can a higgs decay to four bottom quarks be observed at lhcb? · the collimated spray of hadrons...

73
Can a Higgs decay to four bottom quarks be observed at LHCb? Master Project Thesis High Energy Physics Laboratory (LPHE) Swiss Federal Institute of Technology of Lausanne (EPFL) Chitsanu Khurewathanakul Under the supervision of Prof. Aurelio Bay and Stephane Tourneur External expert: Victor Coco Abstract A study of Higgs decay H aa b ¯ bb ¯ b [1] at different m H ,m a was studied at a generator level using jet reconstruction, with an aim to profit from LHCb specialty in B-physics. Jet reconstruction was done using Fastjet and revealed different kinematic regimes based on m H ,m a pair, which should be treated separately in order to accurately reconstruct a and H . The signal was tested against QCD-b ¯ bb ¯ b background. The analysis was redone using LHCb full simulation data to check the results at a more realistic level. The results obtained shows that it could be possible to observe H aa b ¯ bb ¯ b decay at LHCb if suitable new analysis techniques to reconstruct and identify close b-jet can be successfully developped. Lausanne, 2013

Upload: others

Post on 25-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Can a Higgs decay to four bottom quarks beobserved at LHCb?

Master Project Thesis

High Energy Physics Laboratory (LPHE)

Swiss Federal Institute of Technology of Lausanne (EPFL)

Chitsanu KhurewathanakulUnder the supervision of Prof. Aurelio Bay and Stephane Tourneur

External expert: Victor Coco

Abstract

A study of Higgs decay H → aa→bb̄bb̄ [1] at different mH ,ma was studied at a generator levelusing jet reconstruction, with an aim to profit from LHCb specialty in B-physics. Jet

reconstruction was done using Fastjet and revealed different kinematic regimes based onmH ,ma pair, which should be treated separately in order to accurately reconstruct a and H.The signal was tested against QCD-bb̄bb̄ background. The analysis was redone using LHCbfull simulation data to check the results at a more realistic level. The results obtained showsthat it could be possible to observe H → aa→bb̄bb̄ decay at LHCb if suitable new analysis

techniques to reconstruct and identify close b-jet can be successfully developped.

Lausanne, 2013

Page 2: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Contents

1 Introduction 1

2 Theory 32.1 Motivation for SUSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 Higgs multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.3 Signal and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Events Generation 5

4 Signal at MC truth level 64.1 dR and direction of the decay products . . . . . . . . . . . . . . . . . . . . . . . 64.2 Determination of the signal’s geometrical acceptance . . . . . . . . . . . . . . . 7

5 Jets Reconstruction 95.1 Fastjet Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95.2 Comparison between three stages: quark, hadron, and jet . . . . . . . . . . . . 9

6 Jets Reconstruction in the low ma regime. 116.1 Jet-assignment algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116.2 Analysis on the reconstructed jets . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6.2.1 Angle φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126.2.2 Transverse momentum pt . . . . . . . . . . . . . . . . . . . . . . . . . . 126.2.3 Mass of the Higgs a, H . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Signal versus background data 157.1 Transverse momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157.2 Mass of the Higgs a, H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157.3 Significance and S/B at generator level . . . . . . . . . . . . . . . . . . . . . . 16

8 Glimpse on the full simulation data 198.1 Selection of b-tagged jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.2.1 Transverse momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208.2.2 Mass of the Higgs a, H . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8.3 Significance and S/B at full simulation data . . . . . . . . . . . . . . . . . . . . 23

9 Conclusion 25

Appendices 26A Events Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.1 Modified decay table due to mH , ma . . . . . . . . . . . . . . . . . . . . 27A.2 Input card for signal data generation (using Pythia) . . . . . . . . . . . 28A.3 Input cards for background data generation (using Alpgen) . . . . . . 29

2

Page 3: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

B Signal at MC truth level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30C Jet reconstruction (Preliminary) . . . . . . . . . . . . . . . . . . . . . . . . . . 35D Jet reconstruction statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

D.1 R = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37D.2 R = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38D.3 R = 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40D.4 R = 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

E Analysis on the reconstructed jets at low ma regime . . . . . . . . . . . . . . . 43E.1 Figures for dR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43E.2 Figures for transverse momentum . . . . . . . . . . . . . . . . . . . . . . 43E.3 Figures for mass of the pseudoscalar a . . . . . . . . . . . . . . . . . . . 50E.4 Figures for mass of the Higgs H . . . . . . . . . . . . . . . . . . . . . . . 53E.5 Determination of significance and S/B . . . . . . . . . . . . . . . . . . . 56

F Glimpse on the full simulation data . . . . . . . . . . . . . . . . . . . . . . . . . 58F.1 Selection of b-tagged jets . . . . . . . . . . . . . . . . . . . . . . . . . . . 58F.2 Determination of significance and S/B . . . . . . . . . . . . . . . . . . . 58F.3 Figures for transverse momentum . . . . . . . . . . . . . . . . . . . . . . 60F.4 Figures for invariant mass . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Page 4: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,
Page 5: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Chapter 1

Introduction

The laws of fundamental physics until recently have been dictated very well by the StandardModel (SM), but several of its characteristics remain unexplained. This motivates the newtheories often known under the name Beyond Standard Model. Among all the candidates, theSupersymmetry (SUSY) is one of the foremost candidates physicists have so far. The implicationfrom SUSY tells us that there will still be many fundamental particles yet to be confirmed by thehigh energy experiments, such as one at the LHC. In particular, the theory of supersymmetrypredicts the existence of five or more new Higgs particles.

There are different proposals for the strategy to search for those Higgs particles. In this thesis,we have chosen the decay channel [1]:

H → aa→ bb̄bb̄

where H stands for a CP-even Higgs boson, and the a for a hypothetical lighter CP-odd Higgsboson.

Because this selected decay channel results in the production of four B-jets in the final state,the LHCb experiment, which is one of the experiments at LHC devoted to B-physics, can havea very prominent role to study it. The result we obtain will be very useful to the understandingof this decay channel, complimentarily to what other experiments at LHC can contribute (suchas at CMS, ATLAS).

After a theoretical overview in chapter 2, we give a description of the Monte-Carlo (MC) eventgenerators in chapter 3, and analyse the result at MC Truth level in chapter 4. A more realisticapproach of jets reconstruction analysis is introduced and analysed in chapter 5, chapter 6,before we finally conclude the analysis in chapter 8 by using the more accurate data fromofficial LHCb full simulation.

1

Page 6: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 1. INTRODUCTION

Figure 1.1: LHCb detector (Large Hadron Collider beauty): Situated at LHC, this experiment focus inthe study of B-physics (such as interaction of B-hadrons, CP-violation, etc.). It is a single-arm forwardspectrometer with the geometrical acceptance of 2.0 < η < 4.5.

2

Page 7: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Chapter 2

Theory

In this chapter, we take a brief survey on the theoretical aspect relevant to this thesis, inparticular, the Higgs sector and how the SUSY model modifies it. The references are mostlytaken from [2, 3, 4, 5].

2.1 Motivation for SUSY

While the Standard Model (SM) is able to provide a very accurate Lagrangian explaining theinteraction between fundamental particles, the Higgs mechanism, which is responsible for theexplanation of how the elementary particles are able to get a mass, suffers the consequencethat the mass of the Higgs itself receives an enormous loop correction from all virtual particles.In essence, the heavier the particle, the stronger the coupling with the Higgs becomes. Forinstance, at 1-loop level, if the coupling term between Higgs and fermion in the Largrangian is−λfHf̄f , then the correction to the Higgs mass would be:

∆m2H = −

|λf 2|8π2

Λ2UV

where ΛUV is the ultraviolet cutoff which represents the energy up to which the standardmodel is applicable. This should make the Higgs incredibly heavy, in total contradiction withthe experimental data which indicate that the Higgs mass is of the same order as the weakinteraction bosons’ masses. This means that those very high corrections to the Higgs mass arecompensated by some unknown very high terms, so that the result unexplainedly ends up closeto 0. This uncomfortable situation is what theorists like the hierarchy problem.

One of the motivations of the Supersymmetric theory is to cure this hierarchy problem. Indeed,since the correction of ∆m2

H term has a relative minus sign between fermion and boson, it canbe seen that if each SM fermion is accompanied by a scalar partner, with same coupling λ to theHiggs mass term (by virtue of (super)symmetry), then their contribution neatly cancel. TheSUSY thus introduces another complete set of supersymmetric partners (called sparticles) tothe existing SM particles.

2.2 Higgs multiplets

The SM Higgs, before the SU(2)L×U(1)Y electroweak symmetry breaking, is a doublet complexscalar field with weak hypercharge Y = |1/2|. After the electroweak symmetry breaking, threeout of the four SM Higgs degrees of freedom are eaten by the longtitudinal modes of theelectroweak gauge bosons (W±, Z0). Therefore the Higgs field ends up with only one degree offreedom and the Higgs particle is one scalar particle.

In the theory of supersymmetry the Higgs mechanism responsible for the electroweak symmetrybreaking works similarly. However, instead of starting with one Higgs doublet, it is required to

3

Page 8: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 2. THEORY

have (minimally) two doublets such that the theory does not suffer any anomalies. These arelabeled:

Hu = (H+u , H

0u), Hd = (H0

d , H−d )

After the symmetry is broken, however, 3 out of total 8 degrees of freedom will be ‘taken’ byelectroweak gauge bosons, and we are left with 5 degrees of freedom. We label them at the masseigenstates as 5 physical Higgs bosons: (i) one neutral pseudoscalar CP-odd Higgs a, (ii-iii) twoneutral scalar CP-even Higgs h,H, and (iv-v) two charged CP-even Higgs H±.

2.3 Signal and Background

In this thesis, we are interested in the decay of a Higgs into a pair of Higgs pseudoscalars a,which subsequently decay into two pairs of bb̄, i.e., the signal of H → aa→ bb̄bb̄. Such processescan appear in NMSSM (Next-to-Minimal Supersymmetric Standard Model), or other modelsin general where the new scalars are coupled to the Higgs.

Without knowing the mass mH , the kinematic constraints already impose that ma cannot havea mass larger than half of mH , and also cannot have a mass lighter than the mass of 2 b-quarkscombined together. In particular, we will be exploring mH in the vicinity of 125 [GeV], fromthe assumption that this Higgs is the famous ‘July-2012’ Higgs.

The QCD decay producing bb̄bb̄ is very closely related to this signal and thus will be ourdominant background. This will be the only background considered in this study.

4

Page 9: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Chapter 3

Events Generation

We now proceed to the study of Higgs’decay to four b-quarks by using the Monte-Carlo eventgenerators. To accomplish this, we choose Pythia 8.162 [6, 7] as the generator for this signal,and similarly Alpgen 2.14 [8] for the generation of QCD-bb̄bb̄ background. The results fromthis stage are the lists of hard events in LHEF (Les Houches Event File) format [9]. Thisformat ensures the compatibility of data created from different generators.1 They will later behadronized in the subsequent stage using Pythia.

For the signal data, we generated 45 samples of 50,000 events, one for each combination ofpseudoscalar higgs a mass (ma), Higgs H mass (mH), and collision energy in the proton-protoncenter-of-mass frame (E). The following choices were made:

ma = 15, 25, 35, 45, 55 [GeV]mH = 125, 135, 145 [GeV]E = 7, 8, 14 [TeV]

At the Monte-Carlo level, we impose that the H → aa branching ratio is 1.0, i.e., H can onlydecay to a pair of a. Similarly we impose that each a can only decay to a bb̄ pair. Unless weimpose this constraint, the decay of H would couple to the particle with higest mass, and thebranching ratio will deviate from the prodiction in SM. The table of modified branching ratio,when we impose the existence of pseudoscalar a is available in the appendix A.1.

For the background data (QCD-bb̄bb̄ background), we also produced it with much more statistics(∼ 100k events), at the collision energy of E = 7, 8, 14 [TeV] same as above. The data fromsignal will be treated in detail in chapter chapter 4-6, and the background data will be revisitedagain in chapter 7.

The input cards used to generate events for Pythia and Alpgen are provided in the appendixA.2, A.3.

The LHE files generated from the previous section contain all the necessary information aboutthe hard process of the event. The process of showering and hadronization was done by usingPythia 8.162. Data from signal and background were treated identically in this stage.

1Unlike Pythia, Alpgen cannot natively produce LHEF output. An extra conversion script is needed:http://herwig.hepforge.org/svn/tags/release-2-6-0/Contrib/AlpGen/AlpGenToLH.cc

5

Page 10: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 3. EVENTS GENERATION

6

Page 11: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Chapter 4

Signal at MC truth level

This section will provide an overview of the properties of the particles of interest at the showering(H, a, b-quarks, B-hadrons) based on the Monte-Carlo simulation (also known as Monte-CarloTruth or simply Truth). These informations will be an important insight to understand how thekinematic of those particles looks like, before we limit the data to be within LHCb acceptance,and before the notion of jets reconstruction will be introduced.

Unless otherwise noted, we are restricted to the case of E = 7 TeV, mH = 125 GeV. Thecalculation was performed using PyROOT 5.34.

4.1 dR and direction of the decay products

The first important issue we need to verify is the direction of products in this decay, since lateron this will be limited to the geometrical acceptance of LHCb. The ‘closeness’ of two particlesX, Y can be measured by the quantity:

dR(X,Y ) =√

(φX − φY )2 + (ηX − ηY )2

where φ is angle in transverse plane, and eta is pseudorapidity, which is invariant under boostsalong the beam axis. This is often more preferred in a hadron collider because the momentumalong the beam axis of the interacting partons is unknown. We note that the smaller the dR,the closer particles are.

Figure 4.1 indicates that the two a decay back-to-back inside the transverse plane. However,the plateau observed at small dR in case of (mH ,ma) = (125, 55) [GeV] suggests that thisbehavior can be broken as ma increases toward the kinematic limit (i.e., ma → 1

2mH). In theextreme limit where ma = 1

2mH , the two a are produced at rest in the rest frame of H, and anytransverse momentum carried by their mother H causes the two a’s to travel along the samedirection instead.

In Figure 4.2, we compare the direction of two b-quarks from the same mother a and fromdifferent mothers. As a consequence from the behavior of a above, it can be seen that thedirection of two b from the same mother is strongly collimated when ma

mHis small, which will

make it easier to identify which mother a they decayed from in real data. This property is lostas the mass of ma increases: The direction of b-quarks becomes more isotropic, and thus it isexpected to be more difficult to identify which mother a they came from.

As a result, the behavior and direction of the b-quarks is strongly based on ma, which can thenbe separated into two ends of the spectrum:

- (i) low ma regime where the bb̄ pair originated from the same mother is highly collimatedalong the direction of a.

- (ii) high ma regime where the direction of four b-quarks is very isotropic.

7

Page 12: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 4. SIGNAL AT MC TRUTH LEVEL

0 1 2 3 4 5 60

1000

2000

3000

4000

5000

(A1,A2)φd mA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

49998 | 3.11|1.01

50000 | 3.11|1.13

50000 | 3.02|1.57

(A1,A2)φd

0 1 2 3 4 5 60

1000

2000

3000

4000

5000

6000

7000

dR(A1,A2) mA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

49998 | 2.88|0.71

50000 | 2.69|0.75

50000 | 2.12|0.92

dR(A1,A2)

Figure 4.1: dφ and dR between two pseudoscalars Higgs a.

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2000

4000

6000

8000

10000

12000

14000

mA=15 GeV bbar same motherbbar diff mother

Entries| Mean|RMS

49998 | 0.52|0.39

49998 | 2.82|0.68

mA=15 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

500

1000

1500

2000

2500

3000

3500

4000

mA=35 GeV bbar same motherbbar diff mother

Entries| Mean|RMS

50000 | 1.72|0.72

50000 | 2.34|0.84

mA=35 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

500

1000

1500

2000

2500

3000

3500

mA=55 GeV bbar same motherbbar diff mother

Entries| Mean|RMS

50000 | 2.55|0.68

50000 | 1.95|0.91

mA=55 GeV

Figure 4.2: dR between quarks, comparing between b-quarks from the same mother a, and from thedifferent mothers.

The differentiation between low ma and high ma regime suggests that both regions should bestudied separately. We make a final remark that the value of mH does not generally changethe distribution above, but it affects how the regime is located since the fraction ma/mH iswhat identify the regime. Altering the beam energy (from 7 TeV to 8,14 TeV) also does notsignificantly affect the dstribution. More details can be seen in appendix B

4.2 Determination of the signal’s geometrical acceptance

Due to the LHCb detector’s geometry, only the particles with 2.0 < η < 4.5 can be detected andused for further analysis.1. It is thus crucial to know what is the probability of a H → aa→ bb̄bb̄signal to have four B-hadrons2 emitted inside the LHCb acceptance. Such a probability is calledgeometrical acceptance. This is demonstrated in Figure 4.3, where the number of such eventsout of 50000 events is shown as a function of ma, mH , and E.

The overall trend shows, as expected, a weak probability of detecting such events by LHCb(less than 4 %). Increasing the E can improve the situation since there is more longtitudinalmomentum to spend and thus bring more particles to the forward direction. The regime oflow ma also provides better efficiency that high ma due to the b-quarks’ momenta correlationsdescribed previously.

1Within the first order, since the acceptance is in rectangular shape, not circular2We note that the B-hadrons are taken at the non-excited state

8

Page 13: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 4. SIGNAL AT MC TRUTH LEVEL

1982 1754 1698

1042 915 811848 695 673

1612 1427 1478816 738 660

665 551 567

1512 1288 1334688 626 550

539 459 448

1370 1193 1189635 539 468

502 438 386

1359 1216 1061659 562 449

497 387 364

mH [GeV]120 125 130 135 140 145 150

mA

[G

eV

]

0

10

20

30

40

50

60

LHCb Acceptance of 4B @50000 events 7 TeV

8 TeV

14 TeV

LHCb Acceptance of 4B @50000 events

Figure 4.3: Number of events with all 4 B-hadrons detected inside LHCb acceptance (2.0 < η < 4.5).Each triplet represents value at E = 7,8,14 TeV, and they are located on the grid of ma = 15,25,35,45,55GeV, mH = 125,135,145 GeV.

9

Page 14: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 4. SIGNAL AT MC TRUTH LEVEL

10

Page 15: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Chapter 5

Jets Reconstruction

In order to reconstruct the mass of both Higgs particles a and H, the most theoretically directmethod is to derive them from the four-momentum of b-quarks. However, in nature the quarksare not observable. Instead, fragmentation causes the quarks to result in cascade of hadrons, andall the energy of the original quarks are spread among the daughter products. The informationabout b-quarks’ four-vector thus have to be recollected from these constituents.

The collimated spray of hadrons resulting from high energy quarks in such case is refered asJet, which can be treated, to the first order, as a single four-momentum. A sophisticatedapproach to reconstruct the jet can yield useful information about the original quarks. Thejet reconstruction approach (Jet definition) is comprised of a Jet algorithm and parameters. Inthis chapter, we will study the jets reconstructed in this system and demonstrate that, whenthe MC truth at quarks level is no longer available, the jets provide a good approximation toour need of four-vectors of the b-quarks.

5.1 Fastjet Library

Fastjet [10] is our library of choice to reconstruct the jets, which is readily integrable withPythia. Using the 50,000 events from the previous section, we now reconstruct the jets basedon these parameters:

R = 0.5

min(pt) = 10 [GeV]algorithm = anti-kT

We remark that the jets are reconstructed from particles without the restriction on geometricalacceptance of LHCb yet, and those particles have to be stable and detectable1, at least at thegenerator level. Finally, a priori there can be any number of jets reconstructed this way, butonly one jet at a time among these is associated to the selected B-hadron. The jet associatedto the selected hadron is chosen such that the quantity dR between them is minimized.

5.2 Comparison between three stages: quark, hadron, and jet

Figure 5.1 explored the directional correlation of the b-quark, its subsequent B-hadron, and itsassociated B-jet. We can see that the direction of jet is well correlated with the direction ofb-quark and B-hadron (because their values of dR are very small, less than 0.1) unless it is inthe low ma regime. Similarly, Figure 5.2 confirms the same phenomenon when considering theirtransverse momentum.

1In the sense that it can interact with the detector via electromagnetic or strong force. For instance, theneutrini are not included.

11

Page 16: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 5. JETS RECONSTRUCTION

R∆0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

mA=15 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

49994 | 0.05|0.05

49994 | 0.13|0.08

49994 | 0.14|0.08

mA=15 GeV

R∆0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

mA=35 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

50000 | 0.06|0.07

50000 | 0.08|0.07

50000 | 0.09|0.08

mA=35 GeV

R∆0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

mA=55 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

50000 | 0.07|0.07

50000 | 0.09|0.08

50000 | 0.10|0.08

mA=55 GeV

Figure 5.1: dR between the quark, hadron, and jet stages

pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

mA=15 GeVb-quarkB-hadronJet

Entries| Mean|RMS

48928 |28.07|17.73

48928 |26.34|15.93

48928 |45.83|22.34

mA=15 GeV

pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

3500

mA=35 GeVb-quarkB-hadronJet

Entries| Mean|RMS

47024 |28.53|18.30

47024 |23.48|16.11

47024 |27.75|18.30

mA=35 GeV

pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

3500

4000

mA=55 GeVb-quarkB-hadronJet

Entries| Mean|RMS

45975 |28.85|15.58

45975 |22.58|13.53

45975 |27.22|17.34

mA=55 GeV

Figure 5.2: Transverse momentum between the quark, hadron, and jet stages

At this point, the jets reconstructed in the low ma regime cannot provide the good informationof the b-quarks we need. This complication is a consequence from what we found in the previouschapter: The two b-quarks originated from the same a tend to travel in the same direction, sothat the resultant jets supposedly to be two separated jets were merged as one. In the nextsection, we will pursue more in detail how to handle the merged jet in order to obtain betterinformation of b-quarks in the low ma regime.

12

Page 17: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Chapter 6

Jets Reconstruction in the low ma regime.

The jets reconstruction in low ma regime needs more attention due to the effect of merged jets.In this chapter, we will provide an algorithm to identify two pairs of B-hadrons originated fromthe same mother a, how to determine whether the jet is merged or not, whether they need tobe splitted or not, and how to split such jet into two in such a case, in order to obtain a moreaccurate reconstruction of ma and mH .

To pursue this matter, we focus the mass of a to be in the regime of low ma, i.e., ma =12, 15, 18, 21, 24, 27, 30, 33, 36 [GeV]. We also restrict now the analysis to only events with all 4B-hadrons inside the geometrical acceptance1.

6.1 Jet-assignment algorithm

After the jets have been reconstructed by the Fastjet library, the following procedures wereexecuted for each event:

1. Predict pairing of hadrons that originated from the same mother a, by minimizing thequantity

√dR(B1, B2)2 + dR(B3, B4)2, where Bi are 4 B-hadrons of the system (we refer

to this as R1R2-algorithm). We remark that this is to choose one out of three possiblecombinations.2

2. For each hadron, associates it with a jet with minimized dR.

3. Count the number of unique jets (count(J)) found in step above. This is the number ofeffective jet(s) before splitting:

- If count(J) = 4, then there is no merged jet. In this case there is a one-to-oneassociation between B-hadrons and jets.

- If count(J) = 3, then there is one doubly merged jet.- If the jet is composed of two B-hadrons originated from same a as predictedabove by R1R2-algorithm, then leave the jet merged. Its invariant mass can beconsidered equivalent to ma already. Assign the four-vector of this merged jetto the first pseudoscalar a1. Another two jets will be paired together into thesecond pseudoscalar a2.

- If not, then split the jet into two four-momenta with the same direction as thetwo hadrons, and assign the splitted jets to their corresponding hadrons.

- If count(J) = 2, then there is either:1Additionally, in order to improve the efficiency of having events with 4 B-hadrons inside the geometrical

acceptance, it is possible to impose condition 1.5 < η < 5.0 on the b-quarks at the generation level in order tohave better computation efficiency. As a result, the percentage of accepted events increased up to 40% by thistweak. See appendix D for more detail.

2This ‘prediction’ generally held true in case of low ma regime, which can be verified from MC Truth. Seeappendix D for more detail.

13

Page 18: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 6. JETS RECONSTRUCTION IN THE LOW MA REGIME.

- (i) One single jet and one triply merged jet. Ignore such complex event.

- (ii) Two doubly merged jets. Similar to case of count(J)=3, split the jet onlyif necessary (it is necessary if the hadrons are not originated from the same a).Assign them directly to the four-momenta of two pseudoscalars a otherwise.

- If count(J) = 1, then it’s quadruply merged jet. Ignore such complex event.

4. Finally, reconstruct the four-momenta of a and H from the pairing of hadrons determinedabove.

As we shall see, the classification by count(J) is an important criterion how the jets in the lowma regime should be handled.

We remark that from this construction, there is a slight asymmetry between two pseudoscalars,which we call a1 and a2 (In particular, for count(J) =3, if the splitting is not necessary, thena1 has the same four-momentum as the merged jet, but a2’s four-momentum is the sum of theother paired jets). For the complete statistics of the classification above, see more detail inappendix D.

6.2 Analysis on the reconstructed jets

6.2.1 Angle φ

The result from Figure 6.1 agrees with the MC truth, that the two pseudoscalar Higgs a decayback-to-back in the transverse plane in the low ma regime.

(A1,A2)φ0 1 2 3 4 5 6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

mH=125, mA = 15 count(J)=4count(J)=3count(J)=2

Entries| Mean|RMS

0 | 0| 0

487 | 3.17|0.63

14797 | 3.13|0.60

mH=125, mA = 15

(A1,A2)φ0 1 2 3 4 5 6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

mH=125, mA = 21 count(J)=4count(J)=3count(J)=2

Entries| Mean|RMS

1113 | 3.14|0.39

6348 | 3.15|0.56

7057 | 3.14|0.71

mH=125, mA = 21

(A1,A2)φ0 1 2 3 4 5 6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

mH=125, mA = 27 count(J)=4count(J)=3count(J)=2

Entries| Mean|RMS

3611 | 3.15|0.55

6985 | 3.13|0.66

3099 | 3.13|0.74

mH=125, mA = 27

Figure 6.1: φ between two pseudoscalars a, observed at low ma regime.

6.2.2 Transverse momentum pt

We are now able to compare the transverse momentum of the jets now that they have beenproperly assigned. Figure 6.2 reports pt of the jets classified by count(J), where we can seehow count(J) =2,3 tends to underestimate pt compared to count(J) =4 case.

In Figure 6.3, we compare the pt at different stage between b-quark, B-hadron, and jet (onlyfrom count(J) =4). Comparing this with Figure 5.2, we can see the improvement in the qualityof reconstruction when imposing the restriction count(J) = 4.

14

Page 19: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 6. JETS RECONSTRUCTION IN THE LOW MA REGIME.

J.pt [GeV]0 10 20 30 40 50 60

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

mH=125, mA = 15count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

0 | 0| 0

487 |32.99|9.02

14797 |27.51|5.35

mH=125, mA = 15

J.pt [GeV]0 10 20 30 40 50 60

0

100

200

300

400

500

600

700

800

900

mH=125, mA = 21count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

1113 |27.68|4.06

6348 |27.72|5.90

7057 |25.97|6.23

mH=125, mA = 21

J.pt [GeV]0 10 20 30 40 50 60

0

100

200

300

400

500

600

700

800

900

mH=125, mA = 27count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3611 |28.71|5.32

6985 |26.13|6.55

3099 |23.92|6.91

mH=125, mA = 27

Figure 6.2: Average pt(Jet) classified by count(J) =2,3,4

pt [GeV]10 15 20 25 30 35 40 45 50 55 600

0.05

0.1

0.15

0.2

0.25

0.3

mH=125, mA = 15b-quarkB-hadronJet

Entries| Mean|RMS

15329 |31.35|4.26

15329 |29.10|4.21

0 | 0| 0

mH=125, mA = 15

pt [GeV]10 15 20 25 30 35 40 45 50 55 600

0.05

0.1

0.15

0.2

0.25

mH=125, mA = 21b-quarkB-hadronJet

Entries| Mean|RMS

14671 |30.96|4.33

14671 |27.25|4.56

1113 |27.68|4.06

mH=125, mA = 21

pt [GeV]10 15 20 25 30 35 40 45 50 55 600

0.05

0.1

0.15

0.2

0.25

mH=125, mA = 27b-quarkB-hadronJet

Entries| Mean|RMS

14289 |30.59|4.31

14289 |25.59|4.70

3611 |28.71|5.32

mH=125, mA = 27

Figure 6.3: Average pt across 3 stages (b, B,Jet) in the case of count(J) = 4

15

Page 20: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 6. JETS RECONSTRUCTION IN THE LOW MA REGIME.

6.2.3 Mass of the Higgs a, H

Knowing the information of jets, it is now possible to reconstruct ma, mH according to theclassification of number of jets found (count(J)). As shown in Figure 6.4, Figure 6.5, we cansee that in the case of very low ma regime (e.g., (mH ,ma) = (125,15)), almost only the case ofcount(J) =2 is detectable inside the acceptance, and they can yield ma, mH rather accurately.This is because, as found in the previous chapter, the bb̄ pair from same a tends to travelstrongly collimated, and the four-momentum of the merged jet is already a good approximationto that of the mother a.

However, this is no longer the case as we move away from the low ma regime, the peaks fromcount(J) = 2,3,4 yield results in disagreement. In most case, count(J) = 4 yields the resultdirectly accessible, but very limited in number because it becomes more rare to have all four jetsnever overlap each other. Whilst count(J) = 2,3 are more common, they tend to underestimatethe value of ma, mH with respect to the case of count(J) = 4, possibly because some particlesfrom the decay of a get emitted outside the jet ‘cone’ and thus their four-momenta becomeunaccounted for. Therefore, even though the case of count(J) = 2,3 can provide much morestatistics to the analysis, they are subjected to further tuning of the R parameter in jet definitionin order to provide a more accurate result.

At this point, we thus focus only on the jet reconstruction with count(J) = 4 (i.e., non-overlapping b-jets), and ignore other cases due to their complication on jet tuning3 (and alsodue to the practical reason on b-tagging to be discussed later on).

A.m [GeV]0 5 10 15 20 25 30 35 40

0

200

400

600

800

1000

1200

1400

1600

mH=125, mA = 15 count(J)=4count(J)=3count(J)=2

Entries| Mean|RMS

0 | 0| 0

487 |16.83|5.24

14797 |11.47|2.34

mH=125, mA = 15

A.m [GeV]0 5 10 15 20 25 30 35 40

0

100

200

300

400

500

mH=125, mA = 21 count(J)=4count(J)=3count(J)=2

Entries| Mean|RMS

1113 |20.57|3.66

6348 |16.78|4.46

7057 |11.07|3.21

mH=125, mA = 21

A.m [GeV]0 5 10 15 20 25 30 35 40

0

100

200

300

400

500

mH=125, mA = 27 count(J)=4count(J)=3count(J)=2

Entries| Mean|RMS

3611 |25.12|4.42

6985 |17.96|4.90

3099 | 9.62|3.50

mH=125, mA = 27

Figure 6.4: Average mass of a. Classified by count(J) = 2,3,4

H.m [GeV]80 90 100 110 120 130 140 150 1600

100

200

300

400

500

600

700

800

900

mH=125, mA = 15count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

0 | 0| 0

487 |119.74|17.55

14797 |109.08|12.32

mH=125, mA = 15

H.m [GeV]80 90 100 110 120 130 140 150 1600

50

100

150

200

250

300

350

400

mH=125, mA = 21count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

1113 |118.04|12.77

6348 |111.75|14.10

7057 |102.10|11.95

mH=125, mA = 21

H.m [GeV]80 90 100 110 120 130 140 150 1600

50

100

150

200

250

300

350

400

mH=125, mA = 27count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3611 |117.00|14.75

6985 |107.24|14.65

3099 |97.24|11.47

mH=125, mA = 27

Figure 6.5: Mass of H. Classified by count(J) = 2,3,4

3We note that the jet reconstruction algorithm depends also on parameter R (usually called the jet radius),which can be regarded as the angular reach of the jet when it clustering the hadrons. Some investigation wasdone to observe the effect of R when reconstructing ma,mH , but in the end R = 0.5 is found to be most usefulin general approach. More detail in the appendix D

16

Page 21: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Chapter 7

Signal versus background data

With a good foundation of analysis using jet reconstruction established, we repeat the sameprocedures to the background data (QCD production of bb̄bb̄), and compare them with theresult of signal data found in previous chapter, and finally, the significance-σ and ratio S/B ofthe result will be determined.

We remark that the events considered here are only those with 4 B-hadrons inside LHCbacceptance, and each of them is associated with exactly one unique non-overlapping jet (i.e.,with cut count(J) =4). As a consequence, it is no longer possible to consider the very low ma

regime (e.g., ma . 20 GeV for mH = 125 GeV). The histograms here, which compare betweensignal and background data, are all normalized.

7.1 Transverse momentum

The mean transverse momentum of the jets, and two a are shown in Figure 7.1. We can nownotice that it is possible to impose a discriminant on these quantities. For instance, in this casefor ma = 30 GeV, mH = 125 GeV, we can impose pt(Jet) > 20 GeV, pt(a) > 40 GeV. For othervalues of (ma,mH ,E), a similiar discriminant can be imposed. See more detail in appendix E.2.

pt [GeV]10 20 30 40 50 60 70 80

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

mean(J.pt) mH=125,mA=30BG

Entries| Mean|RMS

3955 |28.71|5.73

5432 |19.60|5.89

mean(J.pt)

pt [GeV]10 20 30 40 50 60 70 80

0

0.02

0.04

0.06

0.08

0.1

mean(A.pt) mH=125,mA=30BG

Entries| Mean|RMS

3955 |52.16|8.90

5432 |32.99|10.81

mean(A.pt)

Figure 7.1: Average transverse momentum of jets and a, comparing between signal and backgrounddata.

7.2 Mass of the Higgs a, H

The Higgs masses can be reconstructed and compared in a similar fashion, as shown in Fig-ure 7.2, Figure 7.3. It can be seen that the reconstructed jets yields ma, mH rather accurate,but in general underestimated from the value at generation level.

17

Page 22: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 7. SIGNAL VERSUS BACKGROUND DATA

Additionally, it is possible, to plot (ma, mH) in 2D-parameter space as shown in Figure 7.4.An elliptical cluster can be found from this configuration, with the background data generallyoccupies the lower left part of this phasespace, represented as a black contour. With this, it ispossible to make a cut as a rectangular box in this 2D-parameter space (with ideally, a slantedbox).

0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=125, mA = 24 SignalBackground

Entries| Mean|RMS

2665 |23.43|5.23

5432 |25.82|8.17

mH=125, mA = 24

0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

mH=125, mA = 30 SignalBackground

Entries| Mean|RMS

3955 |28.27|6.82

5432 |25.82|8.17

mH=125, mA = 30

0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

mH=125, mA = 36 SignalBackground

Entries| Mean|RMS

3990 |32.45|7.08

5432 |25.82|8.17

mH=125, mA = 36

Figure 7.2: Mass of a, comparing between signal and background data.

H.m [GeV]0 20 40 60 80 100 120 140 160 180 200

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

mH=125, mA = 24 SignalBackground

Entries| Mean|RMS

2665 |119.47|16.59

5432 |87.94|24.59

mH=125, mA = 24

H.m [GeV]0 20 40 60 80 100 120 140 160 180 200

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=125, mA = 30 SignalBackground

Entries| Mean|RMS

3955 |118.07|19.92

5432 |87.94|24.59

mH=125, mA = 30

H.m [GeV]0 20 40 60 80 100 120 140 160 180 200

0

0.02

0.04

0.06

0.08

0.1

0.12

mH=125, mA = 36 SignalBackground

Entries| Mean|RMS

3990 |115.06|20.55

5432 |87.94|24.59

mH=125, mA = 36

Figure 7.3: Mass of H, comparing between signal and background data.

7.3 Significance and S/B at generator level

In order to quantify the quality of signal data over background data, we can refer to the quantitycalled significance:

σ = S/√S

where S,B are the numbers of signal and background events predicted to be observed in data.At the generator level, this is calculated from:

S =Ngen,S

Ngen,totσgenL

where Ngen,S is the number of signal events at the generator level out of Ngen,tot generatedevents. σgen is the cross-section given by the generator, and L is the integrated luminosity. Thesame calculation applies for B.

Another quantity of interest:S/B

18

Page 23: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 7. SIGNAL VERSUS BACKGROUND DATA

mH [GeV]60 70 80 90 100 110 120 130 140 150 160

mA

[G

eV]

10

15

20

25

30

35

40

45

50

report_2D_mHmA mH=125, mA=21

mH=145, mA=36

Background

report_2D_mHmA

Figure 7.4: Plot of signal and background data in 2Dma, mH space, with background data representedas contour in black, decreasing by half for each downhill countour.

can directly be interpreted as the ratio of number of signal events over background events, andqualitatively gives us the idea how rare or common the signal events can be found against thebackground data. Remark that this quantity is luminosity-independent.

From Figure 7.4, it suggests that highest S/B can be found further away from the contour ofbackground data. In order to know where the maximum S/B can be found, we deploy, for each(mH ,ma,E) configuration, a cut of rectangular box in this space (boxes of dimension (30,12)[GeV] in (mH , ma) space, spacing (5,2) [GeV] from each other), and determine the ratio S/Bfrom the cut-box with highest significance found.

The result is shown in Figure 7.5, where the ratio S/B is reported as a function of (mH ,ma,and energy E). As we expected, the ratio gets higher toward the direction of low ma regime,suggesting that the signal events can be found more often than the background events. On thecontrary, the statistics (to have count(J) = 4) decrease quickly as we move toward the low ma

regime. Such dilemma imposes a challenge on how to cultivate more information from the caseof count(J) = 2,3 in this regime. Notice also that as the energy (luminosity) increases, theratio S/B decreases. This is because at higher energy the sum of mass of four b-jets gets closerto the mass of Higgs, and thus increases the count of B inside the box.

For the complete statistics of this section, see also appendix E.5.

19

Page 24: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 7. SIGNAL VERSUS BACKGROUND DATA

0.0160.0354

1.23 0.447 0.1650.467 0.27 0.0834

0.26 0.298 0.0458

0.939 0.701 1.073.8 2.38 1.69

3.37 3.72 2.79

0.454 0.464 0.331 1 1.41 1.95

1.44 2.93 6.19

0.285 0.327 0.3450.542 0.7 0.7

0.584 0.985 1.96

0.201 0.228 0.2360.391 0.521 0.614

0.488 0.697 0.709

0.156 0.189 0.1970.312 0.37 0.362

0.34 0.459 0.594

0.14 0.167 0.1710.282 0.314 0.351

0.301 0.413 0.48

mH [GeV]120 125 130 135 140 145 150

mA

[G

eV]

10

15

20

25

30

35

40

S_over_B_sig1_R05 7 TeV 8 TeV

14 TeV

S_over_B_sig1_R05

Figure 7.5: The value of ratio S/B at different (mH ,ma) combination, with cut count(J) =4 andrectangular cut in (mH ,ma)-space yielding highest σ. For each entry, the triplet is in the order ofenergy E = 7,8,14 TeV. Some anomalously large value should be ignore due to the lack of statistics. Seeappendix E.5 for more detail.

20

Page 25: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Chapter 8

Glimpse on the full simulation data

In this section, we will be analysing the data not from the generation level previously used , butwe move to the dataset created from the offical LHCb full simulations. This involved a finerdetail of simulation (such as particle-matter interaction and detector simulation, more realisticjet reconstruction, b-tagging, etc.). Without diving too much into details of this data, we cansee how the analysis at this level yields results resembling to what we obtained in previouschapters.

8.1 Selection of b-tagged jets

The term b-tagging on jets refers to the identification whether the chosen jet comes from thehadronization of a b-quark or not. In the previous chapter, this is identified by selecting the jetsuch that it minimize the quantity dR with its respective Monte-Carlo truth B-hadron. How-ever, with the full simuation data, this identification is given by different b-taggers developpedby the LHCb collaboration (such as TOPO, SV, NNB). Since each B-tagger is based on differenttechniques, there are several choices to identify whether the given event contains the b-jets ornot, and how many there are. In general, the tighter the tagging, the less number of eventssurvive. Only some choices among them will be represented here1:

- 1xTOPO_3xSV: Requiring 1 b-jet tagged by TOPO tagger and 3 b-jets tagged by SV tagger.

- 4xNNB90: Requiring at least 4 b-jets, using NeuralNetwork b-tagger at threshold 0.9.

Note that the analysis of how each tagging combination performs is still subject to more study.We assume here that the data does not contain any fake b-jets, and all other background eventsare eliminated except the QCD production of bb̄bb̄.

1Other choices of b-taggers were also tried during this analysis. See also appendix F.1

21

Page 26: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 8. GLIMPSE ON THE FULL SIMULATION DATA

8.2 Analysis

The result from full simulation data will be studied here in comparison with the MC truth, andthe jets reconstruction found in previous chapters. We impose a cut on minimum transversemomentum of each jet such that pt(jet) ≥ 10 GeV. For the sake of simplicity, the data is selectedat beam energy of 7 TeV, mH = 125 GeV and ma = 30 GeV. Other set of (mH , ma) massesare also available in the appendix F

8.2.1 Transverse momentum

The transverse momentum of jets and two a is interesting here in order to review which dis-criminant is available, as shown in Figure 8.1-8.4. First, it can be seen that the result fromsimulation does not significantly deviate from what we expected knowing the MC truth andfrom jet reconstruction. In particular, pt(a) is significantly underestimated in the result fromfull simulation data. After comparing the signal versus background data, it suggests the possiblecut at pt(jet) > 20 GeV, pt(ai) > 30 GeV, or even pt(a1) + pt(a2) > 60 GeV.

[GeV]10 20 30 40 50 60 70 800

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

mean(J.pt)Truth

GeneratorLv.FullSim_1xTOPO_3xSV

FullSim_4xNNB90Entries| Mean|RMS

13979 |30.41|4.56

3955 |28.71|5.73

158 |24.52|4.84

699 |24.89|6.73

mean(J.pt)

[GeV]10 20 30 40 50 60 70 800

0.05

0.1

0.15

0.2

0.25

0.3

mean(A.pt)Truth

GeneratorLv.FullSim_1xTOPO_3xSV

FullSim_4xNNB90Entries| Mean|RMS

13979 |55.48|6.79

3955 |52.16|8.90

158 |44.17|9.80

699 |42.70|9.90

mean(A.pt)

Figure 8.1: Average transverse momentum of jets, a from signal data of different classes. mH = 125GeV, ma = 30 GeV

22

Page 27: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 8. GLIMPSE ON THE FULL SIMULATION DATA

[GeV]10 20 30 40 50 60 70 800

0.05

0.1

0.15

0.2

0.25

0.3

mean(J.pt)GeneratorLv.

FullSim_1xTOPO_3xSV

FullSim_4xNNB90Entries| Mean|RMS

5432 |19.60|5.89

44 |22.85|7.20

239 |21.30|6.31

mean(J.pt)

[GeV]10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

mean(A.pt)GeneratorLv.

FullSim_1xTOPO_3xSV

FullSim_4xNNB90Entries| Mean|RMS

5432 |32.99|10.81

44 |37.72|14.21

239 |35.72|11.88

mean(A.pt)

Figure 8.2: Average transverse momentum of jets, a from background data of different classes. mH =125 GeV, ma = 30 GeV

[GeV]10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

mean(J.pt)Signal

BackgroundEntries| Mean|RMS

699 |24.89|6.73

239 |21.30|6.31

mean(J.pt)

[GeV]10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

mean(A.pt)Signal

BackgroundEntries| Mean|RMS

699 |42.70|9.90

239 |35.72|11.88

mean(A.pt)

Figure 8.3: Average transverse momentum of jets, a of signal data versus background. (Use 4xNNB70as b-taggers, mH = 125 GeV, ma = 30 GeV)

23

Page 28: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 8. GLIMPSE ON THE FULL SIMULATION DATA

A2.pt [GeV]0 10 20 30 40 50 60 70 80

A1.

pt

[GeV

]

0

10

20

30

40

50

60

70

80

pt_A1A2_mH125_mA30pt_A1A2_mH125_mA30

Figure 8.4: 2D plot of transverse momentum of two pseudoscalar Higgs a, at ma = 30 GeV, mH =125 GeV, E= 7 TeV and using 4xNNB90 as b-tagger, with signal represented as scattered points, andbackground as black contour decreasing by half for each downhill countour.

24

Page 29: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 8. GLIMPSE ON THE FULL SIMULATION DATA

8.2.2 Mass of the Higgs a, H

The mass of the Higgs a, H reconstructed from the full simulation data are also in agreementwith MC truth and jets reconstruction, as seen in Figure 8.5-8.7. Again, we can see that thereconstructed mH ,ma in all classes tends to be lower than the value at truth.

[GeV]10 20 30 40 50 60 70 80

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

SignalGeneratorLv.FullSim_1xTOPO_3xSVFullSim_4xNNB90

Entries| Mean|RMS

3955 |28.62|7.73

158 |26.48|6.74

699 |26.79|8.93

Signal

[GeV]10 20 30 40 50 60 70 80

0

0.02

0.04

0.06

0.08

0.1

0.12

BackgroundGeneratorLv.FullSim_1xTOPO_3xSVFullSim_4xNNB90

Entries| Mean|RMS

5432 |26.07|8.74

44 |30.07|8.73

239 |26.43|10.12

Background

[GeV]10 20 30 40 50 60 70 80

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

S&B @ 4xNNB90SignalBackground

Entries| Mean|RMS

699 |26.79|8.93

239 |26.43|10.12

S&B @ 4xNNB90

Figure 8.5: Reconstruction of ma given that mH = 125 GeV, ma = 30 GeV at generation level.

mH [GeV]0 20 40 60 80 100 120 140 160 180 200 220 240

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

SignalGeneratorLv.FullSim_1xTOPO_3xSVFullSim_4xNNB90

Entries| Mean|RMS

3955 |118.98|21.91

158 |104.40|17.47

699 |104.48|23.19

Signal

mH [GeV]0 20 40 60 80 100 120 140 160 180 200 220 240

0

0.02

0.04

0.06

0.08

0.1

0.12

BackgroundGeneratorLv.FullSim_1xTOPO_3xSVFullSim_4xNNB90

Entries| Mean|RMS

5432 |88.31|25.47

44 |101.89|29.33

239 |93.41|27.78

Background

mH [GeV]0 20 40 60 80 100 120 140 160 180 200 220 240

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

S&B @ 4xNNB90SignalBackground

Entries| Mean|RMS

699 |104.48|23.19

239 |93.41|27.78

S&B @ 4xNNB90

Figure 8.6: Reconstruction of mH given that mH = 125 GeV, ma = 30 GeV at generation level.

8.3 Significance and S/B at full simulation data

A calculation for significance and S/B can be performed in a similar way as in section 7.3, andthe result should be compared with Figure 7.5. In general we see an overall decrease in S/B,which is what when compare to the result from generator level.------------------------------------------------------------| E, mH, mA | Taggers | Sigma | S/B | Lum_5sig |------------------------------------------------------------| 7, 125, 15 | 1xTOPO_3xSV| 0.419657 | 0.137765| 156151.0 || 7, 125, 15 | 4xNNB90 | 1.52126 | 0.499399| 11883.1 || 7, 125, 30 | 1xTOPO_3xSV| 3.27537 | 0.760309| 2563.38 || 7, 125, 30 | 4xNNB90 | 3.45273 | 0.210479| 2306.79 || 7, 125, 45 | 1xTOPO_3xSV| 1.79782 | 0.417327| 8508.28 || 7, 125, 45 | 4xNNB90 | 2.02168 | 0.123242| 6728.31 || 7, 145, 15 | 1xTOPO_3xSV| 0.088757 | 0.0206032| 3.49081e6|| 7, 145, 15 | 4xNNB90 | 0.481166 | 0.157958| 118780.0 || 7, 145, 30 | 1xTOPO_3xSV| 2.61626 | 0.858868| 4017.64 || 7, 145, 30 | 4xNNB90 | 2.28041 | 0.264676| 5288.17 || 7, 145, 65 | 1xTOPO_3xSV| 0 | 0| 0 || 7, 145, 65 | 4xNNB90 | 0.553412 | 0.181674| 89791.7 |------------------------------------------------------------

25

Page 30: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

CHAPTER 8. GLIMPSE ON THE FULL SIMULATION DATA

mH [GeV]60 70 80 90 100 110 120 130 140 150 160

mA

[G

eV]

0

10

20

30

40

50

60

report_SB_mH125mA30_4xNNB90report_SB_mH125mA30_4xNNB90

Figure 8.7: Signal versus background in mH ,ma space, at ma = 30 GeV, mH = 125 GeV, E= 7 TeVand using 4xNNB90 as b-tagger, with signal represented as scattered points, and background as blackcontour decreasing by half for each downhill countour.

26

Page 31: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Chapter 9

Conclusion

In this work, we have studied the signal of Higgs decay to four b-quarks via two pseudoscalarHiggs a inside the LHCb experiment based on different combinations of mH ,mA pairs. At thegenerator level, we have demonstrated that in order to provide an accurate jet reconstruction,different regimes based on mH ,ma, and the number of jets, should be employed separately usingdifferent analysis strategies:

- Low ma regimeTwo b-jets are found to be doubly-merged, and their four-momenta are very close to thoseof the pseudoscalar a, which can bring a very accurate reconstruction of mH ,ma. However,in practice, a new method of double-b-tagging needs to be developed in order to identifythem. There is also a problem with enormous 2-b-jets background which poses a challengeto the study of mH ,ma in this regime.

- Medium ma regimeJets are often found to be merged together, and the reconstruction underestimates thevalues from MC truth, suggesting that particles are lost from the jet reconstruction cone.Further study on jet tuning (such as increasing jet radius R) is a key to this regime.

- High ma regimeJets are completely resolved into 4 non-overlapping b-jets. The reconstruction of mH ,ma

is also accurate, but this regime suffers from the low probability of having all 4 jets insidethe geometrical acceptance.

The calculations of S/B both from the generator level and from offical LHCb full simulationindicate that it is possible to find signal of Higgs decay to four bottom quarks at the LHCbexperiment. We make a remark on the limitation of this study, where we have assumed that allother background are isolated except the QCD-bb̄bb̄. We made assumption that there is no fake-b-jets imposed by other quarks (such as by c), and that the stripping and trigger efficiency areat 100%. Furthermore, there is also a limitation from the event generator which are currentlyat the leading order (both signal and background events). It is even more crucial for the QCD-bb̄bb̄ backgound because it has not been tested yet against the data from LHCb. This wouldbe required in order to accurately describe this background and improve the calculation to theNext-to-Leading-Order.

27

Page 32: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix :

28

Page 33: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendices

29

Page 34: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,
Page 35: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix A: Events Generation

A Events Generation

A.1 Modified decay table due to mH, ma

H → aa decay

|----------------------------------------------------------------------------------------------------|| DECAY: H -> aa | mA || mH = 125 GeV | 15 20 25 30 35 40 45 50 55 ||----------------------------------------------------------------------------------------------------||(’1’, ’-1’) | d dbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’2’, ’-2’) | u ubar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’3’, ’-3’) | s sbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’4’, ’-4’) | c cbar | 0.0005 0.0005 0.0006 0.0007 0.0008 0.0008 0.0009 0.0011 0.0013 ||(’5’, ’-5’) | b bbar | 0.0097 0.0104 0.0116 0.0130 0.0142 0.0153 0.0169 0.0195 0.0244 ||(’6’, ’-6’) | t tbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’11’, ’-11’) | e- e+ | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’13’, ’-13’) | mu- mu+ | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’15’, ’-15’) | tau- tau+ | 0.0011 0.0012 0.0013 0.0015 0.0016 0.0018 0.0019 0.0022 0.0028 ||(’21’, ’21’) | gg | 0.0010 0.0011 0.0012 0.0013 0.0015 0.0016 0.0018 0.0020 0.0026 ||(’22’, ’22’) | 2*gamma | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 ||(’22’, ’23’) | gamma Z | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’23’, ’23’) | Z Z | 0.0004 0.0004 0.0005 0.0005 0.0006 0.0006 0.0007 0.0008 0.0010 ||(’23’, ’25’) | Z h0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’23’, ’36’) | Z A0 | 0.2067 0.1619 0.1034 0.0369 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’24’, ’-24’) | W+ W- | 0.0035 0.0038 0.0042 0.0047 0.0052 0.0056 0.0062 0.0071 0.0089 ||(’24’, ’-37’) | W+ H- | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’25’, ’25’) | h0 h0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’25’, ’36’) | h0 A0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’36’, ’36’) | A0 A0 | 0.7767 0.8201 0.8768 0.9409 0.9756 0.9738 0.9711 0.9667 0.9583 ||(’37’, ’-24’) | H+ W- | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||--------------|-----------|-------------------------------------------------------------------------|| DECAY: H -> aa | mA || mH = 135 GeV | 15 20 25 30 35 40 45 50 55 ||----------------------------------------------------------------------------------------------------||(’1’, ’-1’) | d dbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’2’, ’-2’) | u ubar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’3’, ’-3’) | s sbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’4’, ’-4’) | c cbar | 0.0004 0.0005 0.0005 0.0006 0.0007 0.0008 0.0010 0.0011 0.0013 ||(’5’, ’-5’) | b bbar | 0.0085 0.0091 0.0101 0.0114 0.0133 0.0157 0.0179 0.0198 0.0227 ||(’6’, ’-6’) | t tbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’11’, ’-11’) | e- e+ | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’13’, ’-13’) | mu- mu+ | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’15’, ’-15’) | tau- tau+ | 0.0010 0.0010 0.0012 0.0013 0.0015 0.0018 0.0021 0.0023 0.0027 ||(’21’, ’21’) | gg | 0.0010 0.0011 0.0012 0.0014 0.0016 0.0019 0.0022 0.0024 0.0028 ||(’22’, ’22’) | 2*gamma | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 ||(’22’, ’23’) | gamma Z | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 ||(’23’, ’23’) | Z Z | 0.0011 0.0012 0.0013 0.0015 0.0017 0.0021 0.0024 0.0026 0.0030 ||(’23’, ’25’) | Z h0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’23’, ’36’) | Z A0 | 0.3867 0.3521 0.3036 0.2384 0.1541 0.0562 0.0000 0.0000 0.0000 ||(’24’, ’-24’) | W+ W- | 0.0083 0.0090 0.0099 0.0113 0.0131 0.0155 0.0177 0.0195 0.0225 ||(’24’, ’-37’) | W+ H- | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’25’, ’25’) | h0 h0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’25’, ’36’) | h0 A0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’36’, ’36’) | A0 A0 | 0.5925 0.6255 0.6716 0.7336 0.8133 0.9054 0.9562 0.9516 0.9444 ||(’37’, ’-24’) | H+ W- | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||--------------|-----------|-------------------------------------------------------------------------|| DECAY: H -> aa | mA || mH = 145 GeV | 15 20 25 30 35 40 45 50 55 ||----------------------------------------------------------------------------------------------------|

31

Page 36: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix A: Events Generation

|(’1’, ’-1’) | d dbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’2’, ’-2’) | u ubar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’3’, ’-3’) | s sbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’4’, ’-4’) | c cbar | 0.0003 0.0004 0.0004 0.0005 0.0005 0.0006 0.0008 0.0010 0.0012 ||(’5’, ’-5’) | b bbar | 0.0069 0.0074 0.0081 0.0090 0.0103 0.0122 0.0148 0.0186 0.0221 ||(’6’, ’-6’) | t tbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’11’, ’-11’) | e- e+ | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’13’, ’-13’) | mu- mu+ | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’15’, ’-15’) | tau- tau+ | 0.0008 0.0008 0.0009 0.0010 0.0012 0.0014 0.0017 0.0022 0.0026 ||(’21’, ’21’) | gg | 0.0010 0.0010 0.0011 0.0013 0.0015 0.0017 0.0021 0.0027 0.0032 ||(’22’, ’22’) | 2*gamma | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 ||(’22’, ’23’) | gamma Z | 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 ||(’23’, ’23’) | Z Z | 0.0023 0.0025 0.0027 0.0031 0.0035 0.0041 0.0051 0.0063 0.0076 ||(’23’, ’25’) | Z h0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’23’, ’36’) | Z A0 | 0.5429 0.5205 0.4891 0.4462 0.3880 0.3096 0.2053 0.0775 0.0000 ||(’24’, ’-24’) | W+ W- | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’24’, ’-37’) | W+ H- | 0.0180 0.0192 0.0209 0.0234 0.0268 0.0316 0.0385 0.0481 0.0574 ||(’25’, ’25’) | h0 h0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’25’, ’36’) | h0 A0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||(’36’, ’36’) | A0 A0 | 0.4272 0.4475 0.4761 0.5151 0.5676 0.6380 0.7308 0.8428 0.9050 ||(’37’, ’-24’) | H+ W- | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||--------------|-----------|-------------------------------------------------------------------------|

a→ bb̄ decay

|-----------------------|-------------------------------------------------------------------------|| DECAY: a -> b bbar | mA || | 15 20 25 30 35 40 45 50 55 ||-----------------------|-------------------------------------------------------------------------|| (1, -1) | d dbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 || (2, -2) | u ubar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 || (3, -3) | s sbar | 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 || (4, -4) | c cbar | 0.0608 0.0545 0.0521 0.0507 0.0498 0.0491 0.0485 0.0480 0.0475 || (5, -5) | b bbar | 0.8423 0.8542 0.8555 0.8535 0.8499 0.8453 0.8399 0.8340 0.8275 || (6, -6) | t tbar | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 || (11, -11) | e- e+ | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 || (13, -13) | mu- mu+ | 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 || (15, -15) | tau- tau+ | 0.0829 0.0796 0.0799 0.0809 0.0820 0.0830 0.0838 0.0846 0.0851 || (21, 21) | gg | 0.0131 0.0109 0.0117 0.0140 0.0174 0.0217 0.0268 0.0325 0.0389 || (22, 22) | 2*gamma | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 || (22, 23) | gamma Z | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 || (23, 23) | Z Z | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 || (23, 25) | Z h0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 || (24, -37) | W+ H- | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 || (24, -24) | W+ W- | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 || (25, 25) | h0 h0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 || (37, -24) | H+ W- | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ||-----------|-----------|-------------------------------------------------------------------------|

A.2 Input card for signal data generation (using Pythia)

Beams:idA = 2212 // first beam, p = 2212Beams:idB = 2212 // second beam, p = 2212Beams:eCM = {energy} // CM energy of collision.

PartonLevel:all = off // Skip showering

// Open BSM Higgs

32

Page 37: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix A: Events Generation

Higgs:useBSM = onHiggsBSM:allH2 = on

// Restrict the mass of Higgs35:m0 = {mH} // About 125 GeV36:m0 = {mA} // About 15 Gev

// Restrict Higgs decay to A0 [36]35:onmode = off35:onIfMatch = 36 36

// Restrict A0 decay to bbar [5]36:onMode = off36:onIfAny = 5

PDF:pSet = 8 //CTEQ6L1

We use perl script to replace the field energy, mH, mA to different values as listed in chapter 3.

A.3 Input cards for background data generation (using Alpgen)

Two input files (input1, input2) are used in the generation of weighted events and unweightedevents respectively. This is done inside the 4Qgen directory and using CTEQ6L1 as the PDF set[11].

input11bbbb07000000 270000000ebeam 3500ih2 1ndns 9njets 0ihvy 5ihvy2 5mt 173.1ptbmin 5ptcmin 5etabmax 10etacmax 10drbmin 0.drcmin 0.iseed1 12345.000000000000iseed2 67890.000000000000iseed3 11111.000000000000iseed4 22222.000000000000

input22bbbb

33

Page 38: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix B: Signal at MC truth level

B Signal at MC truth level

(A1,A2)φd0 1 2 3 4 5 6

0

1000

2000

3000

4000

5000

mH=125 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

49998 | 3.11|1.01

50000 | 3.11|1.13

50000 | 3.02|1.57

mH=125 GeV

(A1,A2)φd0 1 2 3 4 5 6

0

1000

2000

3000

4000

5000

mH=135 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

49999 | 3.12|0.98

50000 | 3.11|1.08

50000 | 3.07|1.40

mH=135 GeV

(A1,A2)φd0 1 2 3 4 5 6

0

1000

2000

3000

4000

5000

6000

mH=145 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

50000 | 3.13|0.96

50000 | 3.12|1.04

50000 | 3.09|1.28

mH=145 GeV

Figure 1: dφ between two pseoduscalar a at different mH ,ma

dR(A1,A2)0 1 2 3 4 5 6

0

1000

2000

3000

4000

5000

6000

7000

mH=125 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

49998 | 2.88|0.71

50000 | 2.69|0.75

50000 | 2.12|0.92

mH=125 GeV

dR(A1,A2)0 1 2 3 4 5 6

0

1000

2000

3000

4000

5000

6000

7000

mH=135 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

49999 | 2.91|0.70

50000 | 2.75|0.73

50000 | 2.34|0.86

mH=135 GeV

dR(A1,A2)0 1 2 3 4 5 6

0

1000

2000

3000

4000

5000

6000

7000

mH=145 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

50000 | 2.93|0.70

50000 | 2.80|0.71

50000 | 2.49|0.81

mH=145 GeV

Figure 2: dR between two pseoduscalar a at different mH ,ma

34

Page 39: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix B: Signal at MC truth level

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2000

4000

6000

8000

10000

12000

14000

mH=125 GeV, mA=15 GeVbbar same motherbbar diff mother

Entries| Mean|RMS

49998 | 0.52|0.39

49998 | 2.82|0.68

mH=125 GeV, mA=15 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

3500

4000

mH=125 GeV, mA=35 GeVbbar same motherbbar diff mother

Entries| Mean|RMS

50000 | 1.72|0.72

50000 | 2.34|0.84

mH=125 GeV, mA=35 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

3500

mH=125 GeV, mA=55 GeVbbar same motherbbar diff mother

Entries| Mean|RMS

50000 | 2.55|0.68

50000 | 1.95|0.91

mH=125 GeV, mA=55 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2000

4000

6000

8000

10000

12000

14000

16000

mH=135 GeV, mA=15 GeVbbar same motherbbar diff mother

Entries| Mean|RMS

49999 | 0.48|0.36

49999 | 2.85|0.67

mH=135 GeV, mA=15 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

3500

4000

4500

mH=135 GeV, mA=35 GeVbbar same motherbbar diff mother

Entries| Mean|RMS

50000 | 1.62|0.71

50000 | 2.40|0.82

mH=135 GeV, mA=35 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

3500

mH=135 GeV, mA=55 GeVbbar same motherbbar diff mother

Entries| Mean|RMS

50000 | 2.40|0.69

50000 | 2.03|0.90

mH=135 GeV, mA=55 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2000

4000

6000

8000

10000

12000

14000

16000

18000

mH=145 GeV, mA=15 GeVbbar same motherbbar diff mother

Entries| Mean|RMS

50000 | 0.45|0.35

50000 | 2.88|0.66

mH=145 GeV, mA=15 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1000

2000

3000

4000

5000

mH=145 GeV, mA=35 GeVbbar same motherbbar diff mother

Entries| Mean|RMS

50000 | 1.53|0.70

50000 | 2.47|0.80

mH=145 GeV, mA=35 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

3500

mH=145 GeV, mA=55 GeVbbar same motherbbar diff mother

Entries| Mean|RMS

50000 | 2.28|0.69

50000 | 2.11|0.89

mH=145 GeV, mA=55 GeV

Figure 3: dR between b-quarks at different mH ,ma

35

Page 40: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix B: Signal at MC truth level

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2000

4000

6000

8000

10000

12000

14000

mH=125 GeV, mA=15 GeVB & Bbar same motherB & Bbar diff mother

Entries| Mean|RMS

49998 | 0.41|0.34

49998 | 2.83|0.68

mH=125 GeV, mA=15 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

3500

4000

mH=125 GeV, mA=35 GeVB & Bbar same motherB & Bbar diff mother

Entries| Mean|RMS

50000 | 1.59|0.73

50000 | 2.37|0.83

mH=125 GeV, mA=35 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

mH=125 GeV, mA=55 GeVB & Bbar same motherB & Bbar diff mother

Entries| Mean|RMS

50000 | 2.46|0.72

50000 | 1.95|0.91

mH=125 GeV, mA=55 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2000

4000

6000

8000

10000

12000

14000

16000

mH=135 GeV, mA=15 GeVB & Bbar same motherB & Bbar diff mother

Entries| Mean|RMS

49999 | 0.38|0.31

49999 | 2.87|0.67

mH=135 GeV, mA=15 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

3500

4000

4500

mH=135 GeV, mA=35 GeVB & Bbar same motherB & Bbar diff mother

Entries| Mean|RMS

50000 | 1.49|0.71

50000 | 2.43|0.80

mH=135 GeV, mA=35 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

mH=135 GeV, mA=55 GeVB & Bbar same motherB & Bbar diff mother

Entries| Mean|RMS

50000 | 2.31|0.73

50000 | 2.03|0.90

mH=135 GeV, mA=55 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2000

4000

6000

8000

10000

12000

14000

16000

18000

mH=145 GeV, mA=15 GeVB & Bbar same motherB & Bbar diff mother

Entries| Mean|RMS

50000 | 0.35|0.30

50000 | 2.89|0.66

mH=145 GeV, mA=15 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1000

2000

3000

4000

5000

mH=145 GeV, mA=35 GeVB & Bbar same motherB & Bbar diff mother

Entries| Mean|RMS

50000 | 1.40|0.70

50000 | 2.50|0.78

mH=145 GeV, mA=35 GeV

R∆0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

mH=145 GeV, mA=55 GeVB & Bbar same motherB & Bbar diff mother

Entries| Mean|RMS

50000 | 2.18|0.73

50000 | 2.11|0.89

mH=145 GeV, mA=55 GeV

Figure 4: dR between B-hadrons at different mH ,ma

36

Page 41: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix B: Signal at MC truth level

b-quark.pt [GeV]0 10 20 30 40 50 600

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E=7 TeV, mA=15 GeVWithout LHCb acceptanceWith LHCb acceptance

Entries| Mean|RMS

49998 |28.24|8.42

794 |31.27|4.59

E=7 TeV, mA=15 GeV

b-quark.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E=7 TeV, mA=35 GeVWithout LHCb acceptanceWith LHCb acceptance

Entries| Mean|RMS

50000 |28.23|7.39

453 |30.80|5.31

E=7 TeV, mA=35 GeV

b-quark.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E=7 TeV, mA=55 GeVWithout LHCb acceptanceWith LHCb acceptance

Entries| Mean|RMS

50000 |28.35|7.08

392 |30.30|4.35

E=7 TeV, mA=55 GeV

b-quark.pt [GeV]0 10 20 30 40 50 600

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E=8 TeV, mA=15 GeVWithout LHCb acceptanceWith LHCb acceptance

Entries| Mean|RMS

49998 |28.38|8.57

982 |31.53|4.72

E=8 TeV, mA=15 GeV

b-quark.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E=8 TeV, mA=35 GeVWithout LHCb acceptanceWith LHCb acceptance

Entries| Mean|RMS

50000 |28.40|7.53

587 |30.77|5.27

E=8 TeV, mA=35 GeV

b-quark.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

E=8 TeV, mA=55 GeVWithout LHCb acceptanceWith LHCb acceptance

Entries| Mean|RMS

50000 |28.52|7.23

565 |30.35|4.77

E=8 TeV, mA=55 GeV

b-quark.pt [GeV]0 10 20 30 40 50 600

0.05

0.1

0.15

0.2

0.25

E=14 TeV, mA=15 GeVWithout LHCb acceptanceWith LHCb acceptance

Entries| Mean|RMS

49998 |28.85|8.91

1875 |32.15|5.80

E=14 TeV, mA=15 GeV

b-quark.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E=14 TeV, mA=35 GeVWithout LHCb acceptanceWith LHCb acceptance

Entries| Mean|RMS

50000 |28.97|7.90

1284 |31.61|6.32

E=14 TeV, mA=35 GeV

b-quark.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E=14 TeV, mA=55 GeVWithout LHCb acceptanceWith LHCb acceptance

Entries| Mean|RMS

50000 |29.05|7.63

1170 |31.42|6.17

E=14 TeV, mA=55 GeV

Figure 5: Comparision of pt of b-quarks with/without the LHCb acceptance (2.0 < η < 4.5). mH =125 GeV

37

Page 42: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix B: Signal at MC truth level

Distance [mm]0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E=7 TeV, mH=125 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

848 |19.20|11.31

539 |16.99|10.64

497 |17.76|11.21

E=7 TeV, mH=125 GeV

Distance [mm]0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

E=7 TeV, mH=135 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

695 |19.76|11.59

459 |18.27|11.49

387 |16.60|9.98

E=7 TeV, mH=135 GeV

Distance [mm]0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E=7 TeV, mH=145 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

673 |20.78|11.48

448 |19.60|11.57

364 |18.52|12.01

E=7 TeV, mH=145 GeV

Distance [mm]0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

E=8 TeV, mH=125 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

1042 |19.15|11.47

688 |18.04|11.18

659 |17.04|11.15

E=8 TeV, mH=125 GeV

Distance [mm]0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E=8 TeV, mH=135 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

915 |19.89|11.79

626 |18.91|11.53

562 |18.38|11.53

E=8 TeV, mH=135 GeV

Distance [mm]0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E=8 TeV, mH=145 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

811 |21.35|12.12

550 |20.08|12.52

449 |19.62|11.77

E=8 TeV, mH=145 GeV

Distance [mm]0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

E=14 TeV, mH=125 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

1982 |21.99|12.62

1512 |19.85|12.23

1359 |19.92|12.34

E=14 TeV, mH=125 GeV

Distance [mm]0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

E=14 TeV, mH=135 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

1754 |23.59|13.09

1288 |21.06|12.77

1216 |20.53|12.46

E=14 TeV, mH=135 GeV

Distance [mm]0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

E=14 TeV, mH=145 GeVmA=15 GeVmA=35 GeVmA=55 GeV

Entries| Mean|RMS

1698 |23.70|13.05

1334 |21.84|13.04

1061 |21.44|12.62

E=14 TeV, mH=145 GeV

Figure 6: Average distance travel by 4 B-hadrons before decay, at different E, mH , ma.

38

Page 43: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix C: Jet reconstruction (Preliminary)

C Jet reconstruction (Preliminary)

R∆0 0.05 0.1 0.15 0.2 0.25 0.30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

mH=125 GeV, mA=15 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

49994 | 0.05|0.05

49994 | 0.13|0.08

49994 | 0.14|0.08

mH=125 GeV, mA=15 GeV

R∆0 0.05 0.1 0.15 0.2 0.25 0.30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

mH=125 GeV, mA=35 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

50000 | 0.06|0.07

50000 | 0.08|0.07

50000 | 0.09|0.08

mH=125 GeV, mA=35 GeV

R∆0 0.05 0.1 0.15 0.2 0.25 0.30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

mH=125 GeV, mA=55 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

50000 | 0.07|0.07

50000 | 0.09|0.08

50000 | 0.10|0.08

mH=125 GeV, mA=55 GeV

R∆0 0.05 0.1 0.15 0.2 0.25 0.30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

mH=135 GeV, mA=15 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

49995 | 0.05|0.05

49995 | 0.13|0.07

49995 | 0.14|0.08

mH=135 GeV, mA=15 GeV

R∆0 0.05 0.1 0.15 0.2 0.25 0.30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

mH=135 GeV, mA=35 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

50000 | 0.06|0.07

50000 | 0.08|0.07

50000 | 0.09|0.08

mH=135 GeV, mA=35 GeV

R∆0 0.05 0.1 0.15 0.2 0.25 0.30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

mH=135 GeV, mA=55 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

50000 | 0.07|0.07

50000 | 0.08|0.07

50000 | 0.09|0.08

mH=135 GeV, mA=55 GeV

R∆0 0.05 0.1 0.15 0.2 0.25 0.30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

mH=145 GeV, mA=15 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

49997 | 0.05|0.05

49997 | 0.12|0.07

49997 | 0.14|0.08

mH=145 GeV, mA=15 GeV

R∆0 0.05 0.1 0.15 0.2 0.25 0.30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

mH=145 GeV, mA=35 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

50000 | 0.06|0.07

50000 | 0.07|0.07

50000 | 0.08|0.07

mH=145 GeV, mA=35 GeV

R∆0 0.05 0.1 0.15 0.2 0.25 0.30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

mH=145 GeV, mA=55 GeVb-quark & B-hadronB-hadron & jetb-quark & jet

Entries| Mean|RMS

50000 | 0.06|0.07

50000 | 0.08|0.07

50000 | 0.09|0.08

mH=145 GeV, mA=55 GeV

Figure 7: dR between b-quark, B-hadron, and Jet stages, at different mH , ma. We fixed E = 7 TeV.

39

Page 44: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix C: Jet reconstruction (Preliminary)

pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

mH=125 GeV, mA=15 GeVb-quarkB-hadronJet

Entries| Mean|RMS

48928 |28.07|17.73

48928 |26.34|15.93

48928 |45.83|22.34

mH=125 GeV, mA=15 GeV

pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

3500

mH=125 GeV, mA=35 GeVb-quarkB-hadronJet

Entries| Mean|RMS

47024 |28.53|18.30

47024 |23.48|16.11

47024 |27.75|18.30

mH=125 GeV, mA=35 GeV

pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

3500

4000

mH=125 GeV, mA=55 GeVb-quarkB-hadronJet

Entries| Mean|RMS

45975 |28.85|15.58

45975 |22.58|13.53

45975 |27.22|17.34

mH=125 GeV, mA=55 GeV

pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

mH=135 GeV, mA=15 GeVb-quarkB-hadronJet

Entries| Mean|RMS

49059 |29.85|18.54

49059 |28.00|16.57

49059 |49.13|22.61

mH=135 GeV, mA=15 GeV

pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

mH=135 GeV, mA=35 GeVb-quarkB-hadronJet

Entries| Mean|RMS

47061 |30.35|19.31

47061 |25.04|16.99

47061 |29.50|19.21

mH=135 GeV, mA=35 GeV

pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

3500

mH=135 GeV, mA=55 GeVb-quarkB-hadronJet

Entries| Mean|RMS

46177 |30.60|16.82

46177 |24.01|14.66

46177 |28.76|17.95

mH=135 GeV, mA=55 GeV

pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

mH=145 GeV, mA=15 GeVb-quarkB-hadronJet

Entries| Mean|RMS

49163 |31.70|19.27

49163 |29.87|17.29

49163 |52.52|22.83

mH=145 GeV, mA=15 GeV

pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

mH=145 GeV, mA=35 GeVb-quarkB-hadronJet

Entries| Mean|RMS

47112 |32.15|20.23

47112 |26.55|17.83

47112 |31.35|20.19

mH=145 GeV, mA=35 GeV

pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

mH=145 GeV, mA=55 GeVb-quarkB-hadronJet

Entries| Mean|RMS

46229 |32.40|18.18

46229 |25.51|15.84

46229 |30.25|18.66

mH=145 GeV, mA=55 GeV

Figure 8: pt at different b-quark, B-hadron, and jet stages. We fixed E = 7 TeV.

0 2 4 6 8 10 12 14 16 18 200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

mA=15 GeVWithout acceptanceWith LHCb acceptance

Entries| Mean|RMS

49998 | 7.60|3.48

49998 | 1.29|1.32

mA=15 GeV

0 2 4 6 8 10 12 14 16 18 200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

mA=35 GeVWithout acceptanceWith LHCb acceptance

Entries| Mean|RMS

50000 | 8.92|3.39

50000 | 1.38|1.44

mA=35 GeV

0 2 4 6 8 10 12 14 16 18 200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

mA=55 GeVWithout acceptanceWith LHCb acceptance

Entries| Mean|RMS

50000 | 9.35|3.40

50000 | 1.42|1.51

mA=55 GeV

Figure 9: Number of jets found in the reconstruction of particle with (i) no acceptance restriction and(ii) with LHCb acceptance. This is obtained at E = 7 TeV, mH = 125 GeV.

40

Page 45: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix D: Jet reconstruction statistics

D Jet reconstruction statistics

After the jet reconstruction using Pythia and Fastjet, certain statistics of interest arerecorded. The explanation of each column is the following:

- E : Energy at proton-proton centre-of-mass frame in TeV.

- mH : Mass of Higgs H in GeV.

- mA : Mass of pseudoscalar a in GeV.

- R: Jet radius parameter.

- nEvent: Number of valid events (having 4 B-hadrons inside LHCb acceptance) out of50,000 events.

- 4x,3x,2x,1x,0x: Number of relevant jets found to associate with 4 B-hadrons (count(J))

- TripleUnres: Number of events ignored because it found 3 B-hadrons merged into onejet.

- NeedSplit: Number of events in which splitting is needed. (i.e., when a merged jet isfound from hadron pair of different mother a).

- False R1R2; Number of events in which the R1R2-algorithm is false (knowing MC truth).

D.1 R = 0.5

-------------------------------------------------------------------------------------------------------| E | mH | mA | R | nEvent | 4x , 3x , 2x , 1x , 0x |TripleUnres |NeedSplit |False R1R2 |-------------------------------------------------------------------------------------------------------| 7 | 125 | 12 | R05 | 15413 | 0, 43, 15374, 35, 0 | 4 | 0 | 0 || 7 | 125 | 15 | R05 | 15284 | 0, 487, 14800, 42, 0 | 3 | 0 | 0 || 7 | 125 | 18 | R05 | 14832 | 52, 3173, 11628, 36, 0 | 21 | 2 | 1 || 7 | 125 | 21 | R05 | 14518 | 1113, 6348, 7157, 53, 0 | 100 | 5 | 7 || 7 | 125 | 24 | R05 | 13875 | 2665, 6967, 4512, 52, 0 | 269 | 70 | 32 || 7 | 125 | 27 | R05 | 13695 | 3611, 6985, 3646, 47, 0 | 547 | 488 | 177 || 7 | 125 | 30 | R05 | 12967 | 3955, 6778, 3207, 39, 0 | 973 | 1282 | 611 || 7 | 125 | 33 | R05 | 12466 | 4016, 6857, 2843, 54, 1 | 1250 | 2170 | 1464 || 7 | 125 | 36 | R05 | 12072 | 3990, 6774, 2752, 48, 1 | 1444 | 2726 | 2676 || 7 | 135 | 12 | R05 | 14602 | 0, 31, 14573, 16, 0 | 2 | 0 | 0 || 7 | 135 | 15 | R05 | 14260 | 1, 298, 13963, 25, 0 | 2 | 0 | 0 || 7 | 135 | 18 | R05 | 14191 | 24, 2201, 11975, 21, 0 | 9 | 0 | 0 || 7 | 135 | 21 | R05 | 13785 | 617, 5642, 7559, 29, 0 | 33 | 5 | 3 || 7 | 135 | 24 | R05 | 13367 | 2337, 6660, 4516, 38, 0 | 146 | 27 | 20 || 7 | 135 | 27 | R05 | 12967 | 3422, 6550, 3378, 34, 0 | 383 | 246 | 84 || 7 | 135 | 30 | R05 | 12345 | 4006, 6296, 2681, 27, 0 | 638 | 836 | 304 || 7 | 135 | 33 | R05 | 11852 | 4171, 6168, 2457, 26, 0 | 944 | 1541 | 839 || 7 | 135 | 36 | R05 | 11742 | 4223, 6396, 2199, 31, 0 | 1076 | 2284 | 1625 || 7 | 145 | 12 | R05 | 13574 | 0, 17, 13559, 15, 0 | 2 | 0 | 0 || 7 | 145 | 15 | R05 | 13506 | 0, 210, 13297, 9, 0 | 1 | 0 | 0 || 7 | 145 | 18 | R05 | 13273 | 4, 1431, 11839, 16, 0 | 1 | 0 | 0 || 7 | 145 | 21 | R05 | 13067 | 307, 4601, 8179, 13, 0 | 20 | 0 | 0 || 7 | 145 | 24 | R05 | 12734 | 1762, 6285, 4773, 14, 0 | 86 | 5 | 12 || 7 | 145 | 27 | R05 | 12410 | 3192, 6292, 3126, 15, 0 | 200 | 105 | 32 || 7 | 145 | 30 | R05 | 11907 | 3901, 5911, 2542, 15, 0 | 447 | 459 | 159 || 7 | 145 | 33 | R05 | 11549 | 4304, 5774, 2134, 20, 0 | 663 | 1132 | 450 || 7 | 145 | 36 | R05 | 11384 | 4350, 5909, 1933, 15, 0 | 808 | 1769 | 1091 |-------------------------------------------------------------------------------------------------------| 8 | 125 | 12 | R05 | 16617 | 0, 62, 16558, 33, 0 | 3 | 0 | 0 || 8 | 125 | 15 | R05 | 16518 | 0, 565, 15963, 52, 0 | 10 | 0 | 0 || 8 | 125 | 18 | R05 | 16006 | 88, 3467, 12477, 46, 0 | 26 | 0 | 0 || 8 | 125 | 21 | R05 | 15685 | 1213, 6999, 7569, 50, 0 | 96 | 7 | 9 || 8 | 125 | 24 | R05 | 15283 | 2964, 7644, 5002, 60, 0 | 327 | 88 | 46 || 8 | 125 | 27 | R05 | 14586 | 3949, 7462, 3780, 53, 0 | 605 | 523 | 179 || 8 | 125 | 30 | R05 | 13954 | 4420, 7267, 3314, 48, 0 | 1047 | 1339 | 652 || 8 | 125 | 33 | R05 | 13468 | 4457, 7370, 2922, 66, 1 | 1281 | 2397 | 1513 || 8 | 125 | 36 | R05 | 13381 | 4522, 7504, 2792, 66, 0 | 1437 | 3148 | 2815 |

41

Page 46: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix D: Jet reconstruction statistics

| 8 | 135 | 12 | R05 | 16016 | 0, 34, 15985, 20, 0 | 3 | 0 | 0 || 8 | 135 | 15 | R05 | 15854 | 1, 373, 15483, 28, 0 | 3 | 0 | 0 || 8 | 135 | 18 | R05 | 15678 | 32, 2574, 13084, 30, 0 | 12 | 1 | 0 || 8 | 135 | 21 | R05 | 15234 | 719, 6414, 8155, 27, 0 | 54 | 7 | 4 || 8 | 135 | 24 | R05 | 14983 | 2514, 7474, 5171, 32, 0 | 176 | 28 | 26 || 8 | 135 | 27 | R05 | 14306 | 3812, 7307, 3613, 32, 0 | 426 | 254 | 86 || 8 | 135 | 30 | R05 | 13712 | 4460, 7008, 2996, 35, 0 | 752 | 921 | 357 || 8 | 135 | 33 | R05 | 13457 | 4736, 7118, 2560, 27, 0 | 957 | 1815 | 912 || 8 | 135 | 36 | R05 | 13156 | 4882, 7060, 2392, 32, 0 | 1178 | 2558 | 1846 || 8 | 145 | 12 | R05 | 15304 | 0, 27, 15279, 6, 0 | 2 | 0 | 0 || 8 | 145 | 15 | R05 | 15037 | 0, 223, 14817, 13, 0 | 3 | 0 | 0 || 8 | 145 | 18 | R05 | 14823 | 11, 1721, 13102, 13, 0 | 11 | 0 | 0 || 8 | 145 | 21 | R05 | 14737 | 358, 5267, 9142, 11, 0 | 30 | 1 | 2 || 8 | 145 | 24 | R05 | 14392 | 2021, 7190, 5286, 14, 0 | 105 | 15 | 8 || 8 | 145 | 27 | R05 | 13800 | 3541, 7030, 3491, 21, 0 | 262 | 119 | 42 || 8 | 145 | 30 | R05 | 13382 | 4447, 6679, 2790, 21, 0 | 534 | 556 | 177 || 8 | 145 | 33 | R05 | 12920 | 4746, 6543, 2404, 34, 0 | 773 | 1249 | 501 || 8 | 145 | 36 | R05 | 12551 | 5070, 6309, 2118, 15, 0 | 946 | 1999 | 1141 |-------------------------------------------------------------------------------------------------------| 14 | 125 | 12 | R05 | 21586 | 0, 89, 21504, 38, 0 | 7 | 0 | 1 || 14 | 125 | 15 | R05 | 21330 | 1, 847, 20501, 61, 0 | 19 | 0 | 0 || 14 | 125 | 18 | R05 | 20752 | 147, 4959, 15698, 53, 0 | 52 | 0 | 1 || 14 | 125 | 21 | R05 | 20261 | 1685, 9215, 9538, 55, 0 | 177 | 7 | 17 || 14 | 125 | 24 | R05 | 19522 | 4046, 9817, 6166, 61, 0 | 507 | 165 | 87 || 14 | 125 | 27 | R05 | 18630 | 5408, 9623, 4494, 75, 0 | 895 | 680 | 264 || 14 | 125 | 30 | R05 | 17885 | 6163, 9176, 3851, 58, 0 | 1305 | 1862 | 919 || 14 | 125 | 33 | R05 | 17451 | 6306, 9338, 3370, 53, 0 | 1563 | 3030 | 2027 || 14 | 125 | 36 | R05 | 17228 | 6440, 9379, 3054, 62, 1 | 1645 | 3733 | 3565 || 14 | 135 | 12 | R05 | 20973 | 0, 80, 20896, 28, 0 | 3 | 0 | 0 || 14 | 135 | 15 | R05 | 20743 | 0, 634, 20122, 33, 0 | 13 | 0 | 0 || 14 | 135 | 18 | R05 | 20456 | 57, 3833, 16604, 34, 0 | 38 | 0 | 1 || 14 | 135 | 21 | R05 | 20044 | 1093, 8627, 10433, 47, 0 | 109 | 4 | 7 || 14 | 135 | 24 | R05 | 19491 | 3536, 9971, 6313, 27, 0 | 329 | 61 | 51 || 14 | 135 | 27 | R05 | 18644 | 5445, 9463, 4372, 37, 0 | 636 | 359 | 164 || 14 | 135 | 30 | R05 | 18086 | 6396, 9172, 3532, 37, 0 | 1014 | 1196 | 451 || 14 | 135 | 33 | R05 | 17632 | 6994, 8850, 3065, 37, 0 | 1277 | 2210 | 1186 || 14 | 135 | 36 | R05 | 16965 | 6878, 8780, 2746, 42, 0 | 1439 | 3091 | 2350 || 14 | 145 | 12 | R05 | 20378 | 0, 40, 20343, 20, 0 | 5 | 0 | 0 || 14 | 145 | 15 | R05 | 20222 | 0, 468, 19758, 26, 0 | 4 | 0 | 0 || 14 | 145 | 18 | R05 | 19885 | 21, 2790, 17091, 32, 0 | 17 | 0 | 1 || 14 | 145 | 21 | R05 | 19581 | 611, 7544, 11494, 23, 0 | 68 | 3 | 6 || 14 | 145 | 24 | R05 | 19227 | 2764, 9933, 6735, 29, 0 | 205 | 15 | 24 || 14 | 145 | 27 | R05 | 18644 | 5102, 9469, 4540, 29, 0 | 467 | 179 | 92 || 14 | 145 | 30 | R05 | 18044 | 6367, 9012, 3438, 15, 0 | 773 | 747 | 270 || 14 | 145 | 33 | R05 | 17613 | 7052, 8737, 2862, 28, 0 | 1038 | 1719 | 737 || 14 | 145 | 36 | R05 | 16968 | 7162, 8503, 2460, 18, 0 | 1157 | 2518 | 1536 |-------------------------------------------------------------------------------------------------------

D.2 R = 0.7

-------------------------------------------------------------------------------------------------------| E | mH | mA | R | nEvent | 4x , 3x , 2x , 1x , 0x |TripleUnres |NeedSplit |False R1R2 |-------------------------------------------------------------------------------------------------------| 7 | 125 | 12 | R07 | 15436 | 0, 12, 15426, 14, 0 | 2 | 0 | 0 || 7 | 125 | 15 | R07 | 15304 | 0, 121, 15186, 22, 0 | 3 | 0 | 0 || 7 | 125 | 18 | R07 | 14856 | 2, 687, 14182, 18, 0 | 15 | 0 | 1 || 7 | 125 | 21 | R07 | 14552 | 27, 2302, 12314, 28, 0 | 91 | 2 | 7 || 7 | 125 | 24 | R07 | 13886 | 307, 5102, 8765, 22, 0 | 288 | 29 | 33 || 7 | 125 | 27 | R07 | 13540 | 1578, 6988, 5691, 32, 0 | 717 | 252 | 179 || 7 | 125 | 30 | R07 | 12705 | 2912, 7027, 4020, 20, 0 | 1254 | 997 | 615 || 7 | 125 | 33 | R07 | 12276 | 3799, 6909, 3033, 30, 0 | 1465 | 1910 | 1470 || 7 | 125 | 36 | R07 | 12068 | 4141, 6855, 2544, 25, 0 | 1472 | 2642 | 2686 || 7 | 135 | 12 | R07 | 14613 | 0, 10, 14604, 6, 0 | 1 | 0 | 0 || 7 | 135 | 15 | R07 | 14277 | 0, 73, 14207, 7, 0 | 3 | 0 | 0 || 7 | 135 | 18 | R07 | 14204 | 0, 436, 13777, 8, 0 | 9 | 0 | 0 || 7 | 135 | 21 | R07 | 13807 | 9, 1510, 12317, 11, 0 | 29 | 2 | 3 || 7 | 135 | 24 | R07 | 13390 | 118, 3745, 9669, 19, 0 | 142 | 9 | 20 || 7 | 135 | 27 | R07 | 12886 | 862, 6224, 6281, 17, 0 | 481 | 107 | 86 || 7 | 135 | 30 | R07 | 12117 | 2296, 6688, 4005, 21, 0 | 872 | 578 | 304 || 7 | 135 | 33 | R07 | 11648 | 3351, 6552, 2903, 16, 0 | 1158 | 1310 | 841 |

42

Page 47: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix D: Jet reconstruction statistics

| 7 | 135 | 36 | R07 | 11579 | 4097, 6411, 2321, 20, 0 | 1250 | 2100 | 1626 || 7 | 145 | 12 | R07 | 13584 | 0, 4, 13580, 7, 0 | 0 | 0 | 0 || 7 | 145 | 15 | R07 | 13513 | 0, 52, 13462, 2, 0 | 1 | 0 | 0 || 7 | 145 | 18 | R07 | 13281 | 0, 281, 13001, 8, 0 | 1 | 0 | 0 || 7 | 145 | 21 | R07 | 13083 | 2, 1024, 12069, 5, 0 | 12 | 0 | 0 || 7 | 145 | 24 | R07 | 12744 | 41, 2687, 10098, 8, 0 | 82 | 3 | 12 || 7 | 145 | 27 | R07 | 12381 | 401, 5204, 7008, 12, 0 | 232 | 38 | 32 || 7 | 145 | 30 | R07 | 11766 | 1519, 6437, 4406, 7, 0 | 596 | 261 | 159 || 7 | 145 | 33 | R07 | 11306 | 2858, 6443, 2915, 16, 0 | 910 | 870 | 451 || 7 | 145 | 36 | R07 | 11168 | 3767, 6151, 2275, 14, 0 | 1025 | 1562 | 1090 |-------------------------------------------------------------------------------------------------------| 8 | 125 | 12 | R07 | 16638 | 0, 19, 16620, 14, 0 | 1 | 0 | 0 || 8 | 125 | 15 | R07 | 16553 | 0, 160, 16398, 22, 0 | 5 | 0 | 0 || 8 | 125 | 18 | R07 | 16043 | 1, 770, 15293, 14, 0 | 21 | 0 | 0 || 8 | 125 | 21 | R07 | 15724 | 23, 2607, 13181, 20, 0 | 87 | 2 | 9 || 8 | 125 | 24 | R07 | 15295 | 359, 5886, 9391, 34, 0 | 341 | 36 | 46 || 8 | 125 | 27 | R07 | 14470 | 1742, 7509, 5961, 32, 0 | 742 | 297 | 179 || 8 | 125 | 30 | R07 | 13680 | 3207, 7716, 4096, 30, 0 | 1339 | 1019 | 655 || 8 | 125 | 33 | R07 | 13223 | 4129, 7444, 3205, 38, 0 | 1555 | 2153 | 1521 || 8 | 125 | 36 | R07 | 13292 | 4699, 7474, 2672, 39, 0 | 1553 | 2952 | 2821 || 8 | 135 | 12 | R07 | 16033 | 0, 7, 16028, 4, 0 | 2 | 0 | 0 || 8 | 135 | 15 | R07 | 15871 | 0, 113, 15760, 12, 0 | 2 | 0 | 0 || 8 | 135 | 18 | R07 | 15702 | 0, 569, 15139, 12, 0 | 6 | 0 | 0 || 8 | 135 | 21 | R07 | 15254 | 10, 1889, 13405, 11, 0 | 50 | 4 | 5 || 8 | 135 | 24 | R07 | 14996 | 144, 4461, 10566, 20, 0 | 175 | 21 | 26 || 8 | 135 | 27 | R07 | 14264 | 1040, 7102, 6607, 15, 0 | 485 | 115 | 87 || 8 | 135 | 30 | R07 | 13437 | 2644, 7433, 4396, 26, 0 | 1036 | 585 | 357 || 8 | 135 | 33 | R07 | 13174 | 3793, 7458, 3172, 18, 0 | 1249 | 1490 | 913 || 8 | 135 | 36 | R07 | 12988 | 4605, 7237, 2502, 22, 0 | 1356 | 2339 | 1851 || 8 | 145 | 12 | R07 | 15308 | 0, 3, 15305, 4, 0 | 0 | 0 | 0 || 8 | 145 | 15 | R07 | 15046 | 0, 68, 14979, 6, 0 | 1 | 0 | 0 || 8 | 145 | 18 | R07 | 14833 | 0, 366, 14473, 8, 0 | 6 | 0 | 0 || 8 | 145 | 21 | R07 | 14741 | 4, 1244, 13525, 5, 0 | 32 | 1 | 2 || 8 | 145 | 24 | R07 | 14399 | 49, 3184, 11268, 10, 0 | 102 | 6 | 8 || 8 | 145 | 27 | R07 | 13771 | 491, 5966, 7612, 14, 0 | 298 | 44 | 42 || 8 | 145 | 30 | R07 | 13193 | 1821, 7244, 4860, 12, 0 | 732 | 307 | 178 || 8 | 145 | 33 | R07 | 12672 | 3275, 7086, 3346, 20, 0 | 1035 | 937 | 503 || 8 | 145 | 36 | R07 | 12337 | 4331, 6716, 2456, 9, 0 | 1166 | 1763 | 1141 |-------------------------------------------------------------------------------------------------------| 14 | 125 | 12 | R07 | 21602 | 0, 47, 21558, 26, 0 | 3 | 0 | 1 || 14 | 125 | 15 | R07 | 21364 | 1, 305, 21065, 39, 0 | 7 | 0 | 0 || 14 | 125 | 18 | R07 | 20772 | 0, 1407, 19413, 37, 0 | 48 | 0 | 1 || 14 | 125 | 21 | R07 | 20293 | 67, 4083, 16305, 38, 0 | 162 | 1 | 19 || 14 | 125 | 24 | R07 | 19510 | 606, 8218, 11223, 43, 0 | 537 | 56 | 87 || 14 | 125 | 27 | R07 | 18423 | 2539, 10005, 7010, 46, 0 | 1131 | 370 | 270 || 14 | 125 | 30 | R07 | 17465 | 4562, 9674, 4958, 54, 0 | 1729 | 1347 | 922 || 14 | 125 | 33 | R07 | 17075 | 5882, 9367, 3773, 45, 0 | 1947 | 2606 | 2033 || 14 | 125 | 36 | R07 | 17018 | 6532, 9310, 3032, 62, 0 | 1856 | 3526 | 3574 || 14 | 135 | 12 | R07 | 20988 | 0, 31, 20958, 15, 0 | 1 | 0 | 0 || 14 | 135 | 15 | R07 | 20759 | 0, 176, 20592, 21, 0 | 9 | 0 | 0 || 14 | 135 | 18 | R07 | 20479 | 0, 976, 19532, 20, 0 | 29 | 0 | 1 || 14 | 135 | 21 | R07 | 20067 | 18, 2952, 17201, 29, 0 | 104 | 3 | 9 || 14 | 135 | 24 | R07 | 19485 | 326, 6679, 12820, 22, 0 | 340 | 22 | 50 || 14 | 135 | 27 | R07 | 18539 | 1594, 9652, 8038, 33, 0 | 745 | 178 | 165 || 14 | 135 | 30 | R07 | 17790 | 3888, 9947, 5271, 31, 0 | 1316 | 787 | 450 || 14 | 135 | 33 | R07 | 17272 | 5685, 9483, 3745, 33, 0 | 1641 | 1776 | 1192 || 14 | 135 | 36 | R07 | 16718 | 6531, 8901, 2986, 28, 0 | 1700 | 2836 | 2360 || 14 | 145 | 12 | R07 | 20387 | 0, 7, 20383, 13, 0 | 3 | 0 | 0 || 14 | 145 | 15 | R07 | 20233 | 0, 171, 20062, 19, 0 | 0 | 0 | 0 || 14 | 145 | 18 | R07 | 19901 | 0, 674, 19240, 20, 0 | 13 | 0 | 1 || 14 | 145 | 21 | R07 | 19599 | 12, 2176, 17471, 13, 0 | 60 | 1 | 5 || 14 | 145 | 24 | R07 | 19248 | 140, 5089, 14211, 21, 0 | 192 | 11 | 24 || 14 | 145 | 27 | R07 | 18605 | 898, 8757, 9466, 19, 0 | 516 | 74 | 93 || 14 | 145 | 30 | R07 | 17783 | 2837, 9965, 6006, 24, 0 | 1025 | 424 | 271 || 14 | 145 | 33 | R07 | 17207 | 4874, 9641, 4136, 28, 0 | 1444 | 1232 | 741 || 14 | 145 | 36 | R07 | 16645 | 6187, 8917, 3016, 23, 0 | 1475 | 2114 | 1536 |-------------------------------------------------------------------------------------------------------

43

Page 48: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix D: Jet reconstruction statistics

D.3 R = 0.9

-------------------------------------------------------------------------------------------------------| E | mH | mA | R | nEvent | 4x , 3x , 2x , 1x , 0x |TripleUnres |NeedSplit |False R1R2 |-------------------------------------------------------------------------------------------------------| 7 | 125 | 12 | R09 | 15443 | 0, 7, 15436, 9, 0 | 0 | 0 | 0 || 7 | 125 | 15 | R09 | 15311 | 0, 54, 15258, 17, 0 | 1 | 0 | 0 || 7 | 125 | 18 | R09 | 14857 | 0, 297, 14576, 16, 0 | 16 | 0 | 1 || 7 | 125 | 21 | R09 | 14561 | 1, 907, 13740, 23, 0 | 87 | 0 | 7 || 7 | 125 | 24 | R09 | 13869 | 19, 2166, 11991, 20, 0 | 307 | 15 | 34 || 7 | 125 | 27 | R09 | 13445 | 171, 4388, 9710, 20, 0 | 824 | 134 | 180 || 7 | 125 | 30 | R09 | 12352 | 775, 6391, 6788, 25, 0 | 1602 | 633 | 615 || 7 | 125 | 33 | R09 | 11754 | 1958, 7254, 4523, 36, 0 | 1981 | 1511 | 1469 || 7 | 125 | 36 | R09 | 11539 | 2908, 7231, 3388, 38, 0 | 1988 | 2397 | 2689 || 7 | 135 | 12 | R09 | 14614 | 0, 4, 14611, 5, 0 | 1 | 0 | 0 || 7 | 135 | 15 | R09 | 14275 | 0, 33, 14245, 9, 0 | 3 | 0 | 0 || 7 | 135 | 18 | R09 | 14201 | 0, 198, 14009, 14, 0 | 6 | 0 | 0 || 7 | 135 | 21 | R09 | 13808 | 2, 603, 13233, 9, 0 | 30 | 1 | 3 || 7 | 135 | 24 | R09 | 13388 | 7, 1458, 12068, 18, 0 | 145 | 4 | 22 || 7 | 135 | 27 | R09 | 12864 | 57, 3029, 10281, 17, 0 | 503 | 48 | 85 || 7 | 135 | 30 | R09 | 11907 | 363, 5118, 7511, 18, 0 | 1085 | 314 | 304 || 7 | 135 | 33 | R09 | 11243 | 1225, 6594, 4987, 16, 0 | 1563 | 945 | 841 || 7 | 135 | 36 | R09 | 11073 | 2370, 6909, 3549, 21, 0 | 1755 | 1727 | 1630 || 7 | 145 | 12 | R09 | 13584 | 0, 2, 13582, 7, 0 | 0 | 0 | 0 || 7 | 145 | 15 | R09 | 13512 | 0, 24, 13488, 4, 0 | 0 | 0 | 0 || 7 | 145 | 18 | R09 | 13284 | 0, 121, 13165, 4, 0 | 2 | 0 | 0 || 7 | 145 | 21 | R09 | 13080 | 0, 416, 12676, 8, 0 | 12 | 0 | 0 || 7 | 145 | 24 | R09 | 12740 | 4, 1030, 11791, 9, 0 | 85 | 1 | 12 || 7 | 145 | 27 | R09 | 12364 | 27, 2087, 10496, 15, 0 | 246 | 18 | 32 || 7 | 145 | 30 | R09 | 11658 | 154, 3821, 8383, 11, 0 | 700 | 118 | 159 || 7 | 145 | 33 | R09 | 10964 | 653, 5775, 5793, 11, 0 | 1257 | 493 | 452 || 7 | 145 | 36 | R09 | 10680 | 1622, 6629, 3937, 19, 0 | 1508 | 1180 | 1090 |-------------------------------------------------------------------------------------------------------| 8 | 125 | 12 | R09 | 16639 | 0, 10, 16630, 13, 0 | 1 | 0 | 0 || 8 | 125 | 15 | R09 | 16557 | 0, 80, 16481, 19, 0 | 4 | 0 | 0 || 8 | 125 | 18 | R09 | 16046 | 0, 352, 15712, 14, 0 | 18 | 0 | 0 || 8 | 125 | 21 | R09 | 15717 | 3, 1111, 14694, 23, 0 | 91 | 1 | 9 || 8 | 125 | 24 | R09 | 15270 | 29, 2613, 12993, 35, 0 | 365 | 24 | 46 || 8 | 125 | 27 | R09 | 14365 | 212, 4906, 10092, 34, 0 | 845 | 157 | 180 || 8 | 125 | 30 | R09 | 13331 | 883, 7180, 6951, 35, 0 | 1683 | 683 | 660 || 8 | 125 | 33 | R09 | 12597 | 2204, 7779, 4783, 50, 0 | 2169 | 1646 | 1523 || 8 | 125 | 36 | R09 | 12742 | 3319, 7929, 3590, 46, 0 | 2096 | 2640 | 2828 || 8 | 135 | 12 | R09 | 16030 | 0, 8, 16024, 7, 0 | 2 | 0 | 0 || 8 | 135 | 15 | R09 | 15870 | 0, 50, 15822, 13, 0 | 2 | 0 | 0 || 8 | 135 | 18 | R09 | 15699 | 0, 267, 15441, 12, 0 | 9 | 0 | 0 || 8 | 135 | 21 | R09 | 15250 | 0, 763, 14542, 10, 0 | 55 | 3 | 5 || 8 | 135 | 24 | R09 | 14982 | 10, 1802, 13359, 20, 0 | 189 | 8 | 26 || 8 | 135 | 27 | R09 | 14242 | 102, 3724, 10922, 16, 0 | 506 | 65 | 87 || 8 | 135 | 30 | R09 | 13230 | 427, 5819, 8226, 27, 0 | 1242 | 342 | 357 || 8 | 135 | 33 | R09 | 12693 | 1412, 7534, 5473, 22, 0 | 1726 | 1034 | 914 || 8 | 135 | 36 | R09 | 12437 | 2694, 7881, 3765, 26, 0 | 1903 | 1932 | 1853 || 8 | 145 | 12 | R09 | 15306 | 0, 7, 15299, 6, 0 | 0 | 0 | 0 || 8 | 145 | 15 | R09 | 15042 | 0, 27, 15017, 9, 0 | 2 | 0 | 0 || 8 | 145 | 18 | R09 | 14836 | 0, 145, 14697, 5, 0 | 6 | 0 | 0 || 8 | 145 | 21 | R09 | 14738 | 0, 535, 14237, 6, 0 | 34 | 0 | 2 || 8 | 145 | 24 | R09 | 14383 | 5, 1323, 13170, 13, 0 | 115 | 1 | 8 || 8 | 145 | 27 | R09 | 13758 | 33, 2583, 11455, 12, 0 | 313 | 26 | 42 || 8 | 145 | 30 | R09 | 13081 | 167, 4595, 9162, 13, 0 | 843 | 162 | 178 || 8 | 145 | 33 | R09 | 12345 | 683, 6609, 6418, 17, 0 | 1365 | 598 | 503 || 8 | 145 | 36 | R09 | 11815 | 1935, 7307, 4256, 14, 0 | 1683 | 1338 | 1143 |-------------------------------------------------------------------------------------------------------| 14 | 125 | 12 | R09 | 21563 | 0, 26, 21540, 65, 0 | 3 | 0 | 1 || 14 | 125 | 15 | R09 | 21324 | 0, 178, 21153, 79, 0 | 7 | 0 | 0 || 14 | 125 | 18 | R09 | 20736 | 0, 683, 20100, 74, 0 | 47 | 0 | 1 || 14 | 125 | 21 | R09 | 20249 | 8, 1794, 18616, 75, 0 | 169 | 1 | 19 || 14 | 125 | 24 | R09 | 19442 | 70, 4060, 15881, 79, 0 | 569 | 31 | 89 || 14 | 125 | 27 | R09 | 18268 | 368, 7122, 12019, 91, 0 | 1241 | 229 | 270 || 14 | 125 | 30 | R09 | 16970 | 1471, 9496, 8189, 92, 0 | 2186 | 911 | 923 || 14 | 125 | 33 | R09 | 16294 | 3167, 10129, 5657, 114, 0 | 2659 | 2093 | 2032 || 14 | 125 | 36 | R09 | 16177 | 4656, 9928, 4242, 110, 0 | 2649 | 3144 | 3573 || 14 | 135 | 12 | R09 | 20952 | 0, 15, 20938, 51, 0 | 1 | 0 | 0 || 14 | 135 | 15 | R09 | 20738 | 0, 115, 20630, 44, 0 | 7 | 0 | 0 |

44

Page 49: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix D: Jet reconstruction statistics

| 14 | 135 | 18 | R09 | 20440 | 0, 491, 19976, 61, 0 | 27 | 0 | 1 || 14 | 135 | 21 | R09 | 20035 | 0, 1350, 18789, 61, 0 | 104 | 1 | 9 || 14 | 135 | 24 | R09 | 19436 | 28, 3066, 16692, 61, 0 | 350 | 11 | 51 || 14 | 135 | 27 | R09 | 18447 | 175, 5702, 13371, 69, 0 | 801 | 125 | 165 || 14 | 135 | 30 | R09 | 17504 | 814, 8491, 9762, 70, 0 | 1563 | 498 | 452 || 14 | 135 | 33 | R09 | 16685 | 2290, 10031, 6540, 85, 0 | 2176 | 1299 | 1191 || 14 | 135 | 36 | R09 | 15902 | 3961, 9823, 4582, 80, 0 | 2464 | 2304 | 2361 || 14 | 145 | 12 | R09 | 20368 | 0, 8, 20363, 32, 0 | 3 | 0 | 0 || 14 | 145 | 15 | R09 | 20213 | 0, 105, 20109, 38, 0 | 1 | 0 | 0 || 14 | 145 | 18 | R09 | 19879 | 0, 367, 19524, 43, 0 | 12 | 0 | 1 || 14 | 145 | 21 | R09 | 19570 | 2, 947, 18684, 39, 0 | 63 | 0 | 6 || 14 | 145 | 24 | R09 | 19210 | 14, 2274, 17123, 50, 0 | 201 | 8 | 24 || 14 | 145 | 27 | R09 | 18537 | 104, 4332, 14656, 48, 0 | 555 | 43 | 93 || 14 | 145 | 30 | R09 | 17574 | 448, 6848, 11475, 61, 0 | 1197 | 242 | 271 || 14 | 145 | 33 | R09 | 16773 | 1310, 9356, 7970, 43, 0 | 1863 | 807 | 741 || 14 | 145 | 36 | R09 | 15985 | 2891, 9966, 5227, 59, 0 | 2099 | 1599 | 1535 |-------------------------------------------------------------------------------------------------------

D.4 R = 1.1

-------------------------------------------------------------------------------------------------------| E | mH | mA | R | nEvent | 4x , 3x , 2x , 1x , 0x |TripleUnres |NeedSplit |False R1R2 |-------------------------------------------------------------------------------------------------------| 7 | 125 | 12 | R11 | 15425 | 0, 9, 15416, 27, 0 | 0 | 0 | 0 || 7 | 125 | 15 | R11 | 15305 | 0, 30, 15276, 23, 0 | 1 | 0 | 0 || 7 | 125 | 18 | R11 | 14841 | 0, 162, 14697, 30, 0 | 18 | 0 | 1 || 7 | 125 | 21 | R11 | 14538 | 0, 492, 14143, 36, 0 | 97 | 0 | 7 || 7 | 125 | 24 | R11 | 13827 | 6, 1148, 13003, 39, 0 | 330 | 13 | 34 || 7 | 125 | 27 | R11 | 13336 | 25, 2337, 11889, 38, 0 | 915 | 87 | 180 || 7 | 125 | 30 | R11 | 12039 | 109, 3708, 10112, 50, 0 | 1890 | 339 | 614 || 7 | 125 | 33 | R11 | 11093 | 406, 5701, 7611, 53, 0 | 2625 | 1004 | 1471 || 7 | 125 | 36 | R11 | 10663 | 1063, 6996, 5439, 67, 0 | 2835 | 1910 | 2684 || 7 | 135 | 12 | R11 | 14598 | 0, 6, 14593, 21, 0 | 1 | 0 | 0 || 7 | 135 | 15 | R11 | 14266 | 0, 24, 14244, 19, 0 | 2 | 0 | 0 || 7 | 135 | 18 | R11 | 14191 | 0, 100, 14096, 25, 0 | 5 | 0 | 0 || 7 | 135 | 21 | R11 | 13788 | 0, 325, 13499, 23, 0 | 36 | 1 | 3 || 7 | 135 | 24 | R11 | 13358 | 0, 761, 12758, 32, 0 | 161 | 5 | 22 || 7 | 135 | 27 | R11 | 12810 | 9, 1562, 11785, 28, 0 | 546 | 35 | 85 || 7 | 135 | 30 | R11 | 11739 | 55, 2706, 10215, 34, 0 | 1237 | 166 | 303 || 7 | 135 | 33 | R11 | 10831 | 183, 4299, 8310, 30, 0 | 1961 | 561 | 841 || 7 | 135 | 36 | R11 | 10344 | 544, 5917, 6344, 44, 0 | 2461 | 1146 | 1631 || 7 | 145 | 12 | R11 | 13576 | 0, 5, 13571, 15, 0 | 0 | 0 | 0 || 7 | 145 | 15 | R11 | 13495 | 0, 12, 13483, 21, 0 | 0 | 0 | 0 || 7 | 145 | 18 | R11 | 13273 | 0, 64, 13211, 15, 0 | 2 | 0 | 0 || 7 | 145 | 21 | R11 | 13067 | 0, 241, 12838, 21, 0 | 12 | 0 | 0 || 7 | 145 | 24 | R11 | 12724 | 1, 580, 12231, 22, 0 | 88 | 1 | 12 || 7 | 145 | 27 | R11 | 12331 | 4, 1124, 11471, 26, 0 | 268 | 7 | 32 || 7 | 145 | 30 | R11 | 11577 | 22, 1913, 10412, 22, 0 | 770 | 71 | 159 || 7 | 145 | 33 | R11 | 10715 | 90, 3201, 8918, 23, 0 | 1494 | 255 | 452 || 7 | 145 | 36 | R11 | 10148 | 261, 4668, 7249, 29, 0 | 2030 | 684 | 1090 |-------------------------------------------------------------------------------------------------------| 8 | 125 | 12 | R11 | 16608 | 0, 8, 16601, 44, 0 | 1 | 0 | 0 || 8 | 125 | 15 | R11 | 16519 | 0, 54, 16468, 58, 0 | 3 | 0 | 0 || 8 | 125 | 18 | R11 | 16015 | 0, 206, 15829, 43, 0 | 20 | 0 | 0 || 8 | 125 | 21 | R11 | 15682 | 0, 615, 15167, 49, 0 | 100 | 1 | 9 || 8 | 125 | 24 | R11 | 15206 | 3, 1409, 14199, 59, 0 | 405 | 16 | 46 || 8 | 125 | 27 | R11 | 14229 | 32, 2594, 12549, 69, 0 | 946 | 87 | 180 || 8 | 125 | 30 | R11 | 12996 | 136, 4291, 10555, 67, 0 | 1986 | 385 | 659 || 8 | 125 | 33 | R11 | 11907 | 485, 6261, 7968, 102, 0 | 2807 | 1119 | 1522 || 8 | 125 | 36 | R11 | 11707 | 1240, 7771, 5766, 107, 0 | 3070 | 2082 | 2826 || 8 | 135 | 12 | R11 | 16013 | 0, 7, 16007, 25, 0 | 1 | 0 | 0 || 8 | 135 | 15 | R11 | 15853 | 0, 26, 15829, 30, 0 | 2 | 0 | 0 || 8 | 135 | 18 | R11 | 15674 | 0, 142, 15540, 38, 0 | 8 | 0 | 0 || 8 | 135 | 21 | R11 | 15219 | 0, 442, 14839, 34, 0 | 62 | 3 | 5 || 8 | 135 | 24 | R11 | 14953 | 1, 994, 14154, 42, 0 | 196 | 7 | 26 || 8 | 135 | 27 | R11 | 14154 | 12, 1984, 12731, 37, 0 | 573 | 37 | 87 || 8 | 135 | 30 | R11 | 13012 | 58, 3206, 11183, 52, 0 | 1435 | 195 | 358 || 8 | 135 | 33 | R11 | 12194 | 224, 5034, 9131, 52, 0 | 2195 | 622 | 915 || 8 | 135 | 36 | R11 | 11599 | 647, 6866, 6793, 60, 0 | 2707 | 1315 | 1854 || 8 | 145 | 12 | R11 | 15295 | 0, 0, 15295, 17, 0 | 0 | 0 | 0 |

45

Page 50: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix D: Jet reconstruction statistics

| 8 | 145 | 15 | R11 | 15027 | 0, 13, 15017, 23, 0 | 3 | 0 | 0 || 8 | 145 | 18 | R11 | 14829 | 0, 73, 14760, 14, 0 | 4 | 0 | 0 || 8 | 145 | 21 | R11 | 14722 | 0, 283, 14474, 21, 0 | 35 | 0 | 2 || 8 | 145 | 24 | R11 | 14362 | 0, 684, 13801, 26, 0 | 123 | 2 | 8 || 8 | 145 | 27 | R11 | 13714 | 3, 1450, 12606, 24, 0 | 345 | 13 | 42 || 8 | 145 | 30 | R11 | 12969 | 25, 2340, 11543, 29, 0 | 939 | 78 | 178 || 8 | 145 | 33 | R11 | 12064 | 88, 3707, 9899, 33, 0 | 1630 | 305 | 504 || 8 | 145 | 36 | R11 | 11208 | 309, 5380, 7783, 40, 0 | 2264 | 813 | 1142 |-------------------------------------------------------------------------------------------------------| 14 | 125 | 12 | R11 | 21466 | 0, 24, 21448, 159, 0 | 6 | 0 | 1 || 14 | 125 | 15 | R11 | 21230 | 0, 112, 21128, 170, 0 | 10 | 0 | 0 || 14 | 125 | 18 | R11 | 20626 | 0, 407, 20273, 177, 0 | 54 | 0 | 2 || 14 | 125 | 21 | R11 | 20086 | 0, 1039, 19251, 203, 0 | 204 | 3 | 19 || 14 | 125 | 24 | R11 | 19279 | 14, 2313, 17582, 181, 0 | 630 | 21 | 89 || 14 | 125 | 27 | R11 | 18009 | 80, 4097, 15238, 185, 0 | 1406 | 157 | 271 || 14 | 125 | 30 | R11 | 16434 | 301, 6299, 12415, 233, 0 | 2581 | 591 | 921 || 14 | 125 | 33 | R11 | 15285 | 813, 8617, 9384, 253, 0 | 3529 | 1448 | 2030 || 14 | 125 | 36 | R11 | 14907 | 1849, 10016, 6826, 245, 0 | 3784 | 2606 | 3569 || 14 | 135 | 12 | R11 | 20894 | 0, 14, 20880, 110, 0 | 0 | 0 | 0 || 14 | 135 | 15 | R11 | 20658 | 0, 74, 20594, 121, 0 | 10 | 0 | 0 || 14 | 135 | 18 | R11 | 20364 | 0, 330, 20062, 136, 0 | 28 | 0 | 0 || 14 | 135 | 21 | R11 | 19922 | 0, 787, 19259, 154, 0 | 124 | 1 | 7 || 14 | 135 | 24 | R11 | 19284 | 3, 1734, 17954, 156, 0 | 407 | 12 | 51 || 14 | 135 | 27 | R11 | 18249 | 34, 3136, 15984, 163, 0 | 905 | 87 | 165 || 14 | 135 | 30 | R11 | 17182 | 149, 5088, 13720, 180, 0 | 1775 | 300 | 451 || 14 | 135 | 33 | R11 | 16013 | 459, 7317, 10977, 193, 0 | 2740 | 866 | 1189 || 14 | 135 | 36 | R11 | 14860 | 1112, 9089, 8054, 191, 0 | 3395 | 1745 | 2353 || 14 | 145 | 12 | R11 | 20322 | 0, 7, 20318, 78, 0 | 3 | 0 | 0 || 14 | 145 | 15 | R11 | 20163 | 0, 72, 20094, 86, 0 | 3 | 0 | 0 || 14 | 145 | 18 | R11 | 19823 | 0, 207, 19631, 96, 0 | 15 | 0 | 1 || 14 | 145 | 21 | R11 | 19489 | 0, 568, 18997, 107, 0 | 76 | 1 | 6 || 14 | 145 | 24 | R11 | 19109 | 3, 1247, 18093, 118, 0 | 234 | 8 | 24 || 14 | 145 | 27 | R11 | 18422 | 21, 2518, 16488, 113, 0 | 605 | 29 | 93 || 14 | 145 | 30 | R11 | 17353 | 80, 3901, 14711, 140, 0 | 1339 | 147 | 271 || 14 | 145 | 33 | R11 | 16287 | 274, 5825, 12453, 127, 0 | 2265 | 506 | 740 || 14 | 145 | 36 | R11 | 15154 | 616, 7847, 9531, 149, 0 | 2840 | 1119 | 1535 |-------------------------------------------------------------------------------------------------------

46

Page 51: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

E Analysis on the reconstructed jets at low ma regime

E.1 Figures for dR

dR(A1,A2)0 1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

0.25

mH=125, mA = 15 count(J)=4count(J)=3count(J)=2

Entries| Mean|RMS

0 | 0| 0

487 | 2.84|0.39

14797 | 2.79|0.41

mH=125, mA = 15

dR(A1,A2)0 1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

0.25

0.3

mH=125, mA = 21 count(J)=4count(J)=3count(J)=2

Entries| Mean|RMS

1113 | 2.96|0.26

6348 | 2.82|0.38

7057 | 2.71|0.48

mH=125, mA = 21

dR(A1,A2)0 1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

0.25

mH=125, mA = 27 count(J)=4count(J)=3count(J)=2

Entries| Mean|RMS

3611 | 2.81|0.37

6985 | 2.76|0.45

3099 | 2.70|0.51

mH=125, mA = 27

Figure 10: dR between two pseudoscalars Higgs a, showing at different ma.

E.2 Figures for transverse momentum

pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

350

400

A1.ptcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3955 |51.94|14.84

6778 |45.49|17.12

2234 |34.14|12.52

A1.pt

pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

A2.ptcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3955 |52.49|14.68

6778 |50.30|16.11

2234 |52.44|14.52

A2.pt

pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

600

700

A.ptcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3955 |52.89|10.15

6778 |49.21|11.64

2234 |44.70|11.75

A.pt

Figure 11: pt of two pseudoscalar a, classified by count(J). An asymmetry between a1, a2 can be seendue to how the algorithm was constructed.

47

Page 52: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

J.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

mH=125, mA = 12count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

0 | 0| 0

43 |36.82|9.42

15370 |28.16|5.49

mH=125, mA = 12

J.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=125, mA = 15count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

0 | 0| 0

487 |32.99|9.02

14797 |27.51|5.35

mH=125, mA = 15

J.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

mH=125, mA = 18count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

52 |25.12|4.32

3173 |29.04|6.72

11607 |26.63|5.53

mH=125, mA = 18

J.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

mH=125, mA = 21count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

1113 |27.68|4.06

6348 |27.72|5.90

7057 |25.97|6.23

mH=125, mA = 21

J.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

mH=125, mA = 24count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

2665 |28.47|4.60

6967 |27.13|6.17

4243 |25.29|6.59

mH=125, mA = 24

J.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=125, mA = 27count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3611 |28.71|5.32

6985 |26.13|6.55

3099 |23.92|6.91

mH=125, mA = 27

J.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=125, mA = 30count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3955 |28.68|5.66

6778 |24.66|6.82

2234 |22.29|6.77

mH=125, mA = 30

J.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

mH=125, mA = 33count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

4016 |28.35|6.07

6857 |23.18|6.85

1593 |21.07|6.44

mH=125, mA = 33

J.pt [GeV]0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

mH=125, mA = 36count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3990 |28.17|6.36

6774 |22.09|6.91

1308 |19.94|6.87

mH=125, mA = 36

Figure 12: Average pt of the jets at different ma, fixing E = 7 TeV and mH = 125 GeV.

48

Page 53: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=125, mA = 12count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

0 | 0| 0

43 |70.02|15.97

15370 |56.06|10.38

mH=125, mA = 12

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=125, mA = 15count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

0 | 0| 0

487 |63.40|15.70

14797 |54.83|10.22

mH=125, mA = 15

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

mH=125, mA = 18count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

52 |49.02|8.61

3173 |56.81|12.21

11607 |53.04|10.52

mH=125, mA = 18

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=125, mA = 21count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

1113 |53.83|7.99

6348 |54.19|10.81

7057 |51.54|11.52

mH=125, mA = 21

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=125, mA = 24count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

2665 |54.65|8.56

6967 |52.85|11.24

4243 |50.22|12.24

mH=125, mA = 24

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=125, mA = 27count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3611 |54.00|9.75

6985 |51.18|11.40

3099 |47.59|12.21

mH=125, mA = 27

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=125, mA = 30count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3955 |52.89|10.15

6778 |49.21|11.64

2234 |44.70|11.75

mH=125, mA = 30

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=125, mA = 33count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

4016 |50.87|10.97

6857 |46.86|11.81

1593 |42.50|11.48

mH=125, mA = 33

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=125, mA = 36count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3990 |49.11|11.45

6774 |44.66|12.17

1308 |40.99|11.46

mH=125, mA = 36

Figure 13: Average pt of the a at different ma, fixing E = 7 TeV and mH = 125 GeV.

49

Page 54: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

E = 7 TeV, R05count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

5432 |19.59|5.87

45394 |14.01|5.38

89922 | 9.09|4.57

E = 7 TeV, R05

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E = 8 TeV, R05count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

6342 |19.94|6.23

47777 |14.19|5.52

87098 | 9.30|4.85

E = 8 TeV, R05

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E = 14 TeV, R05count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

10494 |21.35|7.28

60357 |15.19|6.46

81826 |10.01|5.66

E = 14 TeV, R05

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E = 7 TeV, R07count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

7941 |18.97|5.46

69654 |14.02|5.22

121223 | 9.85|4.82

E = 7 TeV, R07

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E = 8 TeV, R07count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

9014 |19.39|5.75

72213 |14.29|5.42

115391 |10.11|5.09

E = 8 TeV, R07

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E = 14 TeV, R07count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

14475 |20.72|6.64

84926 |15.55|6.41

99612 |11.22|6.15

E = 14 TeV, R07

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E = 7 TeV, R09count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

7495 |19.14|5.23

83227 |14.46|5.25

143538 |10.78|5.02

E = 7 TeV, R09

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E = 8 TeV, R09count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

8496 |19.64|5.53

84704 |14.81|5.46

135424 |11.12|5.33

E = 8 TeV, R09

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E = 14 TeV, R09count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

13101 |21.36|6.55

95196 |16.42|6.54

112907 |12.63|6.51

E = 14 TeV, R09

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E = 7 TeV, R11count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

4199 |19.86|5.34

81920 |15.07|5.36

163936 |11.70|5.19

E = 7 TeV, R11

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E = 8 TeV, R11count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

4862 |20.31|5.54

82752 |15.52|5.62

154299 |12.11|5.51

E = 8 TeV, R11

J.pt [GeV]0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

E = 14 TeV, R11count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

7331 |22.59|6.79

91838 |17.43|6.75

128596 |13.96|6.77

E = 14 TeV, R11

Figure 14: Average pt of the jets in background data, showing at different energy E and jet redius R.

50

Page 55: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E = 7 TeV, R05count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

5432 |33.11|11.09

45394 |25.57|10.29

89922 |19.01|8.09

E = 7 TeV, R05

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E = 8 TeV, R05count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

6342 |33.85|12.00

47777 |25.92|10.57

87098 |19.43|8.61

E = 8 TeV, R05

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E = 14 TeV, R05count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

10494 |36.05|13.54

60357 |27.80|12.19

81826 |20.82|10.14

E = 14 TeV, R05

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E = 7 TeV, R07count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

7941 |31.00|10.15

69654 |24.99|9.84

121223 |20.29|8.77

E = 7 TeV, R07

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E = 8 TeV, R07count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

9014 |31.78|10.84

72213 |25.53|10.21

115391 |20.80|9.31

E = 8 TeV, R07

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E = 14 TeV, R07count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

14475 |33.99|12.25

84926 |27.84|11.99

99612 |22.93|11.27

E = 14 TeV, R07

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E = 7 TeV, R09count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

7495 |30.39|9.64

83227 |25.24|9.72

143538 |21.97|9.36

E = 7 TeV, R09

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E = 8 TeV, R09count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

8496 |31.27|10.30

84704 |25.89|10.10

135424 |22.63|9.98

E = 8 TeV, R09

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

E = 14 TeV, R09count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

13101 |34.09|11.93

95196 |28.83|12.00

112907 |25.53|12.15

E = 14 TeV, R09

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

E = 7 TeV, R11count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

4199 |30.77|9.56

81920 |25.84|9.68

163936 |23.70|9.82

E = 7 TeV, R11

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

E = 8 TeV, R11count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

4862 |31.44|10.02

82752 |26.65|10.16

154299 |24.50|10.47

E = 8 TeV, R11

A.pt [GeV]0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

E = 14 TeV, R11count(J)=4count(J)=3count(J)=2Entries| Mean|RMS

7331 |35.19|12.05

91838 |30.09|12.13

128596 |28.06|12.79

E = 14 TeV, R11

Figure 15: Average pt of the reconstructed ‘a’ in background data, showing at different energy E andjet redius R.

51

Page 56: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

J.pt [GeV]10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

mH=125 GeV, mA=24 GeVSignalBG

Entries| Mean|RMS

2665 |28.47|4.60

5432 |19.59|5.87

mH=125 GeV, mA=24 GeV

J.pt [GeV]10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=125 GeV, mA=30 GeVSignalBG

Entries| Mean|RMS

3955 |28.68|5.66

5432 |19.59|5.87

mH=125 GeV, mA=30 GeV

J.pt [GeV]10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

mH=125 GeV, mA=36 GeVSignalBG

Entries| Mean|RMS

3990 |28.17|6.36

5432 |19.59|5.87

mH=125 GeV, mA=36 GeV

J.pt [GeV]10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

mH=135 GeV, mA=24 GeVSignalBG

Entries| Mean|RMS

2337 |30.44|4.45

5432 |19.59|5.87

mH=135 GeV, mA=24 GeV

J.pt [GeV]10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=135 GeV, mA=30 GeVSignalBG

Entries| Mean|RMS

4006 |30.62|5.49

5432 |19.59|5.87

mH=135 GeV, mA=30 GeV

J.pt [GeV]10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

mH=135 GeV, mA=36 GeVSignalBG

Entries| Mean|RMS

4223 |30.40|6.22

5432 |19.59|5.87

mH=135 GeV, mA=36 GeV

J.pt [GeV]10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

mH=145 GeV, mA=24 GeVSignalBG

Entries| Mean|RMS

1762 |32.41|4.60

5432 |19.59|5.87

mH=145 GeV, mA=24 GeV

J.pt [GeV]10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=145 GeV, mA=30 GeVSignalBG

Entries| Mean|RMS

3901 |32.81|5.31

5432 |19.59|5.87

mH=145 GeV, mA=30 GeV

J.pt [GeV]10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

mH=145 GeV, mA=36 GeVSignalBG

Entries| Mean|RMS

4350 |32.42|6.06

5432 |19.59|5.87

mH=145 GeV, mA=36 GeV

Figure 16: Comparison of average pt of the jets between signal and background data, at different mH

and ma. Fixing E = 7 TeV

52

Page 57: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

A.pt [GeV]10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=125 GeV, mA=24 GeVSignalBG

Entries| Mean|RMS

2665 |54.65|8.56

5432 |33.11|11.09

mH=125 GeV, mA=24 GeV

A.pt [GeV]10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=125 GeV, mA=30 GeVSignalBG

Entries| Mean|RMS

3955 |52.89|10.15

5432 |33.11|11.09

mH=125 GeV, mA=30 GeV

A.pt [GeV]10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=125 GeV, mA=36 GeVSignalBG

Entries| Mean|RMS

3990 |49.11|11.45

5432 |33.11|11.09

mH=125 GeV, mA=36 GeV

A.pt [GeV]10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=135 GeV, mA=24 GeVSignalBG

Entries| Mean|RMS

2337 |58.87|8.39

5432 |33.11|11.09

mH=135 GeV, mA=24 GeV

A.pt [GeV]10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=135 GeV, mA=30 GeVSignalBG

Entries| Mean|RMS

4006 |57.31|9.92

5432 |33.11|11.09

mH=135 GeV, mA=30 GeV

A.pt [GeV]10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

mH=135 GeV, mA=36 GeVSignalBG

Entries| Mean|RMS

4223 |54.35|11.15

5432 |33.11|11.09

mH=135 GeV, mA=36 GeV

A.pt [GeV]10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mH=145 GeV, mA=24 GeVSignalBG

Entries| Mean|RMS

1762 |62.92|8.74

5432 |33.11|11.09

mH=145 GeV, mA=24 GeV

A.pt [GeV]10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=145 GeV, mA=30 GeVSignalBG

Entries| Mean|RMS

3901 |62.16|9.72

5432 |33.11|11.09

mH=145 GeV, mA=30 GeV

A.pt [GeV]10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

mH=145 GeV, mA=36 GeVSignalBG

Entries| Mean|RMS

4350 |59.05|10.85

5432 |33.11|11.09

mH=145 GeV, mA=36 GeV

Figure 17: Comparison of average pt of the a between signal and background data, at different mH

and ma. Fixing E = 7 TeV

53

Page 58: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

E.3 Figures for mass of the pseudoscalar a

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A1.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 0 | 0| 0 487 |12.87|3.28 14797 |10.32|3.33

A1.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

500

1000

1500

2000

2500

A2.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 0 | 0| 0 487 |20.37|8.93 14797 |12.63|3.02

A2.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

500

1000

1500

2000

2500

3000

A.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 0 | 0| 0 487 |16.83|5.24 14797 |11.47|2.34

A.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1000

1200

A1.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 52 |18.45|6.39 3173 |13.10|4.12 11607 |10.26|4.00

A1.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1000

1200

A2.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 52 |17.25|3.50 3173 |19.63|6.82 11607 |13.15|3.89

A2.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 52 |17.85|3.56 3173 |16.58|4.66 11607 |11.70|2.78

A.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1000

A1.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 1113 |20.48|4.65 6348 |12.17|4.96 7057 | 9.19|4.22

A1.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

100

200

300

400

500

600

700

800

900

A2.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 1113 |20.43|4.65 6348 |21.04|5.77 7057 |12.95|4.89

A2.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1000

A.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 1113 |20.59|3.73 6348 |16.90|4.82 7057 |11.07|3.21

A.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

100

200

300

400

500

600

700

800

900

A1.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 2665 |22.95|5.28 6967 |10.92|5.33 4243 | 8.28|3.96

A1.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

100

200

300

400

500

600

700

800

900

A2.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 2665 |22.78|5.15 6967 |23.06|5.90 4243 |12.51|5.55

A2.m

mA [GeV]0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1000

A.m

count(J)=4count(J)=3count(J)=2Entries| Mean|RMS 2665 |23.30|4.83 6967 |17.41|5.27 4243 |10.40|3.43

A.m

Figure 18: Mass of two pseudoscalars Higgs a (first one, second one, and average) and classified bycount(J). Each row is from ma = 15,18,21,24 GeV, mH =125 GeV at generation level. The asymmetrybetween a1 and a2 arises from how the jet assignment algorithm was constructed.

54

Page 59: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

A.m [GeV]0 5 10 15 20 25 30 35 40 45 500

500

1000

1500

2000

2500

3000

mH=125 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

15284 |11.64|2.66

15304 |14.37|3.54

15311 |17.42|5.04

15305 |21.10|6.69

mH=125 GeV, mA=24 GeV

A.m [GeV]0 5 10 15 20 25 30 35 40 45 500

200

400

600

800

1000

1200

1400

1600

mH=125 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

14518 |14.35|5.22

14552 |17.32|5.49

14561 |20.58|5.90

14538 |24.12|6.76

mH=125 GeV, mA=30 GeV

A.m [GeV]0 5 10 15 20 25 30 35 40 45 500

200

400

600

800

1000

mH=125 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

13695 |18.34|7.82

13540 |21.57|8.06

13445 |24.46|8.06

13336 |27.59|7.71

mH=125 GeV, mA=36 GeV

A.m [GeV]0 5 10 15 20 25 30 35 40 45 500

500

1000

1500

2000

2500

mH=135 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

14260 |12.04|2.62

14277 |14.67|3.54

14275 |17.75|5.15

14266 |21.54|6.83

mH=135 GeV, mA=24 GeV

A.m [GeV]0 5 10 15 20 25 30 35 40 45 500

200

400

600

800

1000

1200

1400

1600

mH=135 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

13785 |14.78|5.01

13807 |17.78|5.22

13808 |21.04|5.78

13788 |24.55|6.67

mH=135 GeV, mA=30 GeV

A.m [GeV]0 5 10 15 20 25 30 35 40 45 500

200

400

600

800

1000

mH=135 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

12967 |18.63|7.25

12886 |21.65|7.50

12864 |24.63|7.48

12810 |27.92|7.33

mH=135 GeV, mA=36 GeV

A.m [GeV]0 5 10 15 20 25 30 35 40 45 500

500

1000

1500

2000

2500

mH=145 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

13506 |12.36|2.55

13513 |14.92|3.58

13512 |17.99|5.17

13495 |21.87|6.97

mH=145 GeV, mA=24 GeV

A.m [GeV]0 5 10 15 20 25 30 35 40 45 500

200

400

600

800

1000

1200

1400

mH=145 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

13067 |15.13|4.79

13083 |18.19|4.98

13080 |21.44|5.62

13067 |25.14|6.77

mH=145 GeV, mA=30 GeV

A.m [GeV]0 5 10 15 20 25 30 35 40 45 500

200

400

600

800

1000

mH=145 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

12410 |19.13|7.10

12381 |21.84|7.19

12364 |24.95|7.11

12331 |28.30|7.13

mH=145 GeV, mA=36 GeV

Figure 19: Mass of a, superimposed at different jet radius R.

55

Page 60: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

A.m [GeV]0 10 20 30 40 50 60 700

100

200

300

400

500

600

mH=125 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

2665 |23.45|5.29

307 |28.94|7.64

19 |37.40|9.38

6 |45.42|11.20

mH=125 GeV, mA=24 GeV

A.m [GeV]0 10 20 30 40 50 60 700

100

200

300

400

500

600

mH=125 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

3955 |28.50|7.36

2912 |32.60|7.37

775 |39.16|9.28

109 |47.55|11.40

mH=125 GeV, mA=30 GeV

A.m [GeV]0 10 20 30 40 50 60 700

100

200

300

400

500

mH=125 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

3990 |32.86|7.91

4141 |37.08|7.80

2908 |41.37|8.24

1063 |45.94|9.21

mH=125 GeV, mA=36 GeV

A.m [GeV]0 10 20 30 40 50 60 700

100

200

300

400

500

mH=135 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

2337 |23.33|4.48

118 |31.15|8.68

7 |47.34|10.45

0 | 0| 0

mH=135 GeV, mA=24 GeV

A.m [GeV]0 10 20 30 40 50 60 700

100

200

300

400

500

600

mH=135 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

4006 |28.34|6.66

2296 |32.75|7.10

363 |41.02|10.09

55 |50.02|9.41

mH=135 GeV, mA=30 GeV

A.m [GeV]0 10 20 30 40 50 60 700

100

200

300

400

500

mH=135 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

4223 |32.95|7.51

4097 |37.16|7.50

2370 |41.79|8.35

544 |47.69|9.48

mH=135 GeV, mA=36 GeV

A.m [GeV]0 10 20 30 40 50 60 700

50

100

150

200

250

300

350

400

450

mH=145 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

1762 |23.51|4.61

41 |32.60|10.26

4 |54.31|6.94

1 |56.62|0.00

mH=145 GeV, mA=24 GeV

A.m [GeV]0 10 20 30 40 50 60 700

100

200

300

400

500

600

700

mH=145 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

3901 |28.46|6.45

1519 |33.25|7.56

154 |42.53|10.10

22 |53.39|8.24

mH=145 GeV, mA=30 GeV

A.m [GeV]0 10 20 30 40 50 60 700

100

200

300

400

500

600

mH=145 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

4350 |33.02|7.50

3767 |37.38|7.69

1622 |42.57|8.54

261 |50.11|9.67

mH=145 GeV, mA=36 GeV

Figure 20: Mass of a, superimposed at different jet radius R. Similar to Figure 19 but with cutcount(J) = 4.

56

Page 61: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

E.4 Figures for mass of the Higgs H

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

100

200

300

400

500

600

700

800

900

mH=125 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

13875 |109.29|16.58

13886 |114.21|17.81

13869 |119.55|18.28

13827 |124.73|19.05

mH=125 GeV, mA=24 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

100

200

300

400

500

600

mH=125 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

12967 |109.31|18.64

12705 |115.83|19.60

12352 |120.34|20.48

12039 |124.70|20.91

mH=125 GeV, mA=30 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

100

200

300

400

500

mH=125 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

12072 |108.97|19.45

12068 |116.13|19.86

11539 |122.36|21.06

10663 |127.09|21.94

mH=125 GeV, mA=36 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

100

200

300

400

500

600

700

800

mH=135 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

13367 |117.08|17.10

13390 |122.04|17.81

13388 |127.31|17.98

13358 |132.25|18.52

mH=135 GeV, mA=24 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

100

200

300

400

500

600

mH=135 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

12345 |116.67|18.49

12117 |122.97|19.40

11907 |127.47|19.84

11739 |131.91|19.66

mH=135 GeV, mA=30 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

100

200

300

400

500

mH=135 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

11742 |115.84|19.41

11579 |124.00|20.04

11073 |129.33|20.81

10344 |133.17|21.13

mH=135 GeV, mA=36 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

100

200

300

400

500

600

700

800

mH=145 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

12734 |124.78|17.35

12744 |129.93|17.53

12740 |135.18|17.85

12724 |139.91|18.33

mH=145 GeV, mA=24 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

100

200

300

400

500

600

mH=145 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

11907 |124.37|18.44

11766 |130.18|18.96

11658 |134.62|18.93

11577 |139.03|18.76

mH=145 GeV, mA=30 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

100

200

300

400

500

mH=145 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

11384 |123.23|19.34

11168 |131.19|19.93

10680 |135.77|20.30

10148 |139.19|20.08

mH=145 GeV, mA=36 GeV

Figure 21: Mass of H, superimposed at different jet radius R.

57

Page 62: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

20

40

60

80

100

120

140

160

180

200

220

240

mH=125 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

2665 |119.15|15.28

307 |127.16|17.31

19 |132.45|24.76

6 |134.41|24.64

mH=125 GeV, mA=24 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

50

100

150

200

250

300

mH=125 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

3955 |117.45|17.39

2912 |125.71|17.18

775 |134.72|18.46

109 |143.32|23.37

mH=125 GeV, mA=30 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

50

100

150

200

250

mH=125 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

3990 |114.64|17.86

4141 |123.83|17.85

2908 |131.66|18.41

1063 |137.67|19.18

mH=125 GeV, mA=36 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

20

40

60

80

100

120

140

160

180

200

mH=135 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

2337 |127.95|14.56

118 |138.78|18.04

7 |151.15|15.63

0 | 0| 0

mH=135 GeV, mA=24 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

50

100

150

200

250

300

mH=135 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

4006 |125.54|16.96

2296 |134.09|16.57

363 |142.24|18.51

55 |151.45|16.31

mH=135 GeV, mA=30 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

50

100

150

200

250

mH=135 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

4223 |122.92|17.59

4097 |132.34|17.56

2370 |139.31|17.93

544 |145.52|19.23

mH=135 GeV, mA=36 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

20

40

60

80

100

120

140

mH=145 GeV, mA=24 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

1762 |135.79|14.48

41 |144.80|21.72

4 |161.40|0.00

1 | 0.00|0.00

mH=145 GeV, mA=24 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

50

100

150

200

250

mH=145 GeV, mA=30 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

3901 |133.80|15.67

1519 |141.86|16.40

154 |149.86|18.78

22 |161.17|13.03

mH=145 GeV, mA=30 GeV

H.m [GeV]80 90 100 110 120 130 140 150 160 170 1800

50

100

150

200

250

mH=145 GeV, mA=36 GeVR = 0.5R = 0.7R = 0.9R = 1.1

Entries| Mean|RMS

4350 |131.00|16.51

3767 |140.15|16.47

1622 |147.04|16.60

261 |153.54|18.34

mH=145 GeV, mA=36 GeV

Figure 22: Mass of H, superimposed at different jet radius R. Similar to Figure 21 but with cutcount(J) = 4.

58

Page 63: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

H.m [GeV]80 90 100 110 120 130 140 150 1600

100

200

300

400

500

600

700

800

900

mH=125 GeV, mA=15 GeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

0 | 0| 0

487 |119.74|17.55

14797 |109.08|12.32

mH=125 GeV, mA=15 GeV

H.m [GeV]80 90 100 110 120 130 140 150 1600

50

100

150

200

250

300

350

400

mH=125 GeV, mA=21 GeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

1113 |118.04|12.77

6348 |111.75|14.10

7057 |102.10|11.95

mH=125 GeV, mA=21 GeV

H.m [GeV]80 90 100 110 120 130 140 150 1600

50

100

150

200

250

300

350

400

mH=125 GeV, mA=27 GeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3611 |117.00|14.75

6985 |107.24|14.65

3099 |97.24|11.47

mH=125 GeV, mA=27 GeV

H.m [GeV]80 90 100 110 120 130 140 150 1600

100

200

300

400

500

600

700

800

mH=135 GeV, mA=15 GeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

1 |108.08|0.00

298 |125.99|17.88

13961 |118.02|13.57

mH=135 GeV, mA=15 GeV

H.m [GeV]80 90 100 110 120 130 140 150 1600

50

100

150

200

250

300

350

400

450

mH=135 GeV, mA=21 GeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

617 |125.77|13.16

5642 |120.56|14.45

7526 |110.64|13.39

mH=135 GeV, mA=21 GeV

H.m [GeV]80 90 100 110 120 130 140 150 1600

50

100

150

200

250

300

350

mH=135 GeV, mA=27 GeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3422 |124.84|13.57

6550 |115.05|15.02

2995 |104.77|12.84

mH=135 GeV, mA=27 GeV

H.m [GeV]80 90 100 110 120 130 140 150 1600

100

200

300

400

500

600

700

mH=145 GeV, mA=15 GeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

0 | 0| 0

210 |131.58|16.18

13296 |126.91|14.60

mH=145 GeV, mA=15 GeV

H.m [GeV]80 90 100 110 120 130 140 150 1600

50

100

150

200

250

300

350

400

450

mH=145 GeV, mA=21 GeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

307 |134.47|13.01

4601 |129.24|14.58

8159 |120.39|14.69

mH=145 GeV, mA=21 GeV

H.m [GeV]80 90 100 110 120 130 140 150 1600

50

100

150

200

250

300

mH=145 GeV, mA=27 GeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

3192 |133.12|13.39

6292 |123.24|15.19

2926 |112.29|14.80

mH=145 GeV, mA=27 GeV

Figure 23: Mass of H classified by count(J). Taken at different mH , ma with E = 7 TeV

H.m [GeV]0 20 40 60 80 100 120 140

0

0.02

0.04

0.06

0.08

0.1

0.12

E=7 TeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

5432 |85.82|21.13

45394 |65.24|21.99

89922 |42.04|19.13

E=7 TeV

H.m [GeV]0 20 40 60 80 100 120 140

0

0.02

0.04

0.06

0.08

0.1

0.12

E=8 TeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

6342 |87.03|21.82

47777 |65.97|22.32

87098 |42.95|19.82

E=8 TeV

H.m [GeV]0 20 40 60 80 100 120 140

0

0.02

0.04

0.06

0.08

0.1

E=14 TeVcount(J)=4count(J)=3count(J)=2Entries| Mean|RMS

10494 |91.40|23.02

60357 |69.57|24.13

81826 |45.57|22.05

E=14 TeV

Figure 24: Mass of ‘H’ from background data classified by count(J). Taken at different energy E.

59

Page 64: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

E.5 Determination of significance and S/B

The statistics from calculation of σ in section 7.3 is listed here. The explanation of each columnsare the following:

- E : Energy at proton-proton centre-of-mass frame in TeV.

- mH,mA : Mass of Higgs H and pseudoscalar a in GeV respectively.

- Bestbox: Position at the center of the box cutting in (mH ,ma)-space where σ is maximized.The box is rectangular and has a dimension of (30,12), and the boxes are spaced (5,2) awayfrom each other in this space.

- Count S,B: Number of events found inside the box.

- CSC Sig,BG: Cross-section for signal and background event (in picobarn), which is obtainfrom Pythia and Alpgen respectively.

- S,B: Number of expected events. This is calculated from the ratio of Count above againstnumber of events generated, and multiplies by cross-section and luminosity.

- Sigma: Calculate from S/√S above.

- S/B: Calculate from S/B above.

- Lum_5sig: Integrated luminosity in pb−1 required to have significance of 5σ.

We note that the size of signal data generated is 50000 events (using Pythia). For background,we have 928043, 888295, and 855124 events generated for energy E = 7,8,14 TeV respectively(using Alpgen). The integrated luminosity is approximated to be L = 1100, 2000, 2000 pb−1

for E = 7,8,14 TeV respectively. The statistics below has already the cut count(J) =4 imposed,and fixing jet radius R = 0.5.

R = 0.5--------------------------------------------------------------------------------------------------------------| E , mH , mA | BestBox | Count S,B | CSC Sig, BG [pb] | S , B | Sigma | S/B | Lum_5sig |--------------------------------------------------------------------------------------------------------------| 7, 125, 12 | 105, 4 | 0, 0 | 3.935, 1476.23 | 0.0, 0.0 | 0 | 0| 0 || 7, 125, 15 | 105, 8 | 0, 1 | 4.358, 1476.23 | 0.0, 1.74976 | 0.0 | 0.0| 0 || 7, 125, 18 | 125, 14 | 27, 6 | 4.593, 1476.23 | 2.72824, 10.4986 | 0.842011 | 0.259868| 38787.9 || 7, 125, 21 | 125, 14 | 335, 6 | 4.8, 1476.23 | 35.376, 10.4986 | 10.918 | 3.3696| 230.699 || 7, 125, 24 | 125, 18 | 1236, 54 | 5.003, 1476.23 | 136.042, 94.4871 | 13.9954 | 1.43979| 140.398 || 7, 125, 27 | 120, 22 | 2039, 229 | 5.216, 1476.23 | 233.979, 400.695 | 11.6888 | 0.583934| 201.276 || 7, 125, 30 | 120, 24 | 2069, 289 | 5.42, 1476.23 | 246.708, 505.681 | 10.9709 | 0.487872| 228.478 || 7, 125, 33 | 120, 30 | 2112, 435 | 5.577, 1476.23 | 259.13, 761.146 | 9.39255 | 0.340447| 311.721 || 7, 125, 36 | 120, 32 | 1924, 447 | 5.56, 1476.23 | 235.344, 782.143 | 8.4151 | 0.300896| 388.341 || 7, 135, 12 | 115, 4 | 0, 0 | 2.543, 1476.23 | 0.0, 0.0 | 0 | 0| 0 || 7, 135, 15 | 115, 8 | 1, 1 | 2.813, 1476.23 | 0.061886, 1.74976 | 0.0467846 | 0.0353683| 1.2564E7 || 7, 135, 18 | 145, 16 | 8, 1 | 2.965, 1476.23 | 0.52184, 1.74976 | 0.394501 | 0.298235| 176700.0 || 7, 135, 21 | 140, 16 | 191, 2 | 3.099, 1476.23 | 13.022, 3.49952 | 6.96103 | 3.72108| 567.526 || 7, 135, 24 | 140, 18 | 719, 10 | 3.24, 1476.23 | 51.2503, 17.4976 | 12.252 | 2.92899| 183.197 || 7, 135, 27 | 135, 22 | 1683, 73 | 3.398, 1476.23 | 125.814, 127.733 | 11.1322 | 0.984983| 221.908 || 7, 135, 30 | 135, 26 | 1860, 120 | 3.577, 1476.23 | 146.371, 209.971 | 10.1012 | 0.697099| 269.515 || 7, 135, 33 | 130, 28 | 2124, 220 | 3.783, 1476.23 | 176.772, 384.947 | 9.00975 | 0.459211| 338.772 || 7, 135, 36 | 130, 34 | 2038, 249 | 4.013, 1476.23 | 179.927, 435.69 | 8.62 | 0.41297| 370.1 || 7, 145, 12 | 125, 4 | 0, 0 | 1.577, 1476.23 | 0.0, 0.0 | 0 | 0| 0 || 7, 145, 15 | 125, 8 | 0, 0 | 1.738, 1476.23 | 0.0, 0.0 | 0 | 0| 0 || 7, 145, 18 | 140, 14 | 2, 1 | 1.823, 1476.23 | 0.080212, 1.74976 | 0.0606387 | 0.0458417| 7.47881E6|| 7, 145, 21 | 145, 16 | 117, 1 | 1.897, 1476.23 | 4.88288, 1.74976 | 3.69136 | 2.7906| 2018.18 || 7, 145, 24 | 155, 20 | 499, 2 | 1.972, 1476.23 | 21.6486, 3.49952 | 11.5725 | 6.18617| 205.344 || 7, 145, 27 | 150, 22 | 1137, 15 | 2.056, 1476.23 | 51.4288, 26.2464 | 10.0386 | 1.95946| 272.892 || 7, 145, 30 | 140, 26 | 2254, 86 | 2.152, 1476.23 | 106.713, 150.479 | 8.69922 | 0.709156| 363.389 || 7, 145, 33 | 140, 28 | 2272, 109 | 2.266, 1476.23 | 113.264, 190.724 | 8.20141 | 0.593862| 408.842 || 7, 145, 36 | 140, 32 | 2147, 135 | 2.399, 1476.23 | 113.314, 236.218 | 7.37274 | 0.479703| 505.912 |--------------------------------------------------------------------------------------------------------------| 8, 125, 12 | 105, 4 | 0, 0 | 5.105, 2038.91 | 0.0, 0.0 | 0 | 0| 0 || 8, 125, 15 | 105, 8 | 0, 2 | 5.655, 2038.91 | 0.0, 9.18123 | 0.0 | 0.0| 0 |

60

Page 65: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix E: Analysis on the reconstructed jets at low ma regime

| 8, 125, 18 | 120, 12 | 27, 3 | 5.96, 2038.91 | 6.4368, 13.7718 | 1.7345 | 0.467388| 16619.7 || 8, 125, 21 | 130, 14 | 210, 3 | 6.224, 2038.91 | 52.2816, 13.7718 | 14.0881 | 3.79627| 251.921 || 8, 125, 24 | 125, 18 | 1347, 76 | 6.496, 2038.91 | 350.004, 348.887 | 18.7384 | 1.0032| 142.399 || 8, 125, 27 | 120, 22 | 2287, 249 | 6.768, 2038.91 | 619.137, 1143.06 | 18.3127 | 0.541647| 149.096 || 8, 125, 30 | 120, 26 | 2549, 400 | 7.034, 2038.91 | 717.187, 1836.25 | 16.7366 | 0.390572| 178.499 || 8, 125, 33 | 120, 30 | 2372, 480 | 7.235, 2038.91 | 686.457, 2203.5 | 14.6237 | 0.311531| 233.806 || 8, 125, 36 | 120, 32 | 2248, 501 | 7.212, 2038.91 | 648.503, 2299.9 | 13.5225 | 0.28197| 273.435 || 8, 135, 12 | 115, 4 | 0, 0 | 3.32, 2038.91 | 0.0, 0.0 | 0 | 0| 0 || 8, 135, 15 | 150, 16 | 1, 2 | 3.673, 2038.91 | 0.14692, 9.18123 | 0.0484876 | 0.0160022| 2.12671E7|| 8, 135, 18 | 125, 12 | 16, 2 | 3.869, 2038.91 | 2.47616, 9.18123 | 0.8172 | 0.269698| 74871.0 || 8, 135, 21 | 130, 14 | 203, 3 | 4.045, 2038.91 | 32.8454, 13.7718 | 8.85072 | 2.38497| 638.283 || 8, 135, 24 | 135, 18 | 1071, 28 | 4.228, 2038.91 | 181.128, 128.537 | 15.9761 | 1.40914| 195.898 || 8, 135, 27 | 135, 24 | 2137, 118 | 4.434, 2038.91 | 379.018, 541.693 | 16.2849 | 0.699693| 188.54 || 8, 135, 30 | 130, 24 | 2252, 176 | 4.669, 2038.91 | 420.584, 807.948 | 14.7966 | 0.520558| 228.375 || 8, 135, 33 | 130, 30 | 2575, 299 | 4.936, 2038.91 | 508.408, 1372.59 | 13.7228 | 0.370399| 265.514 || 8, 135, 36 | 125, 32 | 2681, 390 | 5.235, 2038.91 | 561.401, 1790.34 | 13.268 | 0.313573| 284.026 || 8, 145, 12 | 125, 4 | 0, 0 | 2.07, 2038.91 | 0.0, 0.0 | 0 | 0| 0 || 8, 145, 15 | 125, 8 | 0, 0 | 2.282, 2038.91 | 0.0, 0.0 | 0 | 0| 0 || 8, 145, 18 | 140, 14 | 4, 1 | 2.394, 2038.91 | 0.38304, 4.59061 | 0.178776 | 0.0834398| 1.56442E6|| 8, 145, 21 | 140, 14 | 78, 1 | 2.49, 2038.91 | 7.7688, 4.59061 | 3.62592 | 1.69232| 3803.06 || 8, 145, 24 | 145, 18 | 779, 9 | 2.588, 2038.91 | 80.6421, 41.3155 | 12.546 | 1.95186| 317.658 || 8, 145, 27 | 140, 22 | 1997, 67 | 2.697, 2038.91 | 215.436, 307.571 | 12.2842 | 0.700444| 331.343 || 8, 145, 30 | 140, 24 | 2171, 87 | 2.824, 2038.91 | 245.236, 399.383 | 12.2713 | 0.614037| 332.041 || 8, 145, 33 | 135, 28 | 2770, 198 | 2.972, 2038.91 | 329.298, 908.942 | 10.9225 | 0.362287| 419.111 || 8, 145, 36 | 140, 32 | 2496, 195 | 3.148, 2038.91 | 314.296, 895.17 | 10.5048 | 0.351102| 453.103 |--------------------------------------------------------------------------------------------------------------| 14, 125, 12 | 105, 4 | 0, 0 | 14.17, 7130.57 | 0.0, 0.0 | 0 | 0| 0 || 14, 125, 15 | 105, 8 | 0, 1 | 15.69, 7130.57 | 0.0, 16.6773 | 0.0 | 0.0| 0 || 14, 125, 18 | 130, 12 | 31, 1 | 16.55, 7130.57 | 20.522, 16.6773 | 5.02524 | 1.23054| 1979.96 || 14, 125, 21 | 130, 16 | 634, 28 | 17.29, 7130.57 | 438.474, 466.964 | 20.291 | 0.93899| 121.441 || 14, 125, 24 | 120, 18 | 1890, 180 | 18.03, 7130.57 | 1363.07, 3001.91 | 24.8782 | 0.454067| 80.7854 || 14, 125, 27 | 120, 22 | 3012, 477 | 18.8, 7130.57 | 2265.02, 7955.06 | 25.3952 | 0.284727| 77.5297 || 14, 125, 30 | 120, 26 | 3537, 824 | 19.55, 7130.57 | 2765.93, 13742.1 | 23.5948 | 0.201275| 89.8129 || 14, 125, 33 | 120, 30 | 3390, 046 | 20.1, 7130.57 | 2725.56, 17444.4 | 20.6361 | 0.156242| 117.413 || 14, 125, 36 | 120, 34 | 3182, 089 | 20.03, 7130.57 | 2549.42, 18161.6 | 18.9175 | 0.140374| 139.714 || 14, 135, 12 | 115, 4 | 0, 0 | 9.396, 7130.57 | 0.0, 0.0 | 0 | 0| 0 || 14, 135, 15 | 115, 8 | 0, 1 | 10.4, 7130.57 | 0.0, 16.6773 | 0.0 | 0.0| 0 || 14, 135, 18 | 145, 14 | 17, 1 | 10.96, 7130.57 | 7.4528, 16.6773 | 1.82497 | 0.446883| 15012.6 || 14, 135, 21 | 135, 16 | 459, 18 | 11.46, 7130.57 | 210.406, 300.191 | 12.1439 | 0.700906| 339.042 || 14, 135, 24 | 135, 20 | 1904, 118 | 11.98, 7130.57 | 912.397, 1967.92 | 20.5674 | 0.463635| 118.198 || 14, 135, 27 | 130, 22 | 2944, 271 | 12.56, 7130.57 | 1479.07, 4519.54 | 22.0009 | 0.32726| 103.297 || 14, 135, 30 | 130, 26 | 3665, 511 | 13.23, 7130.57 | 1939.52, 8522.09 | 21.0097 | 0.227587| 113.274 || 14, 135, 33 | 130, 30 | 3829, 678 | 13.98, 7130.57 | 2141.18, 11307.2 | 20.1361 | 0.189364| 123.316 || 14, 135, 36 | 130, 34 | 3486, 742 | 14.83, 7130.57 | 2067.9, 12374.5 | 18.5893 | 0.167109| 144.691 || 14, 145, 12 | 125, 4 | 0, 0 | 5.962, 7130.57 | 0.0, 0.0 | 0 | 0| 0 || 14, 145, 15 | 125, 8 | 0, 0 | 6.57, 7130.57 | 0.0, 0.0 | 0 | 0| 0 || 14, 145, 18 | 130, 12 | 10, 1 | 6.894, 7130.57 | 2.7576, 16.6773 | 0.675256 | 0.165351| 109656.0 || 14, 145, 21 | 140, 14 | 124, 2 | 7.167, 7130.57 | 35.5483, 33.3546 | 6.15519 | 1.06577| 1319.74 || 14, 145, 24 | 140, 20 | 1630, 88 | 7.452, 7130.57 | 485.87, 1467.6 | 12.6828 | 0.331065| 310.84 || 14, 145, 27 | 140, 22 | 2723, 147 | 7.768, 7130.57 | 846.091, 2451.56 | 17.0882 | 0.345123| 171.23 || 14, 145, 30 | 140, 26 | 3625, 300 | 8.133, 7130.57 | 1179.29, 5003.18 | 16.6723 | 0.235707| 179.878 || 14, 145, 33 | 140, 30 | 3937, 410 | 8.56, 7130.57 | 1348.03, 6837.68 | 16.3021 | 0.197147| 188.14 || 14, 145, 36 | 140, 34 | 3720, 474 | 9.058, 7130.57 | 1347.83, 7905.03 | 15.1595 | 0.170503| 217.572 |--------------------------------------------------------------------------------------------------------------

61

Page 66: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix F: Glimpse on the full simulation data

F Glimpse on the full simulation data

F.1 Selection of b-tagged jets

This table shows the number of events that passes the criteria of each b-taggers. Each rowrepresents the following:

- RAW: Total number of events before b-tagging.

- 1xTOPO_3xSV: Requiring 1 b-jet tagged by TOPO tagger and 3 b-jets tagged by SV tagger.

- 4xNNB90: Requiring at least 4 b-jets, using NeuralNetwork b-tagger at threshold 0.90.

- 4xNNB80: Requiring at least 4 b-jets, using NeuralNetwork b-tagger at threshold 0.80.

- 4xNNB70: Requiring at least 4 b-jets, using NeuralNetwork b-tagger at threshold 0.70.

- 3xNNB90: Requiring at least 3 b-jets, using NeuralNetwork b-tagger at threshold 0.90.

- 1xNNB90: Requiring at least 1 b-jets, using NeuralNetwork b-tagger at threshold 0.90.

-------------------------------------------------------------------------------------| | mH = 125 | mH = 145 | || | mA=15 mA=20 mA=30 mA=45 | mA=15 mA=30 mA=65 | bbbb |-------------------------------------------------------------------------------------|RAW | 32407 32005 32115 32202 | 31082 31804 31932 | 175000 ||1xTOPO_3xSV | 28 71 158 132 | 26 220 283 | 44 ||4xNNB90 | 170 325 699 599 | 130 776 1144 | 239 ||4xNNB80 | 340 572 1228 1073 | 275 1313 1919 | 489 ||4xNNB70 | 495 811 1650 1468 | 420 1707 2530 | 737 ||3xNNB90 | 1088 1692 2898 2812 | 906 3161 4408 | 1659 ||1xNNB90 | 5172 6201 8223 8556 | 4600 8535 11585 | 9481 |-------------------------------------------------------------------------------------

F.2 Determination of significance and S/B

The calculation for significance is similar to what found in the generator level. Refer to appendixE.5 for the description for each column. We remark that the cross-section used in the calculationis not exact (which should be taken from official LHCb statistics), but were rather yielded fromPythia and Alpgen instead.-------------------------------------------------------------------------------------------------------------| E, mH, mA | Taggers |Bestbox| Count S, B| CSC Sig| S , B | Sigma | S/B | Lum_5sig |-------------------------------------------------------------------------------------------------------------| 7, 125, 15 | 1xTOPO_3xSV|115,20 | 8, 1 | 4.358| 1.27835, 9.27916 | 0.419657 | 0.137765| 156151.0 || 7, 125, 15 | 1xNNB90 |135,14 | 576, 101 | 4.358| 92.041, 937.195 | 3.00653 | 0.098209| 3042.29 || 7, 125, 15 | 3xNNB90 |125,14 | 167, 26 | 4.358| 26.6855, 241.258 | 1.71804 | 0.11061| 9316.75 || 7, 125, 15 | 4xNNB90 |120,14 | 29, 1 | 4.358| 4.63401, 9.27916 | 1.52126 | 0.499399| 11883.1 || 7, 125, 15 | 4xNNB80 |110,12 | 63, 6 | 4.358| 10.067, 55.675 | 1.34918 | 0.180817| 15107.6 || 7, 125, 15 | 4xNNB70 |120,12 | 74, 6 | 4.358| 11.8247, 55.675 | 1.58475 | 0.212388| 10949.9 || 7, 125, 30 | 1xTOPO_3xSV|110,24 | 71, 2 | 5.42| 14.1101, 18.5583 | 3.27537 | 0.760309| 2563.38 || 7, 125, 30 | 1xNNB90 |105,24 | 2029, 859 | 5.42| 403.23, 7970.8 | 4.5165 | 0.0505884| 1348.12 || 7, 125, 30 | 3xNNB90 |105,24 | 980, 215 | 5.42| 194.759, 1995.02 | 4.36037 | 0.0976224| 1446.39 || 7, 125, 30 | 4xNNB90 |105,22 | 285, 29 | 5.42| 56.639, 269.096 | 3.45273 | 0.210479| 2306.79 || 7, 125, 30 | 4xNNB80 |105,24 | 499, 66 | 5.42| 99.1679, 612.425 | 4.00724 | 0.161927| 1712.55 || 7, 125, 30 | 4xNNB70 |105,24 | 644, 94 | 5.42| 127.984, 872.241 | 4.3335 | 0.14673| 1464.39 || 7, 125, 45 | 1xTOPO_3xSV|110,40 | 39, 2 | 5.416| 7.74488, 18.5583 | 1.79782 | 0.417327| 8508.28 || 7, 125, 45 | 1xNNB90 |105,38 | 1517, 716 | 5.416| 301.256, 6643.88 | 3.69594 | 0.0453434| 2013.18 || 7, 125, 45 | 3xNNB90 |105,38 | 608, 181 | 5.416| 120.741, 1679.53 | 2.94619 | 0.0718897| 3168.2 || 7, 125, 45 | 4xNNB90 |105,38 | 167, 29 | 5.416| 33.164, 269.096 | 2.02168 | 0.123242| 6728.31 || 7, 125, 45 | 4xNNB80 |105,38 | 290, 49 | 5.416| 57.5901, 454.679 | 2.70082 | 0.126661| 3770.0 || 7, 125, 45 | 4xNNB70 |105,38 | 398, 73 | 5.416| 79.0375, 677.379 | 3.03681 | 0.116681| 2981.93 |

62

Page 67: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix F: Glimpse on the full simulation data

-------------------------------------------------------------------------------------------------------------| 7, 145, 15 | 1xTOPO_3xSV|145,20 | 6, 2 | 1.738| 0.38236, 18.5583 | 0.088757 | 0.0206032| 3.49081e6|| 7, 145, 15 | 1xNNB90 |165,20 | 427, 40 | 1.738| 27.2113, 371.166 | 1.41242 | 0.0733129| 13784.9 || 7, 145, 15 | 3xNNB90 |160,14 | 57, 1 | 1.738| 3.63242, 9.27916 | 1.19245 | 0.39146| 19339.7 || 7, 145, 15 | 4xNNB90 |145,18 | 23, 1 | 1.738| 1.46571, 9.27916 | 0.481166 | 0.157958| 118780.0 || 7, 145, 15 | 4xNNB80 |145,12 | 28, 1 | 1.738| 1.78435, 9.27916 | 0.585767 | 0.192296| 80146.2 || 7, 145, 15 | 4xNNB70 |165,22 | 38, 1 | 1.738| 2.42161, 9.27916 | 0.79497 | 0.260973| 43514.3 || 7, 145, 30 | 1xTOPO_3xSV|125,24 | 101, 1 | 2.152| 7.96957, 9.27916 | 2.61626 | 0.858868| 4017.64 || 7, 145, 30 | 1xNNB90 |125,24 | 1515, 272 | 2.152| 119.544, 2523.93 | 2.37951 | 0.047364| 4856.88 || 7, 145, 30 | 3xNNB90 |130,26 | 713, 55 | 2.152| 56.2605, 510.354 | 2.49039 | 0.110238| 4434.02 || 7, 145, 30 | 4xNNB90 |130,28 | 249, 8 | 2.152| 19.6478, 74.2333 | 2.28041 | 0.264676| 5288.17 || 7, 145, 30 | 4xNNB80 |130,26 | 371, 15 | 2.152| 29.2744, 139.187 | 2.48135 | 0.210323| 4466.4 || 7, 145, 30 | 4xNNB70 |130,26 | 442, 24 | 2.152| 34.8767, 222.7 | 2.33709 | 0.156609| 5034.78 || 7, 145, 65 | 1xTOPO_3xSV|125,58 | 1, 0 | 3.284| 0.120413, 0.0 | 0 | 0| 0 || 7, 145, 65 | 1xNNB90 |155,58 | 170, 53 | 3.284| 20.4703, 491.795 | 0.923063 | 0.0416235| 32275.3 || 7, 145, 65 | 3xNNB90 |155,58 | 61, 10 | 3.284| 7.34521, 92.7916 | 0.762518 | 0.0791582| 47296.9 || 7, 145, 65 | 4xNNB90 |150,58 | 14, 1 | 3.284| 1.68579, 9.27916 | 0.553412 | 0.181674| 89791.7 || 7, 145, 65 | 4xNNB80 |145,58 | 22, 2 | 3.284| 2.64909, 18.5583 | 0.614933 | 0.142744| 72723.8 || 7, 145, 65 | 4xNNB70 |160,64 | 17, 1 | 3.284| 2.04703, 9.27916 | 0.672 | 0.220605| 60896.8 |-------------------------------------------------------------------------------------------------------------CSC_BG = 1476.23 pb

63

Page 68: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix F: Glimpse on the full simulation data

F.3 Figures for transverse momentum

0 20 40 60 80 100 1200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E7_mH125_mA15TruthGeneratorLv.FullSim_1xTOPO_3xSVFullSim_4xNNB90FullSim_3xNNB90FullSim_1xNNB90FullSim_4xNNB70

Entries| Mean|RMS

15329 |62.23|8.56

0 | 0| 0

28 |53.38|19.67

170 |50.26|15.81

1088 |50.95|16.03

5172 |52.43|18.00

495 |51.01|15.75

E7_mH125_mA15

0 20 40 60 80 100 1200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E7_mH125_mA30TruthGeneratorLv.FullSim_1xTOPO_3xSVFullSim_4xNNB90FullSim_3xNNB90FullSim_1xNNB90FullSim_4xNNB70

Entries| Mean|RMS

13979 |56.38|8.88

3955 |53.00|10.45

158 |44.41|10.21

699 |43.88|12.51

2898 |44.95|14.21

8223 |44.70|15.51

1650 |44.20|13.41

E7_mH125_mA30

0 20 40 60 80 100 1200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E7_mH125_mA45TruthGeneratorLv.FullSim_1xTOPO_3xSVFullSim_4xNNB90FullSim_3xNNB90FullSim_1xNNB90FullSim_4xNNB70

Entries| Mean|RMS

12950 |45.21|11.04

3781 |42.46|12.42

132 |37.67|11.59

599 |39.03|12.99

2812 |40.52|13.85

8556 |40.30|14.76

1468 |39.36|13.70

E7_mH125_mA45

0 20 40 60 80 100 1200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E7_mH145_mA15TruthGeneratorLv.FullSim_1xTOPO_3xSVFullSim_4xNNB90FullSim_3xNNB90FullSim_1xNNB90FullSim_4xNNB70

Entries| Mean|RMS

13516 |72.01|8.34

0 | 0| 0

26 |57.09|19.56

130 |57.34|16.83

906 |59.39|19.09

4600 |60.24|19.69

420 |58.74|18.65

E7_mH145_mA15

0 20 40 60 80 100 1200

0.05

0.1

0.15

0.2

0.25

0.3

E7_mH145_mA30TruthGeneratorLv.FullSim_1xTOPO_3xSVFullSim_4xNNB90FullSim_3xNNB90FullSim_1xNNB90FullSim_4xNNB70

Entries| Mean|RMS

12369 |67.33|8.55

3901 |62.30|10.01

220 |52.67|12.40

776 |50.64|12.19

3161 |51.93|14.75

8535 |50.99|16.66

1707 |51.11|14.20

E7_mH145_mA30

0 20 40 60 80 100 1200

0.05

0.1

0.15

0.2

0.25

0.3

E7_mH145_mA65TruthGeneratorLv.FullSim_1xTOPO_3xSVFullSim_4xNNB90FullSim_3xNNB90FullSim_1xNNB90FullSim_4xNNB70

Entries| Mean|RMS

10951 |35.37|13.51

5034 |49.06|12.50

283 |42.89|12.09

1144 |42.82|12.46

4408 |43.05|13.99

11585 |42.37|14.79

2530 |42.40|13.42

E7_mH145_mA65

Figure 25: Transverse momentum of a comparing between each b-tagger.

64

Page 69: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix F: Glimpse on the full simulation data

0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E7_mH125_mA15SignalBackground

Entries| Mean|RMS

170 |28.40|7.75

239 |21.30|6.31

E7_mH125_mA15

0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

E7_mH125_mA30SignalBackground

Entries| Mean|RMS

699 |24.71|6.16

239 |21.30|6.31

E7_mH125_mA30

0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

E7_mH125_mA45SignalBackground

Entries| Mean|RMS

599 |23.68|6.51

239 |21.30|6.31

E7_mH125_mA45

0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E7_mH145_mA15SignalBackground

Entries| Mean|RMS

130 |32.56|7.34

239 |21.30|6.31

E7_mH145_mA15

0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E7_mH145_mA30SignalBackground

Entries| Mean|RMS

776 |28.18|5.90

239 |21.30|6.31

E7_mH145_mA30

0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E7_mH145_mA65SignalBackground

Entries| Mean|RMS

1144 |25.74|6.19

239 |21.30|6.31

E7_mH145_mA65

Figure 26: Average transverse momentum of the jets from signal and background data using fullsimulation, comparing at different mH ,mA.

65

Page 70: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix F: Glimpse on the full simulation data

0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E7_mH125_mA15SignalBackground

Entries| Mean|RMS

170 |49.22|13.93

239 |35.72|11.88

E7_mH125_mA15

0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E7_mH125_mA30SignalBackground

Entries| Mean|RMS

699 |43.44|11.45

239 |35.72|11.88

E7_mH125_mA30

0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E7_mH125_mA45SignalBackground

Entries| Mean|RMS

599 |38.79|12.32

239 |35.72|11.88

E7_mH125_mA45

0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E7_mH145_mA15SignalBackground

Entries| Mean|RMS

130 |57.34|16.83

239 |35.72|11.88

E7_mH145_mA15

0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E7_mH145_mA30SignalBackground

Entries| Mean|RMS

776 |50.41|11.65

239 |35.72|11.88

E7_mH145_mA30

0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E7_mH145_mA65SignalBackground

Entries| Mean|RMS

1144 |42.47|11.55

239 |35.72|11.88

E7_mH145_mA65

Figure 27: Average transverse momentum of a from signal and background data using full simulation,comparing at different mH ,mA.

66

Page 71: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix F: Glimpse on the full simulation data

F.4 Figures for invariant mass

mA [GeV]0 10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E7_mH125_mA15SignalBackground

Entries| Mean|RMS

170 |26.73|14.01

239 |26.43|10.12

E7_mH125_mA15

mA [GeV]0 10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E7_mH125_mA30SignalBackground

Entries| Mean|RMS

699 |26.79|8.93

239 |26.43|10.12

E7_mH125_mA30

mA [GeV]0 10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E7_mH125_mA45SignalBackground

Entries| Mean|RMS

599 |31.11|9.62

239 |26.43|10.12

E7_mH125_mA45

mA [GeV]0 10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E7_mH145_mA15SignalBackground

Entries| Mean|RMS

130 |31.55|16.12

239 |26.43|10.12

E7_mH145_mA15

mA [GeV]0 10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E7_mH145_mA30SignalBackground

Entries| Mean|RMS

776 |28.65|9.96

239 |26.43|10.12

E7_mH145_mA30

mA [GeV]0 10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E7_mH145_mA65SignalBackground

Entries| Mean|RMS

1144 |33.46|9.48

239 |26.43|10.12

E7_mH145_mA65

Figure 28: Comparison ma between signal and background data at different mH ,ma pair.

67

Page 72: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Appendix F: Glimpse on the full simulation data

mH [GeV]0 20 40 60 80 1001201401601802002202400

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E7_mH125_mA15SignalBackground

Entries| Mean|RMS

170 |120.73|32.49

239 |93.41|27.78

E7_mH125_mA15

mH [GeV]0 20 40 60 80 1001201401601802002202400

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E7_mH125_mA30SignalBackground

Entries| Mean|RMS

699 |104.48|23.19

239 |93.41|27.78

E7_mH125_mA30

mH [GeV]0 20 40 60 80 1001201401601802002202400

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E7_mH125_mA45SignalBackground

Entries| Mean|RMS

599 |101.15|26.06

239 |93.41|27.78

E7_mH125_mA45

mH [GeV]0 20 40 60 80 1001201401601802002202400

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E7_mH145_mA15SignalBackground

Entries| Mean|RMS

130 |137.55|30.50

239 |93.41|27.78

E7_mH145_mA15

mH [GeV]0 20 40 60 80 1001201401601802002202400

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E7_mH145_mA30SignalBackground

Entries| Mean|RMS

776 |119.22|23.74

239 |93.41|27.78

E7_mH145_mA30

mH [GeV]0 20 40 60 80 1001201401601802002202400

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E7_mH145_mA65SignalBackground

Entries| Mean|RMS

1144 |109.70|23.75

239 |93.41|27.78

E7_mH145_mA65

Figure 29: Comparison mH between signal and background data at different mH ,ma pair.

68

Page 73: Can a Higgs decay to four bottom quarks be observed at LHCb? · The collimated spray of hadrons resulting from high energy quarks in such case is refered as Jet, which can be treated,

Bibliography

[1] David E. Kaplan and Matthew McEvoy. “Searching for Higgs decays to four bottom quarks atLHCb”. In: Physics Letters B 701.1 (2011), pp. 70–74. issn: 03702693. doi: 10.1016/j.physletb.2011.05.026. arXiv:0909.1521.

[2] Michele Maggiore. A Modern Introduction to Quantum Field Theory. Oxford University Press,2005, p. 291. isbn: 0198520743.

[3] Michael Edward Peskin and Daniel V. Schroeder. An introduction to quantum field theory. Addison-Wesley Pub. Co., 1995, p. 842. isbn: 0201503972.

[4] Manuel Drees. “An Introduction to Supersymmetry”. In: (1996), p. 42. arXiv:9611409 [hep-ph].

[5] Stephen P. Martin. “A Supersymmetry Primer”. In: (1997), p. 152. arXiv:9709356 [hep-ph].

[6] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. “PYTHIA 6.4 physics and manual”. In:Journal of High Energy Physics 2006.05 (2006), pp. 026–026. issn: 1029-8479. doi: 10.1088/1126-6708/2006/05/026.

[7] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. “A brief introduction to PYTHIA 8.1”.In: Computer Physics Communications 178.11 (2008), pp. 852–867. issn: 00104655. doi: 10.1016/j.cpc.2008.01.036.

[8] Michelangelo L Mangano, Fulvio Piccinini, Antonio D Polosa, Mauro Moretti, and Roberto Pittau.“ALPGEN, a generator for hard multiparton processes in hadronic collisions”. In: Journal of HighEnergy Physics 2003.07 (2003), pp. 001–001. issn: 1029-8479. doi: 10.1088/1126-6708/2003/07/001. arXiv:0206293 [hep-ph].

[9] J Alwall, A Ballestrero, P Bartalini, S Belov, E Boos, A Buckley, J M Butterworth, L Dudko, SFrixione, L Garren, S Gieseke, A Gusev, I Hinchliffe, J Huston, B Kersevan, F Krauss, N Lavesson,L Lönnblad, E Maina, F Maltoni, M L Mangano, F Moortgat, S Mrenna, C G Papadopoulos, RPittau, P Richardson, M H Seymour, A Sherstnev, T Sjöstrand, P Skands, S R Slabospitsky,Z Wcas, B R Webber, M Worek, and D Zeppenfeld. “A standard format for Les Houches EventFiles”. In: Computer Physics Communications 176.4 (2006), p. 8.

[10] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “FastJet user manual”. In: (2011), p. 69.arXiv:1111.6097.

[11] Jonathan Pumplin, Daniel Robert Stump, Joey Huston, Hung-Liang Lai, Pavel Nadolsky, andWu-Ki Tung. “New Generation of Parton Distributions with Uncertainties from Global QCDAnalysis”. In: Journal of High Energy Physics 2002.07 (2002), pp. 012–012. issn: 1029-8479. doi:10.1088/1126-6708/2002/07/012. arXiv:0201195 [hep-ph].

[12] Julien Rouvinet. “Searching for Higgs decays to four bottom quarks at LHCb”. PhD thesis. EPFL,2010.

[13] J. Beringer et al. “Review of Particle Physics”. In: Physical Review D 86.1 (2012), pp. 010001–.issn: 1550-7998. doi: 10.1103/PhysRevD.86.010001.

69