carboxylic acids, building bridges to knowledge

45
1 Carboxylic Acids Building Bridges to Knowledge Photo a Freeway in Shanghai, China Structure and Nomenclature The carboxylic acid group is one of the most important functional groups in organic chemistry. Carboxylic acids are named by including carboxylic acid function as part of the longest continuous carbon chain. Once the longest continuous chain including the carbonyl of the carboxylic acid function has been identified, the attached substituents are numbered in such a manner that the carbonyl carbon is counted as number 1. The name of the parent structure is determine by dropping the “e” of the alkane from which the carboxylic acid originated and add “oic acid,” i.e., alkane -oic acid. The IUPAC nomenclature of carboxylic acid can be illustrated in the following manner.

Upload: david-richardson

Post on 26-Jul-2016

217 views

Category:

Documents


0 download

DESCRIPTION

This paper discusses carboxylic acids and the important role of the "COOH" functional group in organic chemistry. Also, the paper discusses the nomenclature of carboxylic acids, the syntheses of carboxylic acids, and the reactions of Carboxylic acids with their associated mechanisms.

TRANSCRIPT

Page 1: Carboxylic acids, Building Bridges to Knowledge

1

CarboxylicAcids

BuildingBridgestoKnowledge

Photo a Freeway in Shanghai, China

StructureandNomenclature

Thecarboxylicacidgroupisoneofthemostimportantfunctionalgroupsinorganicchemistry.Carboxylicacidsarenamedbyincludingcarboxylicacidfunctionaspartofthelongestcontinuouscarbonchain.Oncethelongestcontinuouschainincludingthecarbonylofthecarboxylicacidfunctionhasbeenidentified,theattachedsubstituentsarenumberedinsuchamannerthatthecarbonylcarboniscountedasnumber1.Thenameoftheparentstructureisdeterminebydroppingthe“e”ofthealkanefromwhichthecarboxylicacidoriginatedandadd“oicacid,”i.e.,alkane-oicacid.TheIUPACnomenclatureofcarboxylicacidcanbeillustratedinthefollowingmanner.

Page 2: Carboxylic acids, Building Bridges to Knowledge

2

4-methylheptanoicacidAnothermethodfornamingacidsistousetheGreekalphabettoidentifysubstituentsattachedtothelongestcontinuouschainthatincludesthecarbonylcarbonofthecarboxylicacid.4-Methylheptanoicacidis

γ-methylheptanoicacid

Followingaresomecommonnamesofcarboxylicacids.

Unsaturatedcarboxylicacidsfollowthesamesystemofnomenclature.Identifythelongestcontinuouschaincontainingthecarbonylofthecarboxylicacidandthecenterofunsaturation.

Page 3: Carboxylic acids, Building Bridges to Knowledge

3

(E)-2-hexenoicacid

(E)-4-octenoicacidSeveralorganicacidsarefoundinnature.Formicacid,foundinants,canbeobtainedfromthedestructivedistillationofants.Aceticacidisformedinsouringwine.Butyricacidisformedinrancidbutter.Malicacidisformedinapples.Oleicacidisfoundinolives.

Malicacid

Oleicacid (Z)-9-decaoctenoicacid

Page 4: Carboxylic acids, Building Bridges to Knowledge

4

PhysicalPropertiesCarboxylicacidshavehighermeltingpointsandboilingpointsofcomparablemolecularmassalkanes,alkenes,aldehydes,ketones,andalcohols.Thisisduetotheabilityofcarboxylicacidstohydrogenbond:

Carboxylicacidswith1-4carbonatomsaresolubleinwater.AcidityofCarboxylicAcidsElectronwithdrawingsubstituentsattachedtotheαcarbonatomincreasetheacidityofthecarboxylicacid.Theacidityofcarboxylicacidsisrelatedtotheavailabilityofhydroniumionswhenthecarboxylicacidisaddedtowater.

At298KaceticacidhasapKaequalto4.7

ΔGo=-RTlnKaΔGo=-(8.314J/Kmole)(298K)ln(2.0x10-5)ΔGo=+2.7x104J/mol=+27kJ/mole

Page 5: Carboxylic acids, Building Bridges to Knowledge

5

Tounderstandacidityofcarboxylicacids,let’scomparetheacidityofaceticacidwiththecomparablemolecularmassalcohol1-propanol,CH3CH2CH2OH.

At298K1-propanolhasapKaisapproximately16ΔGo=-RTlnKaΔGo=-(8.314J/Kmole)(298K)ln(1.0x10-16)ΔGo=+9.1x104J/mol=+91kJ/moleThevaluesofthestandardGibbsfreeenergy,ΔGo,giveinsightintotheabilityofreactionstobespontaneousornonspontaneous.ThemorenegativetheGibbsfreeenergy,themorespontaneousthereaction.ThehigherthepositivevaluefortheGibbsfreeenergy,thelessspontaneousthereaction.Thestandardfreeenergyforthedissociationofaceticacidhasalowerpositivevaluethanthestandardfreeenergyforthedissociationof1-propanolinwater.Thismeansthataceticaciddissociatestoagreaterextentthan1-propanol;therefore,aceticacidismoreacidic,i.e.,hasmorehydroniumions,H3O+,inaqueoussolution,than1-propanol.Acidityisbasedontheinductiveeffectofthecarbonylgroupandresonanceoftheincipientcarboxylateanion.Thecarbonylgroupofthecarboxylicacidiselectronwithdrawingandwouldattractelectronsfromthenegativelychargedoxygenoftheacetateanion.

Oncetheacetateionisformedinaqueoussolution,itcanberesonancestabilizedasillustratedbelow.

Page 6: Carboxylic acids, Building Bridges to Knowledge

6

ResonanceofthecarboxylateanioncanbeverifiedbymeasuringthebonddistancesoftheC-Obondsincarboxylicacids.Forexample,inaceticacid,theC=Obonddistanceis121pmandtheC-Obondis136pm.

Ontheotherhand,theC-Obondsintheacetateionare125pmeach.

Whenaceticaciddissociatesinaqueoussolutiontoformhydroniumionsandacetateions,thepHoftheresultingsolutiondependsontheinitialconcentrationoftheaceticacid.Forexample,100.mLofa0.100Msolutionofaceticacidat298KwouldhaveapHequalto2.9.Numberofmolesofaceticacid:

100. mL x 1 L1000 mL

x 0.100 molL

= 0.0100 mol

0.0100–xxx

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

x0.100 L

⎛⎝⎜

⎞⎠⎟

x0.100 L

⎛⎝⎜

⎞⎠⎟

0.0100 − x0.100 L

⎛⎝⎜

⎞⎠⎟

Page 7: Carboxylic acids, Building Bridges to Knowledge

7

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

x2

0.0100 ⎛⎝⎜

⎞⎠⎟

0.0100 − x0.100

⎛⎝⎜

⎞⎠⎟

approximation0.0100>x

Therefore,

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

x2

0.0100 ⎛⎝⎜

⎞⎠⎟

0.01000.100

⎛⎝⎜

⎞⎠⎟

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] = x2

0.0100 x 0.100

0.0100

2.0 x 10−5 = x2

0.0100 x 0.100

0.0100 2.0 x 10−5 x 0.0100 x 0.0100

0.100 = x2

2.0 x 10−5 x 0.0100 x 0.0100 0.100

= x

x=1.4x10-4molwherexisthenumberofmoleshydroniumionsandacetateionsThemolarityofthehydroniumionandacetateionis

x mol0.100 L

[H3O+ ] = [CH3COO− ] = x mol

0.100 L

Page 8: Carboxylic acids, Building Bridges to Knowledge

8

[H3O+ ] = [CH3COO− ] = 1.4 x 10−4 mol

0.100 L

[H3O+ ] = [CH3COO− ] = 1.4 x 10−3 mol

L pH=-log[H3O+]pH=-log(1.4x10-3)pH=2.9ThepHofa0.000100Msolutionofaceticacidat298Kwouldb4.4.

0.000100–xxxwherexisthenumberofmoles,butsincewehave1Lofsolutionthemolarityandthenumberofmolescanberepresentedbyx

Xmustbesolvedusingthequadraticequation:

Page 9: Carboxylic acids, Building Bridges to Knowledge

9

pH=-log[H3O+]pH=-log(3.6x10-5)pH=4.4Ifsodiumacetatewereintroducedintoanaceticacidsolution,theresultingsolutionwouldbeabuffer.AbufferisasolutionthatresistschangestopH.Forexample,ifoneadded0.82gofsodiumacetateto100.0mLofa0.100Msolutionofaceticacid,theresultingbuffersolutionwouldhaveapHof4.7.ThepHofthisbuffersolutionstaysthesameifasmallamountofbaseorasmallamountofacidisaddedtothesystem.Forexample,if1mLofa0.10Mofbaseisaddedtothesystem,thepHremains4.7,becausetheacidneutralizesthebase.ThepHoftheaceticacid/acetatebuffersolutioncanbecalculatedinthefollowingmanner:

10.0mmolxmmolxmmol

10.0mmol10.0mmol10.0mol[CH3COO-Na+]=10.0mmol/100.0mL;[CH3COO-]=10.0mmol/100.0mL;[Na+]=10.0mmol/100.0mL

Page 10: Carboxylic acids, Building Bridges to Knowledge

10

[CH3COO-Na+]=0.100M;[CH3COO-]=0.100M;[Na+]=0.100M

or

Total CH3COO-⎡⎣ ⎤⎦ = 0.100 M + x mol0.1000 L

CH3COOH[ ] = 0.100 M - x mmol100.0 mL

or

CH3COOH[ ] = 0.100 M - x mol0.1000 L

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.100 M + x100.0 mL

⎛⎝⎜

⎞⎠⎟

x100.0 mL

⎛⎝⎜

⎞⎠⎟

0.100 M - x100.0 mL

⎛⎝⎜

⎞⎠⎟

or

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.100 M + x mol0.1000 L

⎛⎝⎜

⎞⎠⎟

x mol0.1000 L

⎛⎝⎜

⎞⎠⎟

0.100 M - x mol0.1000 L

⎛⎝⎜

⎞⎠⎟

0.100M> x mol0.1000 L

Therefore,

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.100 M ( ) x mol0.1000 L

⎛⎝⎜

⎞⎠⎟

0.100 M ( )

Total CH3COO-⎡⎣ ⎤⎦ = 0.100 M + x mmol100.0 mL

Page 11: Carboxylic acids, Building Bridges to Knowledge

11

2.0 x 10−5 = 0.100 M ( ) x

0.1000 L⎛⎝⎜

⎞⎠⎟

0.100 M ( )

2.0 x 10−6 = x

H3O+⎡⎣ ⎤⎦ = x

0.1000 L

H3O+⎡⎣ ⎤⎦ = 2.0 x 10−6 mol

0.1000 L

H3O

+⎡⎣ ⎤⎦ = 2.0 x 10−5 M pH=4.7Ifasmallamountofbaseisaddedtothebuffersolution,thepHwillremainthesame.Forexample,if1.0mLof0.100Mstrongbase,e.g,NaOHisaddedtothebuffersolution,theaceticacidwouldreactwiththesodiumhydroxidetoform0.10mmolofacetate.The0.10mmolofacetateformedwouldhaveminimalaffectonthebuffersolution.CH3COOH+-OH→CH3COO-+H2O10.0mmol-0.10mmol0.10mmol0.10mmol0.10mmol[CH3COOH]=

[CH3COO-]=

0.101M> x mol0.10010 L

and0.099M> x mol0.10010 L

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.101 M ( ) x mol0.1010 L

⎛⎝⎜

⎞⎠⎟

0.099 M ( )

Page 12: Carboxylic acids, Building Bridges to Knowledge

12

2.0 x 10−5 = 0.101 M ( ) x mol

0.1010 L⎛⎝⎜

⎞⎠⎟

0.099 M ( )

2.0 x 10−5 x 0.099 = x 1.98 x 10−6 mol = x 1.98 x 10−6 mol

0.1010 = H3O

+⎡⎣ ⎤⎦

2.0 x 10−5 M = H3O

+⎡⎣ ⎤⎦ pH=-log[H3O+]pH=-log(2.0x10-5)pH=4.7If1mLofa0.10MofacidisaddedtothesystemthepHremains4.7,becausetheacetateneutralizestheacid.CH3COO-+H3O+→CH3COOH+H2O10.0mmol-0.10mmol0.10mmol0.10mmol0.10mmol[CH3COO-]=

[CH3COOH]=

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.099 M + x mol0.1010 L

⎛⎝⎜

⎞⎠⎟

x mol0.1010 L

⎛⎝⎜

⎞⎠⎟

0.101 M - x mol0.1010 L

⎛⎝⎜

⎞⎠⎟

0.099M> x mol0.1010 L

and0.101M> x mol0.1010 L

Page 13: Carboxylic acids, Building Bridges to Knowledge

13

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.099 M( ) x mol0.1010 L

⎛⎝⎜

⎞⎠⎟

0.101 M ( )

2.0 x 10−5 = 0.099 M( ) x mol

0.1010 L⎛⎝⎜

⎞⎠⎟

0.101 M ( )

2.0 x 10−5 x 0.101 x 0.10100.099

= x mol

2.06 x 10−6 = x mol 2.06 x 10−6 mol

0.1010 L = H3O

+⎡⎣ ⎤⎦

2.0 x 10−5 mol L

= H3O+⎡⎣ ⎤⎦

pH=-log[H3O+]pH=-log(2.0x10-5)pH=4.7Thesaltofthecarboxylicacidisaconjugatebase,andtheconjugatebaseandthecarboxylicacidformthebuffer.Anequationforthisbuffersolutioncanbederived.ThisequationisreferredtoastheHenderson-Hasselbalchequation.TheHenderson-HasselbalchequationcanbeusedtodeterminethepHofabuffersolution.

Acidconjugatebase

Page 14: Carboxylic acids, Building Bridges to Knowledge

14

Theaceticacid/acetatebuffersolutionwherepH=4.7andthepKais4.7wouldbe

Therefore,inthisbuffersolutiontheconcentrationoftheconjugatebase,[conjugatebase],isequaltotheconcentrationoftheacid,[acid].LacticacidhasapKa=3.9.TheratiooflactateconcentrationtolacticacidconcentrationatpH=7.4canbecalculatedinthefollowingmannerusingtheHenderson-Hasselbalchequation.

Page 15: Carboxylic acids, Building Bridges to Knowledge

15

Thetotalconcentrationofacetatewouldbetheacetatefromthedissociationoflacticacidandtheconcentrationoftheacetatefromthe100%dissociationofsodiumacetate.

Therefore,theconcentrationofsodiumlactatewouldbe3,200timestheconcentrationoflacticacid.ThesedatamaybeusedtoprepareabuffersolutionwithadesiredpHfromaweakbaseanditsconjugateacidoraweakacidanditsconjugatebase.TheselectionofingredientstomakethebuffersolutiondependsonthedesiredpH.ThedesiredpHisdeterminedbyselectingthecorrectweakacid/conjugatebasepairortheweakbase/conjugateacidpair.Theselectionoftheappropriateacid-basepairwouldapproximatethethepHplusorminus1.Forinstance,toprepareabuffersolutionwithapH=4.5,thepKaoftheacidusedshouldbebetween3.5and4.5.Aceticacid-sodiumacetatesolutionwouldbeanappropriatebuffertouse,becausethepKaofaceticacidis4.7.Ifastudenthad100.0mLofa0.100Msolutionofaceticacidand100.0mLofa0.0500Msolutionofsodiumacetate,whatvolumeoftheweakacidsolutionwouldshehavetomixwiththeconjugatebasesolutioninordertoprepare50.0mLofabuffersolutionwithapHof4.5?Thesolutionisrelativelysimple.UsingtheHenderson-Hasselbalchequationinthefollowingformat:

Page 16: Carboxylic acids, Building Bridges to Knowledge

16

Thevolumeoftheacidandthebasemaybecalculatedinthefollowingmanner.Letxequalthevolumeof0.0500Mofthebaseneededtomake50.0mLofbuffer,withapHequalto4.5.Sincethetotalvolumedesiredis50.0mL,then50.0-xequalsthevolumeofacidneededtomake50.0mLofbuffer,withapHequalto4.5.Thenumberofmillimolesofsalt(conjugatebase)wouldequaltheconcentrationofsalttimesthevolumeofsalt,andthenumberofmolesofacidwouldequaltheconcentrationoftheweakacidtimesthevolumeoftheacid.

miilimolesofsalt=x(0.0500)mmolesmillimolesofacid=(50.0-x)0.100mmolesConsequently,themathematicalexpressionforsolvingxwouldbe

x,thevolume(inmL)of0.0500Msodiumacetate,wouldbe28mL50.0mL-28mL=22mL,thevolumeof0.100MaceticacidsolutionTherefore,adding28mLof0.0500Msodiumacetateto22mLof0.100MaceticacidsolutionwillcreateabuffersolutionwithapHequalto4.5.Thesevaluescanbecheckedbysubstitutingtheappropriatenumberofmillimolesper50.0mLintotheHenderson-Hasselbalchequation.

pH=4.5

pH = pKa + log Csalt

Cacid

⎣⎢

⎦⎥

millimoles of salt = VmLx Mmmol/mL

millimoles of acid = VmLx Mmmol/mL

4.5 = 4.7 + log

x(0.0500) mmol50.0 mL

(50.0-x) 0.100 mmol50.0 mL

⎢⎢⎢

⎥⎥⎥

pH = 4.7 + log

1.4 mmol50.0 mL2.2 mmol50.0 mL

⎢⎢⎢

⎥⎥⎥

Page 17: Carboxylic acids, Building Bridges to Knowledge

17

SoapsSoapsaresaltsoflongchainfattyacids.Thelongchainhydrocarbonportionofasoapisthehydrophobic(lipophilic)portionofthesoap,andthehydrophobicportionissolubleinnon-polarsubstancesandtheCOO-Na+group,thehydrophilicportionofthesoap,issolubleinwater.Sodiumstearateisanexampleofasoap.

sodiumstearate

Whenahydrophilicgroupandahydrophobic(lipophilic)groupareinthesamemolecule,themoleculeisdefinedasbeingamphiphilic.Whenthesaltofalongchainfattyacidisplacedinwater,acolloidaldispersioncalledmicelleisformed.Micellesareformedwhentheconcentrationofthecarboxylateexceedsacertainminimum(thecriticalmicelleconcentration).Micellesareaggregatesof50-100carboxylatemolecules(withdiametersofapproximately50angstroms).Thepolarpartofthemicelle,theCOO-Na+groups,isdirectedtotheoutsideofthemicelle.ThehydrocarbonportionisdirectedtowardtheinsideofthemicelleandisheldtogetherbyVanderWaalforces.Thesemicellesarespherical.Thearrangementcausesthecleansingactionofsoapswheredirtistrappedintheinteriorofthemicelle,andthedirtiswashedawayfromthewater.

Page 18: Carboxylic acids, Building Bridges to Knowledge

18

http://www.chemgapedia.de/vsengine/media/vsc/en/ch/12/oc/c_acid/fatty_acid/micelle_gif.gifDetergentsareanalogoustosoaps,butthehydrophilicendisOSO3-Na+insteadofCOO-Na+

sodiumstearylsulfateStrengthofacidsElectronwithdrawinggroupssuchashalogens,methoxy,nitro,andcyanoincreasethestrengthofcarboxylicacids.

Page 19: Carboxylic acids, Building Bridges to Knowledge

19

Acid Structure pKabutanoicacid CH3CH2CH2COOH

4.8

α-chlorobutanoicacid CH3CH2CH2CH(Cl)COOH 2.8β-chlorobutanoicacid CH3CH(Cl)CH2COOH

4.1

γ-chlorobutanoicacid ClCH2CH2CH2COOH

4.5

Acid Structure pKaAceticacid CH3COOH 4.7fluoroaceticacid FCH2COOH 2.6chloroaceticacid ClCH2COOH 2.9bromoaceticacid BrCH2COOH 2.9dichloroaceticacid Cl2CHCOOH 1.3trichloroaceticacid Cl3CCOOH 0.9Acid Structure pKaMethoxyaceticacid CH3OCH2COOH 3.6cyanoaceticacid NΞCCH2COOH 2.5nitroaceticacid NO2CH2COOH 1.7Electronreleasinggroupssuchasalkylgroupshaveatendencytodecreasethestrengthofacids. Acid Structure pKapropanoicacid CH3CH2COOH 4.92-methylpropanoicacid CH3CH(CH3)COOH 4.82,2-dimethylpropanoicacid CH3C(CH3)2COOH 4.1TheFieldEffectontheStrengthofanAcidThefieldeffectiscloselyrelatedtotheinductiveeffect.TheFieldEffectinvolvessolventsratherthanchemicalbonds.Theelectronegativityofthegroupattachedtothecarboxylicacidpolarizesthesurroundingsolventmoleculesandthispolarizationistransmittedthroughothersolventmoleculestothehydrogenatomattachedtothecarboxylicacidgroup.

Page 20: Carboxylic acids, Building Bridges to Knowledge

20

TheFieldEffectaffectstheentropymorethantheenthalpy.Therelationshipbetweenenthalpyandentropyisgivenbyequation16.1.Equation16.1ΔGo=ΔHo-TΔSoInthefieldeffect,TΔSo>ΔHo,becauseΔHoisclosetozeroandinthesesystems.ΔSoisnegative;therefore-TΔSoispositiveThemorenegativetheΔSo,thelessspontaneousthesystem.Thelessorderedthesystem,themorenegativetheentropy.Themorenegativethevaluefortheentropy,themorepositivethevalueforTΔSo.ThemorepositivethevalueofTΔSo,themorepositivethevalueforΔGoandthelessspontaneousthedissociation.Consequently,themoreorderedthecarboxylicacidcausedbytheFieldEffect,thelessacidictheacidorthemoredisorderedthecarboxylicacidcausedbytheFieldEffect,themoreacidictheacid.IonizationofsubstitutedBenzoicacidsisaffectedbygroupsintheortho,para,andmetapositions.Theortho-position

ThefollowingtableliststhepKasofsomeortho-substitutedbenzoicacids.X pKaH 4.2CH3 3.9F 3.3Cl 2.9Br 2.8I 2.9CH3O 4.1NO2 2.2Themeta-positionThefollowingtableliststhepKasofsomemeta-substitutedbenzoicacids.

Page 21: Carboxylic acids, Building Bridges to Knowledge

21

X pKaH 4.2CH3 4.3F 3.9Cl 3.8Br 3.8I 3.9CH3O 4.1NO2 3.5TheparapositionThefollowingtableliststhepKasofsomeortho-substitutedbenzoicacids.

DicarboxylicAcidsDicarboxylicacidshavetwodissociationconstants,Ka1andKa2.Forexample,malonicacid,anacidthathastwocarboxylicacidgroups,dissociatesintwosteps.Thefirstdissociationconstantisequalto1.48x10-3andtheseconddissociationconstantis2.04x10-6.

Ka1=1.48x10-3pKa1=2.83

Page 22: Carboxylic acids, Building Bridges to Knowledge

22

Ka2=2.04x10-6pKa2=5.69ThepKa1ofdicarboxylicacidsissmallerthanthepKaofmonocarboxylicacidsduetostatisticalreasons,i.e.,therearetwocarboxylicacidgroupsfordicarboxylicacidscomparedtooneformonocarboxylicacids.PreparationofCarboxylicAcidsSynthesisofCarboxylicAcidsbytheOxidationofarenes:OxidationwithPotassiumPermanganate

orOxidationwithPotassiumDichromate

FollowingaremorecomprehensiveequationsthatrepresentaromaticsidechainoxidationusingKMnO4.Theoxidizingagenttransformsarenestoaromaticcarboxylicacids.

Page 23: Carboxylic acids, Building Bridges to Knowledge

23

FollowingisabalancedmolecularequationfortheoxidationofarenesusingKMnO4.

FollowingaremorecomprehensiveequationsthatrepresentaromaticsidechainoxidationusingK2Cr2O7.Theoxidizingagenttransformsarenestoaromaticcarboxylicacids.

Page 24: Carboxylic acids, Building Bridges to Knowledge

24

FollowingisabalancedmolecularequationfortheoxidationofarenesusingK2Cr2O7.

SynthesisofCarboxylicAcidsfromtheOxidationofPrimaryAlcohols

or

SynthesisofCarboxylicAcidsfromtheOxidationofaldehydes

or

Page 25: Carboxylic acids, Building Bridges to Knowledge

25

SynthesisofaCarboxylicAcidfromGrignardreagents

FollowingisanexampleofthesynthesisofacarboxylicacidfromaGrignardreagent.

Page 26: Carboxylic acids, Building Bridges to Knowledge

26

CarboxylicAcidscanbesynthesizedfromNitriles.Conversionofaprimaryalkylhalidetoacarboxylicacidwithanadditionalcarbonatomcanbeaccomplishedbyasubstitutionnucleophilicreactionbetweenaprimaryalkylhalideandsodiumcyanide.Acidhydrolysisoftheresultingnitrilewouldproducethedesiredcarboxylicacid.Forexamplecyclohexylaceticacidcanbesynthesizedinatwostepprocessbyanucleophilicsubstitutionreactionbetweenbromomethylcyclohexanewithsodiumcyanide.Acidificationoftheresultingnitrilewouldproducethedesiredcarboxylicacid.Step1

Page 27: Carboxylic acids, Building Bridges to Knowledge

27

Step2

The acid hydrolysis of nitriles to produce carboxylic acids can be rationalized by the following six-step general mechanism and a specific mechanism involved in the synthesis of cyclohexylacetic acid from cyclohexylmethylcarbonitrile.(1)

(2)

Page 28: Carboxylic acids, Building Bridges to Knowledge

28

(3)

(4)

(5)

Page 29: Carboxylic acids, Building Bridges to Knowledge

29

(6)

ReactionsofCarboxylicAcidsCarboxylicacidswillreactwiththionylchloridetoformacylchlorides.

Carboxylicacidwillreactwithlithiumaluminumhydridetoproduceprimaryalcoholsbyatwo-stepprocess.Lithiumaluminumhydrideisdestroyedinwater;therefore,anaproticsolvent,e.g.tetrahydrofuran,isusedasasolventforthisreaction.Thefirststepistheformationoflithiumtetracyclopentylmethoxyaluminate

Page 30: Carboxylic acids, Building Bridges to Knowledge

30

lithiumtetracyclopentylmethoxyaluminateThesecondstepinvolvesthehydrolysisofthelithiumtetraalkoxyaluminatecomlextoproducefourmolesofthedesiredalcohol.

CarboxylicacidsundergothereversibleFisherEsterificationreaction.

Page 31: Carboxylic acids, Building Bridges to Knowledge

31

ThemechanismfortheFischerEsterificationreactionhasbeenresolvedusingkineticexperimentsandlabelingexperimentswith18Omethanol.WhenCH318OHreactswithacarboxylicacid,amethylesterisformed,andtheresultingmethylesterisrichin18O.Thefollowingsevenelementarystepsexplaintheformationofthemethylesterthatisrichin18O.(1) CH3

18 OH + H3O+! CH3

18 O+H2 + H2O (2)

(3)

(4)

(5)

(6)

Page 32: Carboxylic acids, Building Bridges to Knowledge

32

(7)

IntramolecularEsterificationfollowsasimilarmechanism.Suggestamechanismforthefollowingreaction.

δ-valerolactone (IUPACNomenclature:5-pentanolide)Intramolecularesterificationformslactones,andlactonesarenamedbyreplacingthe-oicacidendingoftheparentcarboxylicacidby–olideandwiththenumberonthecarbonthatattackedthecarbonylcarbon.Forexample,thefollowingmoleculecanundergointramolecularesterificationtoproducetheδ-lactone5-pentanolide.

5-pentanolideReductionofγandδketoacidswillleadtoγandδlactonesasthemajorproducts.Thereactiontakesplaceinatwo-stepprocess.(1)

Page 33: Carboxylic acids, Building Bridges to Knowledge

33

(2)

5-pentanolide (aδlactone)TheHell-Volhard-ZelinskyReactionTheHell-Volhard-Zelinskyreactionisusedtoprepare

OtherreagentsusedtoaccomplishthisreactionareBr2andphosphorus.Ammoniawilldisplacethebromineofthealphacarbonatomtoproducealphaaminoacids.

β-halocarboxylic acids

Page 34: Carboxylic acids, Building Bridges to Knowledge

34

Followingaretheseriesofelementarystepsthatexplaintheformationofthealphabromocarboxylicacid,theproductoftheHell-Volhard-ZelinskyReaction.(1)

(2)

Page 35: Carboxylic acids, Building Bridges to Knowledge

35

(3)

(4)

(5)

(6)

Page 36: Carboxylic acids, Building Bridges to Knowledge

36

(7)

(8)

(9)

Page 37: Carboxylic acids, Building Bridges to Knowledge

37

(10)

(11)

Page 38: Carboxylic acids, Building Bridges to Knowledge

38

(12)

Anα-bromocarboxylicacid Thesumofthetwelveelementarystepsrationalizestheformationoftheα-bromocarboxylicacid,andexplainsthestoichiometryofthemolecularequation.

Analternatepathwaytothesynthesisofanα-bromocarboxylicacidistotreatthecarboxylicacidwiththionylchloride,followedbytreatmentwithN-bromosuccinimide,andfinallyfollowedbyhydrolysis.

Page 39: Carboxylic acids, Building Bridges to Knowledge

39

DecarboxylationofDicarboxylicAcidsThemolecularstructureofmalonicacidcanundergodecarboxylationtoformcarbondioxideandtheenolformofaceticacid.Thisreactioncanbeaccomplishedbyheatingmalonicacidtoitsmeltingpoint(150oC).

Thefollowingtwostepsrepresentapathwayforthedecarboxylationofmalonicacidtoaceticacid.(1)LossofCarbonDioxide

Page 40: Carboxylic acids, Building Bridges to Knowledge

40

(2)Tautometrism

Suggestasynthesisforthefollowingmoleculefromtheindicatedstartingmaterial.

heptanedioicacidcyclopenteneAnswerThesynthesiscanbeaccomplishedinsevensteps.Step1istheoxidativecleavageofcyclopentenetoformadicarboxylicacid,adipicacid.Thiscanbeaccomplishedwithpotassiumpermanganate.

Steps2and3involvethereductionofadipicacidtoformthelithiumaluminumalkoxidecomplexandthehydrolysisoftheresultinglithiumaluminumalkoxidetoform1,5-pentandiol.

Page 41: Carboxylic acids, Building Bridges to Knowledge

41

Step3isthehydrolysisofthelithiumaluminumalkoxide.

Step4istheformationofthe1,5-dihalopentanecompoindfrom1,5-pentandiol.

Step5ispreparationoftheGrignardreagentfrom1,5-dichloropentane.

Step6istheformationofsaltofthecarboxylicacidwithcarbondioxide.

Page 42: Carboxylic acids, Building Bridges to Knowledge

42

Thefinalstepisacidificationofthedicarboxylatetoformheptanedioicacid(pimelicacid).

heptanedioicacid(pimelicacid)

Page 43: Carboxylic acids, Building Bridges to Knowledge

43

Problems

CarboxylicAcids

1. Arrangethefollowingacidinorderofincreasingacidity:propanoicacid;2-fluoropropanoicacid,3-fluoropropanoicacid,2,2-difluoropropanoicacid,3,3-difluoropropanoicacid

2. Whichcompound,propanoicacidor2-phenylpropanoicacid,wouldhavethehigherpKavalue?Givearationaleforyourselection.

3. Suggestasynthesisforbenzoicacidfrombenzeneastheonlysourceoforganicstartingmaterialandanyothernecessaryinorganicmaterials.

4. Suggestasynthesisfor4-phenylbutanoicacidfrombenzeneandanyothernecessaryorganicandinorganicmaterials.

5. Whichofthefollowingcompoundswouldhavethehighestboilingpoint?Givearationaleforyouranswer.

(a) CH3(CH2)4CH3

(b) CH3(CH2)3CH2OH

(c) CH3(CH2)2COOH

(d) CH3(CH2)2CH2SH

6. Ifastudenthad100.0mLofa0.050Msolutionofaceticacidand100.0mLofa0.100Msolutionofsodiumacetate,whatvolumeoftheweakacidsolutionwouldshehavetomixwiththeconjugatebasesolutioninordertoprepare75.0mLofabuffersolutionwithapHof5.0?ThepKaforaceticacidis4.7.

7. BenzaldehydereactedwithchromicacidtoformacompoundthatreactedwithpropylalcoholinaDean-Starkapparatustoformacompoundthathasantimicrobialproperties.Thecompoundalsohasanuttyodorandanut-liketaste.Suggestastructuralformulaforthissweetandfruitytastingcompound.

Page 44: Carboxylic acids, Building Bridges to Knowledge

44

8. ListthefollowingacidsinorderincreasingpKavalues.

(a)

(b)

(c)

(d)

9. Suggestasynthesisforthefollowingfromthegivencompoundandanyothernecessaryinorganicandorganicmaterials.

Page 45: Carboxylic acids, Building Bridges to Knowledge

45

10. Suggestasynthesisforthefollowingfromtheindicatedstartingmaterialandanynecessaryinorganicreagents.

11. Suggestasynthesisforthefollowingfromtheindicatedstartingmaterialandanyothernecessaryinorganicororganicmaterials.

12. Suggestasynthesisforthefollowingfromtheindicatedstartingmaterialandanyothernecessaryinorganicororganicmaterials.

13.2,5-Diethyl-1,1-cyclopentanedicarboxylicacidwasisolatedas opticallyinactivecompoundA(aracemicmixture)andoptically inactivecompoundB.AandBhavedifferentmeltingpoints.

CompoundAyieldstwo2,5-diethylcyclopentanecarboxylicacidswhenitisheated.CompoundByieldsone2,5-diethylcyclopentanecarboxylicacidswhenitisheated.(a) SuggeststructuresforAandB(b) Suggeststructure(s)fortheproduct(s)formedfromheating compoundA.(c) Suggeststructure(s)fortheproduct(s)formedfromheating compoundB.(d) Writemechanismstoaccountfortheseobservations.