capra, leapfrog and other related operations on maps · fowler and d. e. manolopolous, an atlas of...

101
1 1 Capra, leapfrog and other Capra, leapfrog and other related operations on maps related operations on maps Mircea V. Diudea Mircea V. Diudea Faculty of Chemistry and Chemical Engineering Faculty of Chemistry and Chemical Engineering Babes Babes - - Bolyai University Bolyai University 400084 Cluj, ROMANIA 400084 Cluj, ROMANIA [email protected] [email protected]

Upload: others

Post on 11-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

11

Capra leapfrog and other Capra leapfrog and other related operations on mapsrelated operations on maps

Mircea V DiudeaMircea V Diudea

Faculty of Chemistry and Chemical EngineeringFaculty of Chemistry and Chemical EngineeringBabesBabes--Bolyai UniversityBolyai University400084 Cluj ROMANIA400084 Cluj ROMANIA

diudeachemubbclujrodiudeachemubbclujro

22

ContentsContentsbullbull Basic operations in a mapBasic operations in a map

bullbull Composite operationsComposite operations

bullbull Capra operationCapra operation

bullbull Lattices with negative curvatureLattices with negative curvature

bullbull ππ--Electronic implicationsElectronic implications

bullbull ReferencesReferences

33

Relations in a mapRelations in a map

A map A map MM is a combinatorial representation of a closed is a combinatorial representation of a closed surfacesurface11 The graph associated to the map is called The graph associated to the map is called regularregularif all its vertices have the same degree if all its vertices have the same degree

Basic relations in Basic relations in MM

ΣΣdvdvdd == 22ee

ΣΣsfsfss == 22ee

v v -- e e + + f f == χχ((MM)=)= 2(12(1-- gg) ) Euler Euler 22

T Pisanski and M RandiT Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194L Euler L Euler CommentComment Acad Sci I PetropolitanaeAcad Sci I Petropolitanae 17361736 88 128 128--140140

44

Basic operations in a mapBasic operations in a map

StellationStellation11 StSt (capping triangulation)(capping triangulation)add a new vertex in the center of a face and add a new vertex in the center of a face and connect it with each boundary vertexconnect it with each boundary vertex

St St ((M M ) ) vv = = vv00 + + ff00

ee = 3= 3ee00

ff = 2= 2ee00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

55

StellationStellation StSt

StSt (C(C363615)15)CC363615 15 1 1 ((CC22h h ))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

66

Basic operations in a mapBasic operations in a map

DualDual 11DuDu (Poincar(Poincareacuteeacute dualdual ))locate a point in the center of each face and locate a point in the center of each face and join two such points if their corresponding facesjoin two such points if their corresponding facesshare a common edgeshare a common edge

Du Du ((Du Du ((MM)) = )) = MM

Du Du ((M M ) ) vv = = ff00

ee = = ee00

ff = = vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

77

Dual Dual DuDu

Du Du (C(C404039)39)CC404039 39 1 1 ((DD55dd))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

88

Basic operations in a mapBasic operations in a map

MedialMedial 11MeMe put the new vertices as the midpoints of the put the new vertices as the midpoints of the original edges Join two vertices if and only if theoriginal edges Join two vertices if and only if theoriginal edges span an angle original edges span an angle

Me Me ((MM) = ) = Me Me ((Du Du ((MM)))) (a 4(a 4--valent graph)valent graph)

MeMe((M M ) ) vv = = ee00

ee = 2= 2ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

99

MedialMedial MeMe

MeMe (C(C5050271)271)CC5050271 271 1 1 ((CCss))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1010

Basic operations in a mapBasic operations in a map

TruncationTruncation 11TrTr cut of the neighborhood of each vertex by a cut of the neighborhood of each vertex by a plane close to the vertex such that it intersects plane close to the vertex such that it intersects each edge incident to the vertex each edge incident to the vertex

Truncation is similar toTruncation is similar to Me Me ((MM) ) Tr Tr ((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 2: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

22

ContentsContentsbullbull Basic operations in a mapBasic operations in a map

bullbull Composite operationsComposite operations

bullbull Capra operationCapra operation

bullbull Lattices with negative curvatureLattices with negative curvature

bullbull ππ--Electronic implicationsElectronic implications

bullbull ReferencesReferences

33

Relations in a mapRelations in a map

A map A map MM is a combinatorial representation of a closed is a combinatorial representation of a closed surfacesurface11 The graph associated to the map is called The graph associated to the map is called regularregularif all its vertices have the same degree if all its vertices have the same degree

Basic relations in Basic relations in MM

ΣΣdvdvdd == 22ee

ΣΣsfsfss == 22ee

v v -- e e + + f f == χχ((MM)=)= 2(12(1-- gg) ) Euler Euler 22

T Pisanski and M RandiT Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194L Euler L Euler CommentComment Acad Sci I PetropolitanaeAcad Sci I Petropolitanae 17361736 88 128 128--140140

44

Basic operations in a mapBasic operations in a map

StellationStellation11 StSt (capping triangulation)(capping triangulation)add a new vertex in the center of a face and add a new vertex in the center of a face and connect it with each boundary vertexconnect it with each boundary vertex

St St ((M M ) ) vv = = vv00 + + ff00

ee = 3= 3ee00

ff = 2= 2ee00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

55

StellationStellation StSt

StSt (C(C363615)15)CC363615 15 1 1 ((CC22h h ))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

66

Basic operations in a mapBasic operations in a map

DualDual 11DuDu (Poincar(Poincareacuteeacute dualdual ))locate a point in the center of each face and locate a point in the center of each face and join two such points if their corresponding facesjoin two such points if their corresponding facesshare a common edgeshare a common edge

Du Du ((Du Du ((MM)) = )) = MM

Du Du ((M M ) ) vv = = ff00

ee = = ee00

ff = = vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

77

Dual Dual DuDu

Du Du (C(C404039)39)CC404039 39 1 1 ((DD55dd))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

88

Basic operations in a mapBasic operations in a map

MedialMedial 11MeMe put the new vertices as the midpoints of the put the new vertices as the midpoints of the original edges Join two vertices if and only if theoriginal edges Join two vertices if and only if theoriginal edges span an angle original edges span an angle

Me Me ((MM) = ) = Me Me ((Du Du ((MM)))) (a 4(a 4--valent graph)valent graph)

MeMe((M M ) ) vv = = ee00

ee = 2= 2ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

99

MedialMedial MeMe

MeMe (C(C5050271)271)CC5050271 271 1 1 ((CCss))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1010

Basic operations in a mapBasic operations in a map

TruncationTruncation 11TrTr cut of the neighborhood of each vertex by a cut of the neighborhood of each vertex by a plane close to the vertex such that it intersects plane close to the vertex such that it intersects each edge incident to the vertex each edge incident to the vertex

Truncation is similar toTruncation is similar to Me Me ((MM) ) Tr Tr ((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 3: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

33

Relations in a mapRelations in a map

A map A map MM is a combinatorial representation of a closed is a combinatorial representation of a closed surfacesurface11 The graph associated to the map is called The graph associated to the map is called regularregularif all its vertices have the same degree if all its vertices have the same degree

Basic relations in Basic relations in MM

ΣΣdvdvdd == 22ee

ΣΣsfsfss == 22ee

v v -- e e + + f f == χχ((MM)=)= 2(12(1-- gg) ) Euler Euler 22

T Pisanski and M RandiT Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194L Euler L Euler CommentComment Acad Sci I PetropolitanaeAcad Sci I Petropolitanae 17361736 88 128 128--140140

44

Basic operations in a mapBasic operations in a map

StellationStellation11 StSt (capping triangulation)(capping triangulation)add a new vertex in the center of a face and add a new vertex in the center of a face and connect it with each boundary vertexconnect it with each boundary vertex

St St ((M M ) ) vv = = vv00 + + ff00

ee = 3= 3ee00

ff = 2= 2ee00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

55

StellationStellation StSt

StSt (C(C363615)15)CC363615 15 1 1 ((CC22h h ))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

66

Basic operations in a mapBasic operations in a map

DualDual 11DuDu (Poincar(Poincareacuteeacute dualdual ))locate a point in the center of each face and locate a point in the center of each face and join two such points if their corresponding facesjoin two such points if their corresponding facesshare a common edgeshare a common edge

Du Du ((Du Du ((MM)) = )) = MM

Du Du ((M M ) ) vv = = ff00

ee = = ee00

ff = = vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

77

Dual Dual DuDu

Du Du (C(C404039)39)CC404039 39 1 1 ((DD55dd))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

88

Basic operations in a mapBasic operations in a map

MedialMedial 11MeMe put the new vertices as the midpoints of the put the new vertices as the midpoints of the original edges Join two vertices if and only if theoriginal edges Join two vertices if and only if theoriginal edges span an angle original edges span an angle

Me Me ((MM) = ) = Me Me ((Du Du ((MM)))) (a 4(a 4--valent graph)valent graph)

MeMe((M M ) ) vv = = ee00

ee = 2= 2ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

99

MedialMedial MeMe

MeMe (C(C5050271)271)CC5050271 271 1 1 ((CCss))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1010

Basic operations in a mapBasic operations in a map

TruncationTruncation 11TrTr cut of the neighborhood of each vertex by a cut of the neighborhood of each vertex by a plane close to the vertex such that it intersects plane close to the vertex such that it intersects each edge incident to the vertex each edge incident to the vertex

Truncation is similar toTruncation is similar to Me Me ((MM) ) Tr Tr ((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 4: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

44

Basic operations in a mapBasic operations in a map

StellationStellation11 StSt (capping triangulation)(capping triangulation)add a new vertex in the center of a face and add a new vertex in the center of a face and connect it with each boundary vertexconnect it with each boundary vertex

St St ((M M ) ) vv = = vv00 + + ff00

ee = 3= 3ee00

ff = 2= 2ee00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

55

StellationStellation StSt

StSt (C(C363615)15)CC363615 15 1 1 ((CC22h h ))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

66

Basic operations in a mapBasic operations in a map

DualDual 11DuDu (Poincar(Poincareacuteeacute dualdual ))locate a point in the center of each face and locate a point in the center of each face and join two such points if their corresponding facesjoin two such points if their corresponding facesshare a common edgeshare a common edge

Du Du ((Du Du ((MM)) = )) = MM

Du Du ((M M ) ) vv = = ff00

ee = = ee00

ff = = vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

77

Dual Dual DuDu

Du Du (C(C404039)39)CC404039 39 1 1 ((DD55dd))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

88

Basic operations in a mapBasic operations in a map

MedialMedial 11MeMe put the new vertices as the midpoints of the put the new vertices as the midpoints of the original edges Join two vertices if and only if theoriginal edges Join two vertices if and only if theoriginal edges span an angle original edges span an angle

Me Me ((MM) = ) = Me Me ((Du Du ((MM)))) (a 4(a 4--valent graph)valent graph)

MeMe((M M ) ) vv = = ee00

ee = 2= 2ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

99

MedialMedial MeMe

MeMe (C(C5050271)271)CC5050271 271 1 1 ((CCss))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1010

Basic operations in a mapBasic operations in a map

TruncationTruncation 11TrTr cut of the neighborhood of each vertex by a cut of the neighborhood of each vertex by a plane close to the vertex such that it intersects plane close to the vertex such that it intersects each edge incident to the vertex each edge incident to the vertex

Truncation is similar toTruncation is similar to Me Me ((MM) ) Tr Tr ((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 5: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

55

StellationStellation StSt

StSt (C(C363615)15)CC363615 15 1 1 ((CC22h h ))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

66

Basic operations in a mapBasic operations in a map

DualDual 11DuDu (Poincar(Poincareacuteeacute dualdual ))locate a point in the center of each face and locate a point in the center of each face and join two such points if their corresponding facesjoin two such points if their corresponding facesshare a common edgeshare a common edge

Du Du ((Du Du ((MM)) = )) = MM

Du Du ((M M ) ) vv = = ff00

ee = = ee00

ff = = vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

77

Dual Dual DuDu

Du Du (C(C404039)39)CC404039 39 1 1 ((DD55dd))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

88

Basic operations in a mapBasic operations in a map

MedialMedial 11MeMe put the new vertices as the midpoints of the put the new vertices as the midpoints of the original edges Join two vertices if and only if theoriginal edges Join two vertices if and only if theoriginal edges span an angle original edges span an angle

Me Me ((MM) = ) = Me Me ((Du Du ((MM)))) (a 4(a 4--valent graph)valent graph)

MeMe((M M ) ) vv = = ee00

ee = 2= 2ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

99

MedialMedial MeMe

MeMe (C(C5050271)271)CC5050271 271 1 1 ((CCss))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1010

Basic operations in a mapBasic operations in a map

TruncationTruncation 11TrTr cut of the neighborhood of each vertex by a cut of the neighborhood of each vertex by a plane close to the vertex such that it intersects plane close to the vertex such that it intersects each edge incident to the vertex each edge incident to the vertex

Truncation is similar toTruncation is similar to Me Me ((MM) ) Tr Tr ((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 6: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

66

Basic operations in a mapBasic operations in a map

DualDual 11DuDu (Poincar(Poincareacuteeacute dualdual ))locate a point in the center of each face and locate a point in the center of each face and join two such points if their corresponding facesjoin two such points if their corresponding facesshare a common edgeshare a common edge

Du Du ((Du Du ((MM)) = )) = MM

Du Du ((M M ) ) vv = = ff00

ee = = ee00

ff = = vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

77

Dual Dual DuDu

Du Du (C(C404039)39)CC404039 39 1 1 ((DD55dd))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

88

Basic operations in a mapBasic operations in a map

MedialMedial 11MeMe put the new vertices as the midpoints of the put the new vertices as the midpoints of the original edges Join two vertices if and only if theoriginal edges Join two vertices if and only if theoriginal edges span an angle original edges span an angle

Me Me ((MM) = ) = Me Me ((Du Du ((MM)))) (a 4(a 4--valent graph)valent graph)

MeMe((M M ) ) vv = = ee00

ee = 2= 2ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

99

MedialMedial MeMe

MeMe (C(C5050271)271)CC5050271 271 1 1 ((CCss))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1010

Basic operations in a mapBasic operations in a map

TruncationTruncation 11TrTr cut of the neighborhood of each vertex by a cut of the neighborhood of each vertex by a plane close to the vertex such that it intersects plane close to the vertex such that it intersects each edge incident to the vertex each edge incident to the vertex

Truncation is similar toTruncation is similar to Me Me ((MM) ) Tr Tr ((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 7: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

77

Dual Dual DuDu

Du Du (C(C404039)39)CC404039 39 1 1 ((DD55dd))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

88

Basic operations in a mapBasic operations in a map

MedialMedial 11MeMe put the new vertices as the midpoints of the put the new vertices as the midpoints of the original edges Join two vertices if and only if theoriginal edges Join two vertices if and only if theoriginal edges span an angle original edges span an angle

Me Me ((MM) = ) = Me Me ((Du Du ((MM)))) (a 4(a 4--valent graph)valent graph)

MeMe((M M ) ) vv = = ee00

ee = 2= 2ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

99

MedialMedial MeMe

MeMe (C(C5050271)271)CC5050271 271 1 1 ((CCss))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1010

Basic operations in a mapBasic operations in a map

TruncationTruncation 11TrTr cut of the neighborhood of each vertex by a cut of the neighborhood of each vertex by a plane close to the vertex such that it intersects plane close to the vertex such that it intersects each edge incident to the vertex each edge incident to the vertex

Truncation is similar toTruncation is similar to Me Me ((MM) ) Tr Tr ((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 8: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

88

Basic operations in a mapBasic operations in a map

MedialMedial 11MeMe put the new vertices as the midpoints of the put the new vertices as the midpoints of the original edges Join two vertices if and only if theoriginal edges Join two vertices if and only if theoriginal edges span an angle original edges span an angle

Me Me ((MM) = ) = Me Me ((Du Du ((MM)))) (a 4(a 4--valent graph)valent graph)

MeMe((M M ) ) vv = = ee00

ee = 2= 2ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

99

MedialMedial MeMe

MeMe (C(C5050271)271)CC5050271 271 1 1 ((CCss))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1010

Basic operations in a mapBasic operations in a map

TruncationTruncation 11TrTr cut of the neighborhood of each vertex by a cut of the neighborhood of each vertex by a plane close to the vertex such that it intersects plane close to the vertex such that it intersects each edge incident to the vertex each edge incident to the vertex

Truncation is similar toTruncation is similar to Me Me ((MM) ) Tr Tr ((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 9: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

99

MedialMedial MeMe

MeMe (C(C5050271)271)CC5050271 271 1 1 ((CCss))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1010

Basic operations in a mapBasic operations in a map

TruncationTruncation 11TrTr cut of the neighborhood of each vertex by a cut of the neighborhood of each vertex by a plane close to the vertex such that it intersects plane close to the vertex such that it intersects each edge incident to the vertex each edge incident to the vertex

Truncation is similar toTruncation is similar to Me Me ((MM) ) Tr Tr ((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 10: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

1010

Basic operations in a mapBasic operations in a map

TruncationTruncation 11TrTr cut of the neighborhood of each vertex by a cut of the neighborhood of each vertex by a plane close to the vertex such that it intersects plane close to the vertex such that it intersects each edge incident to the vertex each edge incident to the vertex

Truncation is similar toTruncation is similar to Me Me ((MM) ) Tr Tr ((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

1 T Pisanski and M Randi1 T Pisanski and M Randićć in in Geometry at WorkGeometry at Work M A A Notes M A A Notes 20002000 5353 174 174--194194

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 11: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

1111

Truncation Truncation TrTr

TrTr ((IcosahedronIcosahedron)=C)=C60 60 ((PCPC))IcosahedronIcosahedron ((IIhh))

1 P W Fowler and D E Manolopolous 1 P W Fowler and D E Manolopolous An atlas of fullerenesAn atlas of fullerenes Oxford University Press Oxford University PressOxford UK 1995Oxford UK 1995

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 12: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

1212

Composite operations Composite operations

LeapfrogLeapfrog 11LeLe

Le Le ((M M ) = ) = DuDu ((StSt ((M M )) = )) = Tr Tr ((DuDu ((M M ))))

LeLe((M M ) ) vv = = dd00vv00

ee = 3= 3ee00

ff = = ff00 + + vv00

It rotates the parent faces byIt rotates the parent faces by ππss

11 P W Fowler Phys Lett 1986 131 444

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 13: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

1313

LeapfrogLeapfrog LeLe

Le Le ((Le Le (Cube))(Cube))Le Le (Cube)(Cube)

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 14: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

1414

LeapfrogLeapfrog LeLe

Le Le (C(C30301) = C1) = C90901 (1 (CCss))CC30301 (1 (CCss))

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 15: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

1515

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull In simple In simple HHuumluumlckelckel theorytheory11 the energy of the the energy of the i i thth

ππ --molecular orbital is calculated on the grounds of molecular orbital is calculated on the grounds of AA((GG ) )

EEii = = αα ++ ββλλii

EEHOMOHOMO ndashndash EELUMO LUMO = gap= gap

bullbull Study of Study of eigenvalueeigenvalue spectra provided somespectra provided somerules of thumb rules of thumb for the stability of fullerenesfor the stability of fullerenes

1 E HuumlckelE Huumlckel Z PhysZ Phys 1931 1931 7070 204 204

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 16: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

1616

ππ --Electronic StructureElectronic Structure

OPOPopenopen00λλ NN22 = = λλ NN2+12+144

MCMCmetametaclosedclosednene 000 0 gege λλ NN22 gt gt λλ NN2+12+133

PSCPSCpseudopseudoclosedclosednene 00λλ NN22 gt gt λλ NN2+12+1 gt 0gt 022

PCPCproperlyproperlyclosedclosednene 0 0 λλNN22 gt 0 gt 0 gege λλ NN2+12+111

symbolsymbolshellshellGAPGAPRelationRelation

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 17: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

1717

LeapfrogLeapfrog Le Le -- electronic implicationselectronic implications

bullbull LeapfrogLeapfrog rulerule11 LERLER ( ( PC PC ))

NNLeLe = 60 + 6= 60 + 6mm ((mm nene 1)1)

= 3(20 + 2m)= 3(20 + 2m)

In aIn a--tubulenestubulenes CC1212kkkk--V[2V[2kknn]]--[6][6] ( ( PC PC ))

NNLeLe = 12= 12k k + 2+ 2k k 33mm

mm = 0 1 2= 0 1 2helliphellip ( (kk = 4 to 7)= 4 to 7)

1 P W Fowler and J I Steer 1 P W Fowler and J I Steer J Chem SocJ Chem Soc Chem CommunChem Commun 1987 1403 1987 1403--14051405

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 18: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

1818

Composite operationsComposite operations

Du(St(M))St(M)M

Leapfrog

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 19: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

1919

Composite operationsComposite operations

(a) (b)

Leapfrog bounding polygon hasLeapfrog bounding polygon has ss = 2= 2dd00

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 20: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

2020

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

TURCTURC44CC88[84][84]TUCTUC44[84][84]

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 21: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

2121

Leapfrog of a 4Leapfrog of a 4--valent netvalent net

Le Le (TUHRC(TUHRC44[84] )=TUVSC[84] )=TUVSC44CC88[812][812]TUHRCTUHRC44[84] = [84] = Me Me (TUC(TUC44[84])[84])

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 22: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

2222

LeapfrogLeapfrog LeLe

Le Le (TUZ[84]) = TUA[89](TUZ[84]) = TUA[89]TUZ[84]TUZ[84]

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 23: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

2323

Schlegel versionSchlegel version11 ofof Le Le ((MM))

Le Le (Dodecahedron)= (Dodecahedron)= CC6060Dodecahedron = Dodecahedron = CC2020

1 J R Dias From benzenoid hydrocarbons to fullerene carbonsMATCH Commun Math Chem Comput 1996 33 57-85

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 24: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

2424

Leapfrog of planar Leapfrog of planar benzenoidsbenzenoids

Le Le (C(C1616))CC1616

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 25: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

2525

Composite operationsComposite operations

Dual of Stellation of Medial = Dual of Stellation of Medial = DSM DSM ((M M ))1 1

DSMDSM ((M M ) = ) = DuDu ((St St ((MeMe ((M M ))) = ))) = Le Le ((Me Me (M)))(M)))

DSM DSM ((M M ) ) vv = 2= 2dd00vv0 0 = 4= 4ee0 0 ((dd00= 4 s= 4 s00 = 4)= 4)ee = 6= 6ee00

ff = = ff00 + + ee0 0 + v+ v00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 M V Diudea P E John A Graovac M Primorac and T PisanM V Diudea P E John A Graovac M Primorac and T Pisanski ski Croat Chem ActaCroat Chem Acta 2003 2003 7676 153 153--159159

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 26: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

2626

Dual of Dual of StellationStellation of Medialof Medial

M Me(M)

Du(St(Me(M)))

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 27: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

2727

Composite operationsComposite operations

Quadrupling Quadrupling Q Q ((M M )) ChamferingChamfering1 1

Q Q ((M M ) = ) = DuDu ((Str Str ((MeMe ((M M ))) )))

Q Q ((M M ) ) vv = (= (dd00+1)+1)vv00

ee = 4= 4ee00

ff = = ff00 + + ee00

It involves It involves twotwo rotations byrotations by ππss == no rotationno rotation

11 A Deza M Deza and V P Grishukhin A Deza M Deza and V P Grishukhin Discrete MathDiscrete Math 1998 1998 192192 41 41--8080

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 28: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

2828

Quadrupling Quadrupling Q Q ((M M ))

M V Diudea P E John A Graovac M Primorac and T Pisanski Croat Chem Acta 2003 76 153-159

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 29: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

2929

Quadrupling Quadrupling Q Q ((M M ))

Q Q ((Q Q ((CubeCube))))Q Q (Cube)=(Cube)=ChamferingChamfering11

1 M Goldberg Tocirchoku Math J 1934 40 226-236

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 30: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

3030

Quadrupling Quadrupling Q Q ((M M ))

Q Q (C(C2020))11 = C= C80 80 ((OPOP))CC2020

1 P W Fowler J E Cremona and J I Steer Theor Chim Ac1 P W Fowler J E Cremona and J I Steer Theor Chim Acta 1988 73 1ta 1988 73 1

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 31: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

3131

Quadrupling of planar Quadrupling of planar benzenoidsbenzenoids

Q Q (C(C1616))CC1616

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 32: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

3232

CapraCapra Ca Ca (M)(M)

Ca Ca ((M M ))1 1 ndashndash Romanian LeapfrogRomanian Leapfrog

Ca Ca ((M M ) = ) = TrrTrr ((Pe Pe ((EE22 ((M M ))) )))

CaCa((M M ) ) vv = (2= (2dd00+1)+1)vv0 0 ==vv0 0 + 2+ 2ee0 0 + + ss00ff00

ee = 7= 7ee0 0 = 3= 3ee0 0 + 2+ 2ss00ff00

ff = (s= (s00+1)+1)ff00

It involves rotation byIt involves rotation by ππ22ss of the parent facesof the parent faces

11 M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 33: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

3333

CapraCapra Ca Ca (M)(M)

CaCann ((M M ) Iterative operation) Iterative operation

vvnn = 8= 8vvnn--1 1 ndashndash 77vvnn--2 2 n n gege 22

vvnn = 7= 7nn sdotsdot vv0 0 dd00 = 3= 3eenn = 7= 7n n sdotsdot ee00 = 7= 7nn sdotsdot 33vv0022ffnn = = ff00 + (7+ (7nn --1)1)sdotsdotvv0022

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 34: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

3434

CapraCapra Ca Ca (M)(M)

bullbull GoldbergGoldberg11 relationrelation

mm = (= (a a 22 + + abab + + b b 22) ) a a gege b b a + a + b gtb gt 00

Le Le (1 1) (1 1) mm = 3= 3Q Q (2 0) (2 0) mm = 4= 4Ca Ca (2 1) (2 1) mm = 7= 7

1 M Goldberg Tohoku Math J 1937 43 104-108

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 35: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

3535

CapraCapra Ca Ca (M)(M)

M V Diudea M V Diudea Studia Univ BabesStudia Univ Babes--BolyaiBolyai 2003 48 3 2003 48 3--2121

E2(M) Pe(E2(M)) Trr(Pe(E2(M)))

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 36: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

3636

CapraCapra Ca Ca (M)(M)

Pe Pe ((E2 E2 (Cube))(Cube))E2 E2 (Cube)(Cube)

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 37: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

3737

CapraCapra Ca Ca (M)(M)

CCa a (Cube) (Cube) ndashndash Schlegel projectSchlegel projectTTrrrr((PPee((EE22(Cube))) (Cube)))

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 38: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

3838

CapraCapra Ca Ca (M)(M)

CCa a (Icosahedron) = C(Icosahedron) = C132132CCaa (Dodecahedron) = C(Dodecahedron) = C140140

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 39: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

3939

A A ldquoldquoracemicracemicrdquordquo pairpair of of Ca Ca --transformed transformed TUZTUZ[83[83]]

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 40: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

4040

Two successive Two successive CaCa--operationsoperations

CaRCaR ((CaS CaS (Cube))(Cube))CaS CaS ((CaS CaS (Cube))(Cube))

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 41: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

4141

CapraCapra Ca Ca (M) (M) ndashndash Negative curvature latticesNegative curvature lattices

CCaa(Cube)(Cube)[7] [7] (optimized)(optimized)CCaa(Cube)(Cube)[7][7]

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 42: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

4242

Negative and Positive Curvature LatticesNegative and Positive Curvature Lattices

CC260260((IIhh) Fowler) Fowler11Ca Ca (C(C2020))[7][7] NN = 200= 200

1 A Dress and G Brinkmann 1 A Dress and G Brinkmann MATCHMATCH-- Commun Math Comput ChemCommun Math Comput Chem 1996 1996 3333 87 87--100100

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 43: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

4343

Positive and Negative Curvature LatticesPositive and Negative Curvature Lattices

CCa a ((CCa a (Tetrahedron)(Tetrahedron)[7][7]) ) NN = 232= 232CCa a ((CCaa (Tetrahedron)) (Tetrahedron)) NN = 196= 196

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 44: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

4444

POAV POAV ndashndash Strain EnergyStrain Energy

θθp p = = θθσπσπ -- 9090oo pyramidalizationpyramidalization angle angle

SESE = 200(= 200(θθp p ))2 2 strain energystrain energy

120 120 -- (13) (13) ΣΣθθij ij deviation to planaritydeviation to planarity

In the In the POAV1POAV1 theorytheory1212 the the ππ--orbital axis vector makes orbital axis vector makes equal angles to the three equal angles to the three σσ--bonds of the spbonds of the sp22 carboncarbon

1 RC Haddon 1 RC Haddon J Am Chem SocJ Am Chem Soc 112 3385 (1990) 112 3385 (1990)2 RC Haddon 2 RC Haddon J Phys Chem AJ Phys Chem A 105 4164 (2001) 105 4164 (2001)

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 45: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

4545

102936780509average

043226640218130022114902114422

05903112029312322611916116736

153950270760122078117818117824

007811330039129236116541114105

02211906011112679511799114883

247863781218120442117678118227

186255290923114694125063117475

C766

611883169127967average

61202316952797259995108017108071

61171316872796160000108026108090

61189316922796760006108078108017

C366

(kcalmol)(deg)(deg)321

SEθpDeviationAngle (deg)

POAV1 POAV1 ndashndash Strain EnergyStrain Energy

Ca (Ca (Tetrahedron))

Ca (Ca (Tetrahedron)[7])

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 46: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

4646

Capra of planar Capra of planar benzenoidsbenzenoids

CaCa22(C(C66))Ca Ca (C(C66))

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 47: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

4747

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUACTUAC66[816]V12[816]V12

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 48: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

4848

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionTUZCTUZC66[168]H12[168]H12

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 49: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

4949

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionRCRC44CC88[168][168]

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 50: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

5050

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC44CC88[168][168]

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 51: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

5151

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionSCSC55CC77[168][168]

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 52: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

5252

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHCHC55CC77[168][168]

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 53: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

5353

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVCVC55CC77[168][168]

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 54: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

5454

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC77[168][168]

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 55: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

5555

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC77[168][168]

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 56: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

5656

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionVACVAC55CC66CC77[168][168]

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 57: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

5757

VARIOUS NANOTUBESVARIOUS NANOTUBES

Geodesic projectionGeodesic projectionHACHAC55CC66CC77[168][168]

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 58: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

5858

VARIOUS TORIVARIOUS TORI

HACHAC55CC77[12120] N=1440[12120] N=1440HACHAC55CC66CC77[12120] N=1440[12120] N=1440

A CA C6060 ndashndashlike toroidal objectlike toroidal object

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 59: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

5959

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

CaCa (AC(AC66[816]) N=832[816]) N=832CaCa (ZC(ZC66[168]) N=832[168]) N=832

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 60: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

6060

Capra of VARIOUS NANOTUBESCapra of VARIOUS NANOTUBES

Ca Ca (HAC(HAC55CC77[168]) N=824[168]) N=824CaCa (HAC(HAC55CC66CC77[168]) N=824[168]) N=824

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 61: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

6161

VARIOUS NANOTUBESVARIOUS NANOTUBES

Q Q (HAC(HAC55CC77[168]) N=440[168]) N=440Le Le (HAC(HAC55CC66CC77[168]) N=328[168]) N=328

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 62: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

6262

Spectral implications ofSpectral implications of CaCa operationoperation

bullbull Ca Ca operation applied to a finite structureoperation applied to a finite structureleavesleaves unchangedunchanged its its ππ--electronic electronic shells shells There exist exceptions the most notablyThere exist exceptions the most notablybeing the transformed being the transformed Ca Ca (Tuza[(Tuza[ccnn])]) of of nanotubes which all havenanotubes which all have PCPC shell shell disregarding the character of their parentdisregarding the character of their parentshellshell

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 63: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

6363

M00000672CaCa(A[812])12M0000096A[812]11PC0337-0169-016901690169560CaCa(Z[810])10PC0828-0414-04140414041480Z[810]9PC0189-0132-009500950132248CaCa(Tua[410])8PC0338-0310-01690169031040Tua[410]7PC0048-0265-002400240265192CaCa(Tua[48])6OP0-053200053232Tua[48]5PC0129-0064-006400640064240CaCa(Tuz[104])4PC0190-0095-00950095009540Tuz[104]3PC0034-0273-001700170273192CaCa(Tuz[84])2OP0-070500070532Tuz[84]1

ShellGapLUMO+1LUMOHOMOHOMO-1NSTRUCTURE

Spectral data of open nanotubes Tuza[Spectral data of open nanotubes Tuza[ccnn] ] and tori ZA[and tori ZA[ccnn] and their] and their CaCa --transformstransforms

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 64: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

6464

PSC630651495003601380174VAC5C6C7[168]11

PSC621651477001901280147VAC5C7[168]10

PSC601671474009101530244VC5C7[168]9

PC6406415370217-01090109TUV[816]8

PSC621651497006600680134SC5C7[168]7

PC6406414460126-00630063SC4C8[168]6

M624621425000RC4C8[168]5

OP632631517000HAC5C6C7[168]4

PSC613641487019100191HAC5C7[168]3

OP601671490001390139HC5C7[168]2

OP632631527000TUH[168]1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of various types of open nanotubesSpectral data of various types of open nanotubes

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 65: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

6565

PSC15201561514009201470239VAC5C6C7[168] LeLe11

PSC15201561506007901240203VAC5C7[168] LeLe10

PSC15101571507005502010256VC5C7[168] LeLe9

PC168016815470217-01080108TUV[816] LeLe8

PSC16701691531005000270077SC5C7[168] LeLe7

M152161521464000SC4C8[168] LeLe6

M152161521464000RC4C8[168] LeLe5

PSC16101671530001401700183HAC5C6C7[168] LeLe4

PSC16001681519004501580203HAC5C7[168 ] LeLe3

PSC16001681519000902030211HC5C7[168] LeLe2

PC168016815480163-00810081TUH[168] LeLe1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the LeLe transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 66: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

6666

OP20402081527000780078VAC5C6C7[168]QQ11

OP20402081520001300130VAC5C7[168]QQ10

OP20312081517000820082VC5C7[168]QQ9

PC224022415530156-00780078TUV[816]QQ8

PSC22312241536005500055SC5C7[168]QQ7

M22162211505000SC4C8[168]QQ6

M21362131486000RC4C8[168]QQ5

OP21902211538000030003HAC5C6C7[168]QQ4

OP21612231530000990099HAC5C7[168 ]QQ3

OP21302271528001150115HC5C7[168]QQ2

OP22322231547000TUH[168]QQ1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the QQ transformstransforms ofvarious types of open nanotubesvarious types of open nanotubes

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 67: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

6767

OP39703991543000170017VAC5C6C7[168]CaCa11

PSC39604001539000300790082VAC5C7[168]CaCa10

OP39604001539000920092VC5C7[168]CaCa9

PC416041615580114-00570057TUV[816]CaCa8

PC416041615500113-00120100SC5C7[168]CaCa7

PC416041615360017-00090009SC4C8[168]CaCa6

PC408040815280014-00070007RC4C8[168]CaCa5

PSC40804161551000700710077HAC5C6C7[168]CaCa4

OP40804161547000750075HAC5C7[168 ]CaCa3

MCMC413041115470011--00160016--00060006HC5C7[168]CaCa2

OPPC41604161557000TUH[168]CaCa1

SHELLx-x0x+EπGAPLUMOHOMOTUBE

Spectral data of theSpectral data of the CaCa transformstransforms ofofvarious types of open nanotubesvarious types of open nanotubes

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 68: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

6868

Spectral data of theSpectral data of the Platonic polyhedraPlatonic polyhedra andandtheir their CaCa [7] [7] --transformstransforms

Structure HOMO-1 HOMO LUMO LUMO+1 Gap Shell Ex e

1 M = Tetrahedron 3 -1 -1 -1 0 OP Ca(M)[7] 0154 0154 0154 -0614 0 OP CaS(CaS(M)[7]) -0005 -0005 -0005 -0306 0 OP 4 CaR(CaS(M)[7]) -0010 -0010 -0010 -0325 0 OP 4 2 M = Cube 1 1 -1 -1 2 PC Ca(M)[7] 0 0 0 -0188 0 OP CaS(CaS(M)[7]) -0010 -0010 -0127 -0127 0117 MC 6 CaR(CaS(M)[7]) -0004 -0004 -0141 -0141 0137 MC 6 3 M = Dodecahedron 1 0 0 0 0 OP Ca(M)[7] 0 0 0 -0165 0 OP CaS(CaS(M)[7]) -0069 -0069 -0069 -0131 0 OP 6 CaR(CaS(M)[7]) -0070 -0070 -0070 -0138 0 OP 6 4 M = Octahedron 0 0 0 -2 0 OP Ca(M)[7] 0222 0 0 0 0 OP CaS(CaS(M)[7]) 0008 -0044 -0044 -0044 0 OP 2 CaR(CaS(M)[7]) 0021 -0058 -0058 -0058 0 OP 2 5 M = Icosahedron -1 -1 -1 -1 0 OP Ca(M)[7] 0101 0101 0101 0101 0 OP CaS(CaS(M)[7]) -0022 -0022 -0022 -0022 0 OP 6 CaR(CaS(M)[7]) -0029 -0029 -0029 -0029 0 OP 6

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 69: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

6969

Negative curvature latticesNegative curvature latticesbullbull GAUSSGAUSS--BONET Theorem BONET Theorem -- relates relates

the geometric curvature to the topologythe geometric curvature to the topology

( )int =S

SdA πχκ 2

( ) fevS +minus=χEuler characteristic

v v -- e e + + f f == 2(12(1-- gg))

O Bonnet C R Acad Sci Paris 1853 37 529-532

22)2( 000 fveg =+minus=

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 70: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

7070

Negative curvature latticesNegative curvature lattices

bullbull The The genusgenus of of Ca Ca ((MM))[7][7] objects is calculable asobjects is calculable as

bullbull χχ((MM))[7][7] ==vv1[7] 1[7] -- ee1[7] 1[7] + + ff1[7] 1[7] = 2(1 = 2(1 -- g)=g)=vv0 0 -- ee00

bullbull g g = (= (ee0 0 -- vv0 0 + 2)2 = + 2)2 = ff0022

(spherical character of the parent polyhedron involves (spherical character of the parent polyhedron involves vv0 0 -- ee00 + + f f 0 0 = 2) = 2)

bullbull Lattices with Lattices with gg gt 1 will have gt 1 will have negativenegative χχ((MM))[7][7] and consequently negative and consequently negative

curvaturecurvature

bullbull For the five For the five PlatonicPlatonic solids the genus of the corresponding solids the genus of the corresponding Ca Ca ((MM))[7][7] is is

2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron)2 (Tetrahedron) 3 (Cube) 4 (Octahedron) 6 (Dodecahedron) and and

10 (10 (IcosahedronIcosahedron))

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 71: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

7171

Negative curvature latticesNegative curvature lattices

CCaa22(Cube)(Cube)[7][7] P3DP3D N=3424 N=3424CCaa22(Cube)(Cube)[7][7] P2DP2D N=1760N=1760

Diudea M V Capra-a leapfrog related operation on maps Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 3-22

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 72: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

7272

Negative curvature latticesNegative curvature lattices

CC--Ca1Ca1--77--Ca2 = M N = 464Ca2 = M N = 464O1CaM(7)O1CaM(7)

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 73: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

7373

Negative curvature latticesNegative curvature lattices

LUMjLUMjUM N = 176UM N = 176

Nagy Cs L Diudea M V Carbon allotropes with negative curvature Studia Univ ldquoBabes-Bolyairdquo 2003 48 (2) 35-46

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 74: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

7474

Negative curvature latticesNegative curvature lattices

LCUMjLCUMjCUM N = 176CUM N = 176

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 75: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

7575

Negative curvature latticesNegative curvature lattices

LUCUMjLUCUMjUCUM N = 104UCUM N = 104

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 76: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

7676

Negative curvature latticesNegative curvature lattices

LCUCUMjLCUCUMjCUCUM N = 104CUCUM N = 104

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 77: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

7777

Negative curvature latticesNegative curvature lattices

LSUMiLSUMiSUM N = 152SUM N = 152

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 78: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

7878

Negative curvature latticesNegative curvature lattices

LSCUCUMiLSCUCUMiSCUCUM N = 80SCUCUM N = 80

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 79: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

7979

Negative curvature latticesNegative curvature lattices

PLSCUCUM N = 104PLSCUCUM N = 104PLSUM N = 200PLSUM N = 200

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 80: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

8080

Negative curvature latticesNegative curvature lattices

LSCUMiLSCUMiSCUM N = 152SCUM N = 152

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 81: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

8181

Negative curvature latticesNegative curvature lattices

O2CaM(8)O2CaM(8)PLSCUM N = 224PLSCUM N = 224

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 82: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

8282

Negative curvature latticesNegative curvature lattices

LPLSCUMOjLPLSCUMOjPLSCUMO=O1QM PLSCUMO=O1QM N = 56N = 56DYCK GRAPHDYCK GRAPH

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 83: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

8383

Negative curvature latticesNegative curvature lattices

KLEIN TESSELLATION (73) KLEIN TESSELLATION (73) 2424 HEPTAGONS + 6 OCTAGONSHEPTAGONS + 6 OCTAGONS

DYCK TESSELLATION (83)DYCK TESSELLATION (83)12 + 6 OCTAGONS12 + 6 OCTAGONS

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 84: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

8484

Negative curvature latticesNegative curvature lattices

LEM N = 24LEM N = 24QM N = 32QM N = 32

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 85: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

8585

Negative curvature latticesNegative curvature lattices

CUO1LEM N = 42CUO1LEM N = 42UO1LEM N = 72UO1LEM N = 72

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 86: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

8686

Negative curvature latticesNegative curvature lattices

LCUO1LEMjLCUO1LEMjLUO1LEMiLUO1LEMi

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 87: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

8787

Negative curvature latticesNegative curvature lattices

LTUMLTUMTUM N = 88TUM N = 88

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 88: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

8888

SOFTWARESOFTWARE

bullbull TOPOCLUJ 20TOPOCLUJ 20 -- Calculations in Calculations in MOLECULAR TOPOLOGYMOLECULAR TOPOLOGY

M V Diudea O Ursu and Cs L Nagy BM V Diudea O Ursu and Cs L Nagy B--B Univ 2002B Univ 2002

bullbull CageVersatileCageVersatile 1111Operations on mapsOperations on maps

M Stefu and M V Diudea M Stefu and M V Diudea BB--B Univ 2003B Univ 2003

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 89: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

8989

CC2(702(70--5)55)5--H[101]H[101]--[7][7] = = CC140140 ((CC11))

1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler1 Cs L Nagy M Stefu M V Diudea and A Dress A Mueler CC7070 Dimers Dimers --energetics and topology energetics and topology Croat Chem ActaCroat Chem Acta 2003 (accepted) 2003 (accepted)

Peanut Peanut dimersdimers topologytopology11

vertex orbitsvertex orbits 410 520410 520

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 90: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

9090

Peanut Peanut dimersdimers topologytopology

DuDu((CC140140)) face orbitsface orbitsMeMe((CC140140) ) edge orbitsedge orbits 910 620910 620

[5]2 210 [6] 410 [7] 10[5]2 210 [6] 410 [7] 10

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 91: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

9191

ConclusionsConclusions

bullbull A new operation on maps calledA new operation on maps called CapraCapra CaCa was proposed and was proposed and discussed in comparison with the welldiscussed in comparison with the well--knownknown Leapfrog Leapfrog LeLe and and Quadrupling Quadrupling QQ operationsoperations

bullbull CaCa--operationoperation insulatesinsulates each parent face byeach parent face by its own hexagonsits own hexagons ((ieie coronenecoronene--like substructures) in contrast to like substructures) in contrast to Le Le and and QQ The The transformed constitutive parameters were given transformed constitutive parameters were given

bullbull The utility of this operation is in building ofThe utility of this operation is in building of large cageslarge cages that that preserve the symmetry and spectral properties of the parent preserve the symmetry and spectral properties of the parent structures and in extremelystructures and in extremely facile accessfacile access to several constructions to several constructions withwith negative curvaturenegative curvature

bullbull Clearly many other authors have used such a transformation but Clearly many other authors have used such a transformation but no no paper in our best knowledge has been devoted so far paper in our best knowledge has been devoted so far

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 92: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

9292

ReferencesReferences

11 Diudea M V Graovac A Generation and graph-theoretical properties of C4-tori MATCH -Commun Math Comput Chem 2001 44 93-102

2 Diudea M V Silaghi-Dumitrescu I Parv B Toranes versus torenesMATCH -Commun Math Comput Chem 2001 44 117-133

3 Diudea M V John P E Covering polyhedral tori MATCH -Commun Math Comput Chem 2001 44 103-116

4 Diudea M V Kirby E C The energetic stability of tori and ssingle-wall tubes Fullerene Sci Technol 2001 9 445-465

5 Diudea M V Graphenes from 4-valent tori Bull Chem Soc Japan 2002 75 487-492

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 93: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

9393

ReferencesReferences

6 Diudea M V Silaghi-Dumitrescu I Pacircrv Toroidalfullerenes Ann West UnivTimisoara 2001 10 21-40

7 Diudea M V Silaghi-Dumitrescu I Pacircrv B Toroidalfullerenes from square tiled tori Internet Electronic Journal of Molecular Design 2002 1 10-22

8 Diudea M V Hosoya polynomial in tori MATCH -Commun Math Comput Chem 2002 45 109-122

9 Diudea M V Phenylenic and naphthylenic tori Fullerenes Nanotubes Carbon Nanostruct 2002 10 273-292

10 Diudea M V Parv B Kirby E C Azulenic tori Commun Math Comput Chem (MATCH) 2003 47 53-70

11 Diudea M V Periodic 47 cages Bul Stiint Univ BaiaMare Ser B 2002 18 31-38

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 94: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

9494

ReferencesReferences

12 Diudea M V Topology of naphthylenic tori PCCP 2002 4 4740-4746

13 John E P Diudea M V Wiener index of zig-zag polyhexnanotubes Croat Chem Acta 2003 (in press)

14 Diudea M V Stefu M Parv B John P J Wiener index ofarmchair polyhex nanotubes Croat Chem Acta 2003 (in press)

15 Diudea M V Fowler P W π-Electronic structure of polyhextori originating in square tori PCCP 2003 (submitted)

16 Diudea M V Parv B John E P Ursu O Graovac A Distance counting in tori MATCH Commun Math Comput Chem 2003 49 23-36

17 Diudea M V Nagy C L Ursu O Balaban T S C60 dimersrevisited Fullerenes Nanotubes Carbon Nanostruct 2003 11 245 -255

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 95: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

9595

ReferencesReferences

18 Nagy C L Stefu M Diudea M V Dress A MullerA Structure and energetics of C70 dimers Croat Chem Acta 2003 (accepted)

19 Diudea M V Balaban T S Kirby EC Graovac A Energetics and topology of polyhex nanotubes Phys ChemChemPhys 2003 5 4210 ndash 4214

20 Diudea MV Periodic fulleroids Int J Nanostruct 2003 (in press)

21 Diudea MV Silaghi-Dumitrescu I Graovac A Periodic cages Croat Chem Acta 2003 (submitted)

22 Diudea MV Parv B Ursu O Hex tori from square tori Studia Univ ldquoBabes-Bolyairdquo 2003 48 3-10

23 Diudea MV Ursu O Parv B Hex tubes from square tubes Studia Univ ldquoBabes-Bolyairdquo 2003 48 11-20

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 96: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

9696

ReferencesReferences

24 Diudea MV Silaghi-Dumitrescu I Small fulleroids Studia Univ ldquoBabes-Bolyairdquo 2003 48 21-30

25 Stefu M Diudea MV Wiener index of C4C8 nanotubes MATCH - Commun Math Comput Chem 2003 (in press)

26 MV Diudea The zig-zag cylinder rule Studia Univ ldquoBabes-Bolyairdquo 2003 48 31-40

27 MV Diudea Stability of tubulenes Phys Chem ChemPhys 2003 (submitted)

28 Diudea M V John P E Graovac A Primorac M Pisanski T Leapfrog and Related Operations on Toroidal Fullerenes Croat Chem Acta 2003 76 153-159

29 Diudea M V Nanotube covering modification Studia Univ ldquoBabes-Bolyairdquo 2003 48 000-000

30 Diudea M V Capra- a Leapfrog related map operation StudiaUniv ldquoBabes-Bolyairdquo 2003 48 000-000

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 97: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

9797

TOPO GROUP CLUJ ROMANIATOPO GROUP CLUJ ROMANIA

bullbull Mircea V Diudea Mircea V Diudea bullbull Gabriel Gabriel KatonaKatonabullbull Oleg UrsuOleg Ursubullbull Csaba L NagyCsaba L Nagybullbull Monica StefuMonica Stefubullbull CrinaCrina V V VeresVeresbullbull MihaelaMihaela CaprioaraCaprioarabullbull Cristina D MoldovanCristina D Moldovanbullbull IoanaIoana FloreaFlorea

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 98: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

9898

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 99: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

9999

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 100: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

100100

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE

Page 101: Capra, leapfrog and other related operations on maps · Fowler and D. E. Manolopolous, An atlas of fullerenes, Oxford University Press, Oxford, U.K., 1995. 10 Basic operations in

101101

TOPO GROUP CLUJ ROMANIA EUROPETOPO GROUP CLUJ ROMANIA EUROPE