carbonate lecture 4

15
11-10-02 1 ! Some Terminology ! Muddy Peritidal Facies ! Intertidal-Subtidal Sand Bodies ! Reefs and Carbonate Buildups ! Pelagic and Resedimented Deep-Water Limestones Lecture 4 Carbonate Depositional Systems CARBONATE PLATFORM Basin Ramp Shelf Bank Basin Carbonate platforms: geometry, terminology Platform edge: a critical zone

Upload: moscow-state-circus

Post on 19-Oct-2015

13 views

Category:

Documents


1 download

DESCRIPTION

class notes

TRANSCRIPT

  • 7/14/2019 Carbonate Lecture 4

    1/15

    11-10-02

    1

    ! Some Terminology! Muddy Peritidal Facies! Intertidal-Subtidal Sand Bodies! Reefs and Carbonate Buildups! Pelagic and Resedimented Deep-Water

    Limestones

    Lecture 4

    Carbonate Depositional Systems

    CARBONATE PLATFORM

    Basin

    RampShelf Bank

    Basin

    Carbonate platforms: geometry, terminology

    Platform edge: a critical zone

  • 7/14/2019 Carbonate Lecture 4

    2/15

    11-10-02

    2

    Rimmed platform Occurs segmented to continuous rampart with reefs and/or lime

    sand shoals along the margin

    Absorbs ocean waves and dissipates the storm energy Can restrict water circulation on the platform Generates a variety of lower energy environments Confines the movement of coarse-grained sediment to the lagoon/

    shallow platform

    Platform edge: a critical zone

    Platform edge: a critical zone

    Unrimmed platform

    Platform (open shelf and ramp) without a margin barrier nearshore, wave-agitated facies grade into deeper water, low-

    energy deposits

    Sediment can easily be transported into deep water Subtidal accumulation space will be controlled as much by the

    depth of wave abrasion as by sea level

    Platform edge: a critical zone

  • 7/14/2019 Carbonate Lecture 4

    3/15

    11-10-02

    3

    (Tucker, 1999)

    Rimmed Shelf Depositional Systems

    (Tucker, 1999)

    Carbonate Ramp Depositional Systems

    ! Some Terminology! Muddy Peritidal Facies (see Tucker; Pratt)! Intertidal-Subtidal Sand Bodies! Reefs and Carbonate Buildups! Pelagic and Resedimented Deep-Water

    Limestones

    Lecture 4

    Carbonate Depositional Systems

  • 7/14/2019 Carbonate Lecture 4

    4/15

    11-10-02

    4

    1. Limestones and dolostones representingcalcareous sediments that are/were deposited in

    very shallow water and on muddy tidal flats

    2. Wide range of features that can be compareddirectly with modern analogues

    Easy to recognize in the field Important paleobathymetric indicators

    Muddy Peritidal Facies

    (Pratt et al., 1992)

    Where do they form?

    Typical of microtidal conditions (< 2 m)

    (Pratt et al., 1992)

    The Peritidal Environment

  • 7/14/2019 Carbonate Lecture 4

    5/15

    11-10-02

    5

    13

    Modern Tidal Flats; Persian Gulf

    (Prattetal.,1992)

    (Heckel, 1972)

    Euryhaline vs Stenohaline Taxa

    Modern Tidal Flats; Andros Island

    (Scoffin, 1987)

  • 7/14/2019 Carbonate Lecture 4

    6/15

    11-10-02

    6

    (Scoffin, 1987)

    Modern Tidal Flats; Andros Island

    Sedimentary and Biogenic Structures

    (Scoffin, 1987)

    1. Dominantly lime mudstones, commonly peloidal,although local lenses of coarser sediment

    (grainstone) may represent tidal-channel fills.

    2. Fenestrae are characteristic features formingdistinctive birdseye/fenestral limestones.

    3. Fauna may be restricted in diversity;gastropods with ostracods and bivalves.

    Inter- & Supratidal Flat Sedimentation

  • 7/14/2019 Carbonate Lecture 4

    7/15

    11-10-02

    7

    4. Thin, coarse layers of skeletal grains may be

    transported on tidal flats by storms.

    5. Microbial mats and stromatolites; many are

    simple planar varieties showing desiccation

    cracks and laminoid fenestrae.

    6. Small local domal to columnar stromatolites.

    7. Bioturbation and rootlet may occur.

    Inter- & Supratidal Flat Sedimentation

    1. Synsedimentary cemented surface crusts whichmay expand to form tepee structures and may

    break up to give intraclasts.

    2. Penecontemporenous dolomitization may takeplace, giving fine grained dolomite mosaics.

    3. In arid climatic areas evaporite mineralsgypsum-anhydrite-halite will develop.

    Inter- & Supratidal Flat Diagenesis

    Subtidal Lagoonal Sedimentation

    1. Living organisms and accumulating sediments inpredominantly quiet-water areas, depend

    largely on the degree of restriction.

    2. Sea water may be normal, brackish orhypersaline in terms of salinity.

    3. Sediments are variable in grain size, althoughmany are carbonate muds, rich in peloids.

    4. Lagoon floor is dominated by euryhaline taxa

  • 7/14/2019 Carbonate Lecture 4

    8/15

    11-10-02

    8

    5. Surficial microbial mats and sea grasses may

    cover the lagoon floor.

    6. Bioturbation is intensive mainly crustaceans and

    bivalves.

    7. Sedimentary structures poorly developed but

    vaguely graded beds of coarser grains and shell

    lags may be formed through periodic storm

    reworking .

    Subtidal Lagoonal Sedimentation

    1. Sea floor cementation limited to intraskeletalcavities. Aggregate are common.

    2. Microbes play a significant role in skeletalbreakdown and production of micritized grains.

    Subtidal Lagoonal Diagenesis

    Meter-Scale Peritidal Cycles

    1. Facies typically organized in shallowing-upwardsuccessions (submeter to decameter-thick).

    2. Basal subtidal unit (A), intermediate intertidalfacies (B) and upper supratidal unit (C) with or

    without a capping terrestrial horizons.

  • 7/14/2019 Carbonate Lecture 4

    9/15

    11-10-02

    9

    Humid, Low-Energy

    Tidal Flats

    (Pratt et al., 1992)

    Meter-Scale Peritidal Cycles

    Arid, Low-EnergyTidal Flats

    Middle to Upper Cambrian platform carbonates,Bonanza King Formation, southern Great Basin

  • 7/14/2019 Carbonate Lecture 4

    10/15

    11-10-02

    10

    3. Various styles according to energy (low vs high),climate (arid vs humid) and biological evolution

    (microbes vs invertebrates vs plants).

    4. Asymmetrical organization (ABC) is common.5. Repeated patterns in time ABC/ABC/ABC

    Meter-Scale Peritidal Cycles

    Intertidal facies; Finelylaminated, fine-grained

    dolomite

    Subtidal facies; Dark-gray,thickly-bedded micriticlimestone

    Milroy Member of theMiddle Ordovician

    Loysburg Formation;Pennsylvania

    1

    2

    3

    4

    Tidal Flat Carbonate Factory - Source Area

    Tidal Flat Source

    No Sedimentation

    New Tidal Flat

    Peritidal Cyclostratigraphy - Autocyclicity

    Carbonate Factory - Source Area

  • 7/14/2019 Carbonate Lecture 4

    11/15

    11-10-02

    11

    (Pratt et al., 1992)

    Peritidal Cyclostratigraphy - Allocyclicity

    ! Some Terminology! Muddy Peritidal Facies! Intertidal-Subtidal Sand Bodies (see Tucker)! Reefs and Carbonate Buildups! Pelagic and Resedimented Deep-Water

    Limestones

    Lecture 4

    Carbonate Depositional Systems

    (Tucker, 1999)

    Intertidal-Subtidal Sand Bodies

  • 7/14/2019 Carbonate Lecture 4

    12/15

    11-10-02

    12

    (Tucker, 1999)

    Intertidal-Subtidal Sand Bodies

    35

    Modern Tidal Flats; Persian Gulf

    (Prat

    tetal.,1992)

    Setting

    barrier, beaches, shorefaces and tidal deltasalong ramp shorelines

    shoals and banks along rimmed-shelf marginsHydraulic Energy

    shallow areas of strong tidal current and waveaction (mostly

  • 7/14/2019 Carbonate Lecture 4

    13/15

    11-10-02

    13

    (Tucker, 1999)

    Intertidal-Subtidal Sand Bodies

    Sediment Types

    mainly grainstones composed of ooids androunded and sorted skeletal grains

    carbonate sands (grainstone-packstone) alsodeposited in deeper waters on carbonate

    ramps by the action of storms

    Intertidal-Subtidal Sand Bodies

    (from Aigner, 1985)

    Tempestites below the Normal Wave Base

  • 7/14/2019 Carbonate Lecture 4

    14/15

    11-10-02

    14

    Hours Y

    ears

    Minutes

    Seconds

    Temporal relationships in tempestites

    HCSCross-strata

    10100CM

    Bioturbation

    (Modified from Dott, 1983)

    8 . WA V E . ND S TO RN4 - DO N4 INA TE DHO RE L INE ND S HA L L O W. I \4 A RINEY S TE MS 1 8 1

    Tirne ------->* E= 9 a i;

    B

    CurrentBe daesponse

    Bed statef rn e a n d )

    r/Sml l wve ipplesPlanar-laminetedandwave npple onr]sCrosbeddec, oarsesno ano grevelSole narks n base

    Typ ica l e r t i ca l uccess ionfs t ruc tu resroduced y as to rm c t ing n a m ix tu re fsand rades nd inegrave l

    F A C T E S U C C E S S T O N S NS T O R M . D O M I N A T E D H E L V E SS t o r m - d o m i n a t e dh e l v e s n d c o a s t st e n d o b e i n e a r , nd h e n c e p r o d u c er e l a t i v e l y i m p l e , a b u l a r r o c k u n i t sc o m p a r e d o d e l t a i c co a s t s , w h i chh a v e a n i r r e g u l a r h o r e l i n e n d c o r -r e s p o n d i n g a t e r a l a c i e s c o m p l e x i t y( s e e C h a p t e r1 0 ) . C o a s t a l r o g r a d a -t i o n w i l l p r o d u c e n e s s e n t i a l l y a b u -l a r b o d y i n w h i c h t h e b a s i c s t r a ti -g r a p h i c m o t i f i s a s a n d i e r u p w a r ds u c c e s s i o n h a t r e c o r d s a p r o g r e s -s i v e u p w a r d n c r e a s e n h e n f l u e n c eof waves and cur rent s as t he shore-l i n e p r o g r a d e s .T h e s u c c e s s i o nma yc u l m i n a t e i n s u b a e r i a l b e a c hd e p o s i t s n d e v e n a l l u v i a l e d i m e n t si f h e a c c o m m o d a t i o ns e n t i r e l y i l l e da n d h e o p o f h e s u c c e s s i o n a s no ts u b s e q u e n t l y b e e n r e m o v e d b yt r a n s g r e s s i v e r o s i o n F ig . 2 0 ) . T h ed e t a i l s o f t h e s u c c e s s i o n w i l l v a r yd e p e n d i n g o n v a r i a b l e s s u c h a sa v a i l a b l e g r a i n s i z e s , p r o p o r t i o nofs a n d / g r a v e l o m u d , w a v e a n d t i d a le n e r g y , b i o l o g i c a l a c t i v i t y , s h e l fs l o p e , s u b s i d e n c e a t e a n d r a t e ofs e d i m e n t u p p l y s e e a d d i t i o n a l is -

    - = G r1t . + : : : F + Jl r r ---C o m b r n e d l o w Wa n ng osci atory low

    Erosion D e p o s i t i o ntrregutr cours,gutters F l a t b e d H u m m o c k y e danisokoprc--+ sotropic 2 -D w a v en p p l e s N o b e df o r m s

    F i g u re 1 9 . A- Th e d e v e l o p m e n t f a n i d e a l i z e d v e n t b e d n i n e s a n d s t o n e s a re s u l t f s t o rm -g e n e ra t e do m b i n e d l o w . H i g h - f re -q u e n c y , a v e -g e n e ra t e d s c i l l a t o ry u r re n t s re d o m i n a n t , u t u n i d i re c t i o n a l e o s t ro p h i c l o w d u r i n g h e p e a k o f h e s t o f m p ro v i d e so e t o f f s h o re o m p o n e n t . D u r i n g h e r i s i n g h a s e o f h e s t o rm , e d i m e n t s s u s p e n d e d n d h e m u d d y b e d s e ro d e d , o rm i n g v a r i e t yc f s o l e m a rk s a n d g u t t e rs . As t h e s t o rm s t a r t s o w a n e , n i t i a l l y l a n a r - l a m i n a t e d a n d s d e p o s i t e d n d e r p o w e r f u l o m b i n e d l o w , bu ti h r s v o l v e s o H C S, w h i c h n i l i a l l ym a y b e a n i s o t ro p i c u e o h e n f l u e n c e f h e u n i d i re c t i o n a ll o w c o m p o n e n t .As t h e s t o rmw a n e s ,: o n t i n u e d e d i m e n l e t t l i n g n d e r a rg e l y s c i l l a t o ry l o w p ro d u c e s s o t ro p i c C S, e v e n t u a l l ym a n t l e d y s m a l l w a v e r i p p l e s B . Th e'e s u l t so f h e s m es t o rm c o n d i t i o n s h e n h e s u b s t ra t e s a m i x t u re f s a n d a n d l n e g ra v e l . D u n e s , o t h 2 -D a n d 3 -D , m i g ra t e u r i n gs t ro n g o m b i n e d l o w o p ro d u c e ro s s b e d d i n g , h i c h m a y b e o f u n u s u a l l yo w n c l i n a t i o n u e o h e a f f e c t f s u p e r i m p o s e d a v e m o t i o n .-a rg e s y m m e t r i c a l a v e i p p l e s n d o w -a n g l e o p l a n a r l a m i n a t e d a n d e c o rd h e ra n s i t i o n o d o m i n a n t l y s c i l l a t o ryl o w a s h e s t o rma n e s . Th e w h o l e b e d s m a n t l e d y s m a l lw a v e i p p l e s n d a m u d d ra p e B a s e d n C h e e l , 1 9 9 1 i C h e e l n d L e c k i e , 9 9 3 ) .e d h e s e s t r u c t u r e s o h a v e b e e n c u tand f i l led by o f ishore : d i rec t ed stormi o w s in a n e a r s h o r e e n v i r o n m e n t .l l h e r e x a m p l e s fr o m C r e t a c e o u s' o c k s o l w e s t e r n C a n a d a a r e s i m i l a r1 mny respec t s o t hose o f L4y row1 9 9 2 ) . u t i f i e r n h a v i n g n u b i q u i -: r u s f i l l o f f i n e - g r a i n e d C S a n d r i p -3 r e d s a n d s t o n e (P l in t , 1 9 9 6 ; P l i n t3 n d N u m m e d a l , 0 0 0 ; F i g . 1 8 8 ) ,: J g g e s t i v eof f i l l ing b u t n o t n e c e s - r i l y c u t t i n g ) d u r i n g s t r o n g w a v e3c t ion . Amos e t a l . (2003) observed- i i o r e - n o r m a l u t t e r c a s t s o r m i n g n' l - 40 m of w a t e r o n t h e s h o r e f a c e: 1 S a b l e s l a n d N o v a S c o t i a s h e l f ;: g. 2 ) . G u t t e r o r m a t i o n n d f i l l i n g' : ck a f e w h o u r s a n d o c c u r r e d o n l y: . r r in g s t r o n g c o a s t a l d o w n w e l l i n g: . e t o o n s h o r e i r e c t e d t o r m w i n d s ,: J p p o r t i n g t h e i n t e r p r e t a t io n oft r y r o w 1 9 9 2 ) -G u l t e r c a s t s a r e c o m m o n i n- . . o re f ace s u c c e s s i o n s , a s s o c i a t e d. : h H C S , b u t h e y a l s o o c c u r n h i n -,, I n t e r b e d d e dw a v e - r i p p l e d s a n d -, . i lne a n d m u d s t o n e y p i c a lo f m o r e: ' s h o r e e n v i r o n m e n t s . W h e r er , ^ o r e l i n e sa n b e m a p p e d e g i o n a l l y ,

    g u t t e r a s t s n n e a r s h o r eH C S a c i e st e n d t o b e o r i e n t e d h o r e - p e r p e n d i -c u l a r ( L e c k i e a n d K r y s t i n i k , 1 9 8 9 ;[ / y r o w , 1 9 9 2 ; P l i n t , 1 9 9 6 ; P l i n t a n dN u m m e d a l , 2 0 0 0 ; F i g . 2 ) , w h e r e a ss m l l e r u t t e rs y p i c a l f h i n n e r e d -ded, more o f f shore ac ies t end t o bes h o r e - o b l i q u eo s h o r e - p a r l l e lA i g n -e r , 1 9 8 5 ; a r t e t a / . , 9 9 0 iH a y e f a / . ,2 0 0 3 ; V a r b a n n d P l in t , 2 0 0 8 a ; i g .1 8 C ) ; t h e l a t t e r m a y r e c o r dg e o s t r o p h i c l o w s n a r e a s o o d e e pt o have exper ienced s t rong wavea c t i o n .S t orm BedsT h e d e v e l o p m e n t o f a n i d e a l i z e ds t o r m b e d i s s u m m a r i z e d n F i g u r e1 9 4 , w h i c h p o r t r a y s h e r e s p o n s e ff i n e s a n d o n t h e s e a f l o o r o v a r i o u sf l o w s t a t e s u r i n g h e i s i n g n d w a n -i n g s t a g e s o f a s t o r m . F i g u r e 19 8s u m m a r a z e s h e s e d i m e n t a r y t r u c -t u r e s t h a t d e v e l o p u n d e r s i m i l a rh y d r a u l i cc o n d i t i o n s b u t w h e r e t h eb e d c o n s i s t s f a m i x t u r e f s a n d an df i n e g r a v e l .

    Tempestites below the Normal Wave Base

    (from Plint, 2011)

    (from Einsele, 2000)

  • 7/14/2019 Carbonate Lecture 4

    15/15

    11-10-02

    15

    (Aigner,1985)

    Distal vs proximal Tempestites

    Biota

    fragments of normal marine organisms distinct trace fossil assemblages

    Other Characteristics

    scours and channels in tempestites chiefly cross-bedding of all scales; keystone

    vugs (intertidal conditions)

    Intertidal-Subtidal Sand Bodies

    Keystone Vugs in Grainstones

    Small cavities representing voids left by air and gas bubbles andresulting from air escaping from intergranular pores as they areflooded with marine waters during the flood tidal cycle.