ElementMatching Techniques,” IEEE T. on Circuits and Systems II, vol. 39, No. 1, pp. 35–51, Jan. 1992.

[11] R. T. Baird and T. S. Fiez, “Linearity Enhancement of Multibit∆Σ A/D and D/A Converters using DataWeighted Averaging,” IEEE T. on Circuits and Systems II, vol. 42, No. 12, pp. 753–762, Dec. 1995.

[12] P. W. Li, M. J. Chin, P. R. Gray, and R. Castello, “A Ratio-Independent Algorithmic Analog-to-DigitalConversion Technique,” IEEE J. of Solid-State Circuits, vol. SC-19, No. 6, pp. 828–836, Dec. 1984.

[13] C.-C. Shih and P. R. Gray, “Reference Refreshing Cyclic Analog-to-Digital and Digital-to-AnalogConverters,” IEEE J. of Solid-State Circuits, vol. SC-21, No. 4, pp. 544–554, Aug. 1986.

[14] K. Nagaraj, T. R. Viswanathan, K. Singhal, and J. Vlach, “Switched-Capacitor Circuits with ReducedSensitivity to Amplifier Gain,” IEEE T. on Circuits and Systems, vol. CAS-34, No. 5, pp. 571–574, May 1987.

[15] B.-S. Song, M. F. Tompsett, and K. R. Lakshmikumar, “A 12-bit 1-Msample/s Capacitor Error-AveragingPipelined A/D Converter,” IEEE J. of Solid-State Circuits, vol. 23, No. 6, pp. 1324–1333, Dec. 1988.

[16] Y.-M. Lin, B. Kim, and P. R. Gray, “A 13-b 2.5-MHz Self-Calibrated Pipelined A/D Converter in 3-µm CMOS,”IEEE J. of Solid-State Circuits, vol. 26, No. 4, pp. 628–636, Apr. 1991.

[17] A. N. Karanicolas, H.-S. Lee, and K. L. Bacrania, “A 15-b 1-Msample/s Digitally Self-Calibrated PipelineADC,” IEEE J. of Solid-State Circuits, vol. 28, No. 12, pp. 1207–1215, Dec. 1993.

[18] R. Jewett, K. Poulton, K.-C. Hsieh, and J. Doernberg, “A 12b 128MSample/s ADC with 0.05LSB DNL,” IEEEInternational Solid-State Circuits Conference, pp. 138–139, Feb. 1997.

39

[19] H. E. Hilton, “A 10-MHz Analog-to-Digital Converter with 110-dB Linearity,” Hewlett-Packard Journal, vol.44, No. 5, pp. 105–112, Oct. 1993.

[20] E. J. Siragusa and I. Galton, “Gain error correction technique for pipelined analogue-to-digitalconverters,” Electronics Letters, vol. 36, No. 7, pp. 617–618, Mar. 30, 2000.

[21] J. Li and U.-K. Moon, “Background Calibration Techniques for Multistage Pipelined ADCs With DigitalRedundancy,” IEEE T. on Circuits and Systems II, vol. 50, No. 9, pp. 531–538, Sep. 2003.

[22] H. S. Fetterman, D. G. Martin, and D. A. Rich, “CMOS Pipelined ADC Employing Dither to ImproveLinearity,” IEEE Custom Integrated Circuits Conference, pp. 109-112, May 1999.

[23] B. Murmann and B. E. Boser, “A 12-bit 75-MS/s Pipelined ADC Using Open-Loop Residue Amplification,”IEEE J. of Solid-State Circuits, vol. 38, No. 12, pp. 2040–2050, Dec. 2003.

[24] J. McNeill, M. C. W. Coln, and B. J. Larivee, “"Split ADC" Architecture for Deterministic DigitalBackground Calibration of a 16-bit 1-MS/s ADC,” IEEE J. of Solid-State Circuits, vol. 40, No. 12, pp.2437–2445, Dec. 2005.

[25] X. Wang, P. J. Hurst, and S. H. Lewis, “A 12-bit 20-MS/s Pipelined ADC with Nested Digital BackgroundCalibration,” IEEE Custom Integrated Circuits Conference, pp. 409-412, Sep. 2003.

[26] Y. Chiu, C. W. Tsang, B. Nikolic, and P. R. Gray, “Least Mean Square Adaptive Digital BackgroundCalibration of Pipelined Analog-to-Digital Converters,” IEEE T. on Circuits and Systems I, vol. 51, No. 1,pp. 38–46, Jan. 2004.

[27] H. Wang, X. Wang, P. J. Hurst, and S. H. Lewis, “Nested Digital Background Calibration of a 12-bitPipelined ADC Without an Input SHA,” IEEE J. of Solid-State Circuits, vol. 44, No. 10, pp. 2780–2789, Oct.2009.

40

[28] I. Galton, “Digital Cancellation of D/A Converter Noise in Pipelined A/D Converters,” IEEE T. on Circuitsand Systems II, vol. 47, No. 3, pp. 185–196, Mar. 2000.

[29] W. C. Black, Jr. and D. A. Hodges, “Time Interleaved Converter Arrays,” IEEE J. of Solid-State Circuits,vol. SC-15, No. 6, pp. 1022–1029, Dec. 1980.

[30] H. van der Ploeg, G. Hoogzaad, H. A. H. Termeer, M. Vertregt, and R. L. J. Roovers, ”A 2.5-V 12-b54-Msample/s 0.25-µm CMOS ADC in 1-mm2 With Mixed-Signal Chopping and Calibration,” IEEE J. ofSolid-State Circuits, vol. 36, No. 12, pp. 1859–1867, Dec. 2001.

[31] S. M. Jamal, D. Fu, N. C.-J. Chang, P. J. Hurst, and S. H. Lewis, “A 10-b 120-Msample/s Time-InterleavedAnalog-to-Digital Converter With Digital Background Calibration,” IEEE J. of Solid-State Circuits, vol. 37,No. 12, pp. 1618–1627, Dec. 2002.

[32] E. Janssen, K. Doris, A. Zanikopoulos, A. Murroni, G. van der Weide, Y. Lin, L. Alvado, F. Darthenay, Y.Fregeais, “A 11b 3.6GS/s Time-Interleaved SAR ADC in 65nm CMOS,” IEEE International Solid-StateCircuits Conference, pp. 464–465, Feb. 2013.

[33] B. Setterberg, K. Poulton, S. Ray, D. J. Huber, V. Abramzon, G. Steinbach, J. P. Keane, B. Wuppermann, M.Clayson, M. Martin, R. Pasha, E. Peeters, A. Jacobs, F. Demarsin, A. Al-Adnani, P. Brandt, “A 14b 2.5GS/s8-Way-Interleaved Pipelined ADC with Background Calibration and Digital Dynamic Linearity Correction,”IEEE International Solid-State Circuits Conference, pp. 466–467, Feb. 2013.

[34] D. Fu, K. C. Dyer, P. J. Hurst, and S. H. Lewis, “A Digital Background Calibration Technique forTime-Interleaved Analog-to-Digital Converters,” IEEE J. of Solid-State Circuits, vol. 33, No. 12, pp.1904–1911, Dec. 1998.

[35] M. El-Chammas and B. Murmann, “A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC With BackgroundTiming Skew Calibration,” IEEE J. of Solid-State Circuits, vol. 46, No. 4, pp. 838–847, Apr. 2011.

41

[36] D. Stepanovic and B. Nikolic, “A 2.8 GS/s 44.6mW Time-Interleaved ADC Achieving 50.9 dB SNDR and 3dB Effective Resolution Bandwidth of 1.5 GHz in 65 nm CMOS,” IEEE J. of Solid-State Circuits, vol. 48, No.4, pp. 971–982, Apr. 2013.

[37] B.-R.-S. Sung, C.-K. Lee, W. Kim, J.-I. Kim, H.-K. Hong, G.-G. Oh, C.-H. Lee, M. Choi, H.-J. Park, and S.-T.Ryu, “A 6 bit 2 GS/s Flash-Assisted Time-Interleaved (FATI) SAR ADC with Background OffsetCalibration,” IEEE Asian Solid-State Circuits Conference, pp. 281–284, Nov. 2013.

[38] S. Lee, A. P. Chandrakasan, H.-S. Lee, “A 1GS/s 10b 18.9mW Time-Interleaved SAR ADC with BackgroundTiming-Skew Calibration,” IEEE International Solid-State Circuits Conference, pp. 384–385, Feb. 2014.

[39] B.-R.-S. Sung, D.-S. Jo, I.-H. Jang, D.-S. Lee, Y.-S. You, Y.-H. Lee, H.-J. Park, and S.-T. Ryu, “A21fJ/conv-step 9 ENOB 1.6GS/s 2x Time-Interleaved FATI SAR ADC with Background Offset andTiming-Skew Calibration in 45nm CMOS,” IEEE International Solid-State Circuits Conference, pp.464–465, Feb. 2015.

[40] K. Poulton, J. J. Corcoran, and T. Hornak, “A 1-GHz 6-bit ADC System,” IEEE J. of Solid-State Circuits,vol. SC-22, No. 6, pp. 962–970, Dec. 1987.

[41] K. C. Dyer, D. Fu, P. J. Hurst, and S. H. Lewis, “An Analog Background Calibration Technique forTime-Interleaved Analog-to-Digital Converters,” IEEE J. of Solid-State Circuits, vol. 33, No. 12, pp.1912–1919, Dec. 1998.

[42] K. Poulton, R. Neff, A. Muto, W. Liu, A. Burstein, and M. Heshami, “A 4 GSample/s 8b ADC in 0.35µmCMOS,” IEEE International Solid-State Circuits Conference, pp. 166–167, Feb. 2002.

[43] K. Doris, E. Janssen, C. Nani, A. Zanikopoulos, G. van der Weide, “A 480 mW 2.6 GS/s 10bTime-Interleaved ADC With 48.5 dB SNDR up to Nyquist in 65 nm CMOS,” IEEE J. of Solid-State Circuits,vol. 46, No. 12, pp. 2821–2833, Dec. 2011.

42

[44] N. Le Dortz, J.-P. Blanc, T. Simon, S. Verhaeren, E. Rouat, P. Urard, S. Le Tual, D. Goguet, C.Lelandais-Perrault, P. Benabes, “A 1.62GS/s Time-Interleaved SAR ADC with Digital BackgroundMismatch Calibration Achieving Interleaving Spurs Below 70 dBFS,” IEEE International Solid-StateCircuits Conference, pp. 386–387, Feb. 2014.

[45] L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Braendil, M. Kossel, T. Morf, T. M. Andersen, Y.Leblebici, “A 90GS/s 8b 667mW 64x Interleaved SAR ADC in 32nm Digital SOI CMOS,” IEEE InternationalSolid-State Circuits Conference, pp. 378–379, Feb. 2014.

[46] A. Panigada and I. Galton, “A 130 mW 100 MS/s Pipelined ADC With 69 dB SNDR Enabled by DigitalHarmonic Distortion Correction,” IEEE J. of Solid-State Circuits, vol. 44, No. 12, pp. 3314–3328, Dec. 2009.

[47] N. Rakuljic and I. Galton, “Suppression of Quantization-Induced Convergence Error in Pipelined ADCsWith Harmonic Distortion Correction,” IEEE T. on Circuits and Systems I, vol. 60, No. 3, pp. 593–602, Mar.2013.

[48] B. C. Levy, “A Study of Subtractive Digital Dither in Single-Stage and Multi-Stage Quantizers,” IEEE T. onCircuits and Systems I, vol. 60, No. 11, pp. 2888–2901, Nov. 2013.

[49] A. M. A. Ali, H. Dinc, P. Bhoraskar, C. Dillon, S. Puckett, B. Gray, C. Speir, J. Lanford, J. Brunsilius, P. R.Derounian, B. Jeffries, U. Mehta, M. McShea, and R. Stop, “A 14 Bit 1 GS/s RF Sampling Pipelined ADCWith Background Calibration,” IEEE J. of Solid-State Circuits, vol. 49, No. 12, pp. 2857–2867, Dec. 2014.

43