carleson’s theorem, variations and applications christoph thiele santander, september 2014

45
Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Upload: harvey-mason

Post on 17-Dec-2015

225 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Carleson’s Theorem,Variations and Applications

Christoph Thiele

Santander, September 2014

Page 2: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Lennart Carleson

• Born 1928• Real/complex

Analysis, PDE, Dynamical systems

• Convergence of Fourier series 1968

• Abel Prize 2006

Page 3: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Quote from Abel Prize

“The proof of this result is so difficult that for over thirty years it stood mostly isolated from the rest of harmonic analysis. It is only within the past decade that mathematicians have understood the general theory of operators into which this theorem fits and have started to use his powerful ideas in their own work.”

Page 4: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Carleson’s Operator

Closely related maximal operator

Carleson-Hunt theorem (1966/1968):

Can be thought as stepping stone to Carl. Thm

defxfC ix2)(ˆsup)(

C∗ fp

≤ c p fp

p1

Page 5: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Other forms of Carleson operator

˜ C * f (x) = p.v. f (x − t)e itη

−∞

∫ dt / tL∞ (η )

˜ C η f (x) = p.v. f (x − t)e itη (x )

−∞

∫ dt / t

Cη f (x) = ˆ f (ξ)e2πixξ dξη (x )

C* f (x) = ˆ f (ξ)e2πixξ dξη

∫L∞(η )

Page 6: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Quadratic Carleson operator

Victor Lie’s result, 1<p<2

tdtetxfvpxQf tiit /)(..sup)(2

,

pppfconstQf

Page 7: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014
Page 8: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Directional Hilbert transform

In the plane:

Rotate so that u=0, apply HT in first variable and Fubini:

Hu f (x) = p.v. f (x + t,y + ut)dt / t∫

Hu fp

≤ Cp fp

Page 9: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Alternative description

1)Take the Fourier transform of f

2)Multiply by a certain function constant on half planes determined by (1,u)

3)Take the inverse Fourier transform

Page 10: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Maximal directional Hilbert t.

In the plane:

Turns out unbounded

supu p.v. f (x + t, y + ut)dt / t∫

Page 11: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Nikodym set example

Set E of null measure containing for each

(x,y) a line punctured at (x,y). If vector field

points in direction of this line then averages

of characteristic fct of set along vf are one.

Page 12: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

“Half” max directional HT

Unbounded:

Bounded:

Bounded (3/2<p<infty)(Bateman, T. 2012)

supu Hu f (x, y)Lp (y ) Lp (x )

/ ≤ Cp fp

supu Hu f (x, y)Lp (y ) Lp (x )

≤ Cp fp

supu Hu f (x,y)Lp (y ) Lp (x )

≤ Cp fp

Page 13: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Direct.HT w.r.t Vector Field

Hu f (x) = p.v. f (x + t,y + u(x,y)t)dt / t∫

Page 14: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

BT case: One Variable V.F

p.v. f (x + t, y + u(x)t)dt / tR

Page 15: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

L2:Coifman’s argument

f (x + t,y + u(x)t)dt / tR

∫L2 (x,y )

= e iyη

R

∫ ˆ f (x + t,η)e iu(x )tη dt / t dηR

∫L2 (x,y )

= ˆ f (x + t,η)e iu(x )tη dt / tR

∫L2 (x,η )

2),(2),(ˆ fxf

xL

Page 16: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Coifman’s argument visualized

Page 17: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

A Littlewood Paley band

For Lp theory need Littlewood Paley instead FT.

Idea of Lacey and Li: Generalization of Carleson

Page 18: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Further generalization

Vector field constant along suitable family of Lispchitz curves (tangents nearly vertical,vector field nearly horizontal)

Shaming Guo 2014: HT bounded in L2/Lp

Page 19: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Lipschitz conjecture

Conjecture: The truncated Hilbert transform (integral from -1 to 1) along (two variable) vector field is bounded in L2 provided the vector field is Lipschitz with small enough constant

Only known for real analytic vector fields. Christ,Nagel,Stein,Wainger 99, Stein/Street 2013

Page 20: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Triangular Hilbert transform

All non-degenerate triangles equivalent

tdttyxgytxfvpyxgfT /),(),(..),)(,(

Page 21: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Triangular Hilbert transform

Open problem: Do any bounds of type

hold? (exponents as in Hölder’s inequality)

qpqppqgfconstgfT .),(

)/(

Page 22: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Symmetric dual trilinear form

All non-degenerate triangles equivalent by linear transformation. No parameters.

Λ( f ,g,h) = ∫∫ p.v. f (r x +

r β 1t)g(

r x +

r β 2t)h(

r x +

r β 3t)dt / t

−∞

∫ dx1dx2

Λ( f ,g,h) = p.v. f (x,y)g(y,z)h(z, x)1

x + y + zdxdydz∫∫∫

Page 23: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Stronger than Carleson:

Specify

tdttyxgytxfvp /),(),(..

)(),( xfyxf

yxiNeyxg )(2),(

Page 24: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Degenerate triangles

Bilinear Hilbert transform (one dimensional)

Satisfies Hölder bounds. (Lacey, T. 96/99)

Uniform in a. (T. , Li, Grafakos, Oberlin)

tdtatxgtxfvpxgfB /)()(..))(,(

Page 25: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Vjeko Kovac’s Twisted Paraproduct (2010)

Satisfies Hölder type bounds. K is a Calderon

Zygmund kernel, that is 2D analogue of 1/t.

Weaker than triangular Hilbert transform.

dtdstsKtyxgysxfvp ),(),(),(..

Page 26: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Variation Norm

rrnn

N

nxxxNV

xfxffN

r/1

11,...,,,

)|)()(|(sup||||10

rVx

fxf )(sup

Page 27: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Variation Norm Carleson

Oberlin, Seeger, Tao, T. Wright, ’09: If r>2,

Quantitative convergence of Fourier series.

)(

2)(ˆ)(

r

r

V

ix

VdefxfC

22fCfC rV

Page 28: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Multiplier Norm

- norm of a function m is the operator normof its Fourier multiplier operator acting on

- norm is the same as supremum norm

qM

)(1 FgmFg

)(RLq

)(sup2

mmmM

2M

Page 29: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Coifman, Rubio de Francia, Semmes

Variation norm controls multiplier norm

Provided

Hence -Carleson implies - Carleson

rp VM

mCm

rp /1|/12/1|

pMrV

Page 30: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Maximal Multiplier Norm

-norm of a family of functions is the

operator norm of the maximal operator on

No easy alternative description for

)(sup 1 FgmFg

)(RLp

pM m

2M

Page 31: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Truncated Carleson Operator

tdtetxfxfCc

it /)(sup)(],[

Page 32: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

-Carleson operator

Theorem: (Demeter,Lacey,Tao,T. ’07) If 1<p<2

Conjectured extension to .

2M

)(],[

*2

*2

||/)(||)(

M

it

MtdtetxfxfC

c

pppM

fcfC *2

qM

Page 33: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Birkhoff’s Ergodic Theorem

X: probability space (measure space of mass 1).

T: measure preserving transformation on X.

f: measurable function on X (say in ).

Then

exists for almost every x .

)(2 XL

)(1

lim1

xTfN

N

n

n

N

Page 34: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Harmonic analysis with .

Compare

With max. operator

With Hardy Littlewood

With Lebesgue Differentiation

)(1

lim1

xTfN

N

n

n

N

)(1

sup1

xTfN

N

n

n

N

00

)(1

lim dttxf

0

)(1

sup dttxf

Page 35: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Weighted Birkhoff

A weight sequence is called “good” if

weighted Birkhoff holds: For all X,T,

exists for almost every x.

na

)(1

lim1

xTfaN

nN

nnN

)(2 XLf

Page 36: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Return Times Theorem

Bourgain (88)

Y: probability space

S: measure preserving transformation on Y.

g: measurable function on Y (say in ).

Then

Is a good sequence for almost every x .

)(2 YL

)( xSga nn

Page 37: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Return Times Theorem

After transfer to harmonic analysis and one

partial Fourier transform, this can be

essentially reduced to Carleson

Extended to , 1<p<2 by D.L.T.T,

Further extension by Demeter 09,

2/3/1/1 pp

)(YLg p

*2M

)(XLf q

Page 38: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Two commuting transformations

X: probability space

T,S: commuting measure preserving transformations on X

f.g: measurable functions on X (say in ).

Open question: Does

exist for almost every x ? (Yes for .)

)(2 XL

)()(1

lim1

xSgxTfN

nN

n

n

N

aTS

Page 39: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Nonlinear theory

Exponentiate Fourier integrals

dxexfygy

ix

2)(exp)(

)()()(' 2 ygexfyg ix

1)( g ))(ˆexp()( fg

Page 40: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Non-commutative theory

The same matrix valued…

)(0)(

)(0)('

2

2

yGexf

exfyG

ix

ix

10

01)(G

)()( fG

Page 41: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Communities talking NLFT

• (One dimensional) Scattering theory

• Integrable systems, KdV, NLS, inverse scattering method.

• Riemann-Hilbert problems

• Orthogonal polynomials

• Schur algorithm

• Random matrix theory

Page 42: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Classical facts Fourier transformPlancherel

Hausdorff-Young

Riemann-Lebesgue

22

ˆ ff

ppff

'

ˆ )1/(',21 pppp

1ˆ ff

Page 43: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Analogues of classical factsNonlinear Plancherel (a = first entry of G)

Nonlinear Hausdorff-Young (Christ-Kiselev ‘99, alternative proof OSTTW ‘10)

Nonlinear Riemann-Lebesgue (Gronwall)

2)(2|)(|log fca

L

ppL

fcap

)('

|)(|log

21 p

1)(|)(|log fca

L

Page 44: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

Conjectured analogues

Nonlinear Carleson

Uniform nonlinear Hausdorff Young

2)(2

|)(|logsup

fcyaLy

ppfca

'|)(|log 21 p

Page 45: Carleson’s Theorem, Variations and Applications Christoph Thiele Santander, September 2014

THANK YOU!