carmen zwahlen, roy wogelius, cathy hollis, greg...

23
Reaction path modelling illustrating the fluid history of a natural CO 2 -H 2 S reservoir 1 Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Holland 2 3 Abstract 4 Despite the increasing interest in geologic co-sequestration of CO 2 and H 2 S, the long-term 5 consequences of the chemical interactions involved in this process remain largely unknown on a 6 reservoir scale. A Mississippian aged CO 2 -H 2 S reservoir in LaBarge Field, Wyoming, USA is an ideal 7 study site to investigate mineral and fluid reactions related to gaseous H 2 S and CO 2 . We conducted 8 two reaction path models based on mineralogical, fluid, gas, and stable isotope compositional data 9 to discern the role of CO 2 influx upon the generation of H 2 S through thermochemical sulphate 10 reduction (TSR). We discriminate between two models- one in which TSR is triggered by temperature 11 at a given burial depth and one where TSR is triggered by ingress of CO 2 . The reaction path model 12 based upon burial-controlled TSR and later CO 2 influx is consistent with mineralogical observations 13 and stable isotope measurements from drill cores. The models show that CO 2 influx leads to calcite 14 precipitation which is only limited by the calcium concentration in the fluid. This modelling approach 15 is useful in constraining the timing of fluid flux in the reservoir and gives further insight into the 16 mineralogical consequences of the gas, water, and rock interactions occurring in the reservoir. In 17 terms of geologic co-sequestration this implies that the addition of CO 2 into a reducing carbonate 18 system can result in calcite precipitation, instead of anhydrite as previously thought. Furthermore, it 19 is only limited by the availability of Ca 2+ and will therefore not diminish the amount of H 2 S in the 20 system. 21 Introduction 22

Upload: others

Post on 29-Feb-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

ReactionpathmodellingillustratingthefluidhistoryofanaturalCO2-H2Sreservoir 1

CarmenZwahlen,RoyWogelius,CathyHollis,GregHolland2

3

Abstract4

Despite the increasing interest in geologic co-sequestration of CO2 and H2S, the long-term5

consequences of the chemical interactions involved in this process remain largely unknown on a6

reservoir scale.AMississippianagedCO2-H2S reservoir in LaBargeField,Wyoming,USA is an ideal7

studysitetoinvestigatemineralandfluidreactionsrelatedtogaseousH2SandCO2.Weconducted8

tworeactionpathmodelsbasedonmineralogical,fluid,gas,andstableisotopecompositionaldata9

to discern the role of CO2 influx upon the generation of H2S through thermochemical sulphate10

reduction(TSR).Wediscriminatebetweentwomodels-oneinwhichTSRistriggeredbytemperature11

atagivenburialdepthandonewhereTSR istriggeredby ingressofCO2.Thereactionpathmodel12

baseduponburial-controlledTSRand laterCO2 influx isconsistentwithmineralogicalobservations13

andstableisotopemeasurementsfromdrillcores.ThemodelsshowthatCO2influxleadstocalcite14

precipitationwhichisonlylimitedbythecalciumconcentrationinthefluid.Thismodellingapproach15

is useful in constraining the timing of fluid flux in the reservoir and gives further insight into the16

mineralogical consequences of the gas,water, and rock interactions occurring in the reservoir. In17

termsofgeologic co-sequestration this implies that theadditionofCO2 intoa reducingcarbonate18

systemcanresultincalciteprecipitation,insteadofanhydriteaspreviouslythought.Furthermore,it19

isonly limitedby theavailabilityofCa2+ andwill thereforenotdiminish theamountofH2S in the20

system.21

Introduction22

Page 2: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

Naturaloil andgas reservoirs cangive insight intokeyprocessesactingovergeological timescales23

(Allis et al., 2001; Bickle et al., 2013; Kampman et al., 2014; Kaszuba et al., 2011). Additionally,24

knowledgeoftheH2Sconcentrationinreservoirsisofinterestfordrillingsafetyandgasdegradation.25

Itisimportanttounderstandthefluidhistoryinthesereservoirsinordertopredictwhichreactions26

canoccurandtowhatextent.Inparticular,thereisincreasinginterestinthefeasibilityofgeologic27

co-sequestrationofCO2andH2Swithincarbonatesystems(Kaszubaetal.,2011;Williams&Paulo,28

2002).Thelongtermconsequences,however,aredifficulttopredictusinglabandfieldexperiments29

orgeochemicalreactionmodellingalone.30

TheCO2-H2SreservoirinLaBargeField,southwesternWyoming,USA,hasbeenclassifiedandstudied31

asanaturalanalogueforgeologicalco-sequestration(Allisetal.,2001;Kaszubaetal.,2011)(Figure32

1).Thegas trapped inLaBargeFieldconsistsonaverageof66%CO2,21%CH4,7%N2,5%H2Sand33

0.6% He (Huang et al., 2007). The H2S is thought to be produced by thermochemical sulphate34

reduction (TSR)whereastheCO2 isbelievedtobe fromamagmaticsource (DeBruin,1991,2001;35

Huangetal.,2007;Stilwell,1989;Zwahlenetal.,2019).However the timingof the fluids remains36

controversial.Hydrocarbonsare thought tohavemigrated into thereservoir approximately84 -7637

Maago(Johnson,2005)(Figure2).Differenttechniquesanddatasetshavebeenemployedtostudy38

theinfluenceofCO2andH2Suponeachother(Huangetal.,2007;Kaszubaetal.,2011;Obidi,2014;39

Zwahlenetal., 2019):diffusionmodellingof theCO2-CH4distribution concluded thathydrocarbon40

andCO2wereintroducedatsimilartimes,around50Maago(Huangetal.,2007)andreactionpath41

modellinghasbeenusedtosuggestthatTSRwastriggeredbytheinfluxofCO2(Kaszubaetal.,2011).42

Incontrast,amorecomplexdiffusionmodel,usingthesameCO2-CH4distribution,suggestsalarger43

timegapof>45MabetweentheCH4andCO2influx,withtheCO2arriving<3Maago(Obidi,2014).44

Mineralogical observations and stable isotope measurements also suggest a two step process in45

whichCO2arrived later (Zwahlenetal.,2019). Inthispaper,webuildageochemicalmodel that is46

informedby petrographical and geochemical observations to further constrain the fluid history in47

Page 3: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

LaBarge Field. Thiswill improve our understanding of themineralogical consequences of the CO248

influx,theinitiationofTSRandhencetheH2Sgenerationinthecarbonatereservoir.49

50

Figure1a)Mapofgreatergreenriverbasinwithmarkedfluidsamplelocalitiesb)MapoftheCO2-H2Sreservoirsalongthe51Moxa arch andmain tectonic features in the areamodified after Becker and Lynds, (2012). c) The LaBarge Field with52samplingwellsmodifiedafter(Stilwell,1989).53

We conducted two different reaction path models: Model 1 involved a two step process where54

burial related TSR occurred and CO2 ingress occured later (Figure 3). Model 2 assumed TSR was55

triggered by the CO2 influx (Figure 3). The two different scenarios also occurred at different56

temperatures.TheCO2isthoughttohaveenteredthereservoiratthemaximalburialtemperature,57

estimatedtobe200to215°C(Zwahlenetal.,2019),whereasburialrelatedTSRisthoughttohave58

startedaround175°Cbasedonfluidinclusionmicrothermometrydata(Zwahlenetal.,2019).Using59

asimpletitrationmodelof theorganosulphurcompoundmethionine(aq)andCO2(g)wesimulated60

TSRandCO2inputintothereservoir,respectively(Figure3).Thisapproachcouldbeappliedtoother61

systems inorder to improvetheunderstandingof their fluidhistoryandthe long-termfateof the62

presenceofareactivegassuchasH2S.63

Page 4: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

64

Figure2Burialhistoryof theMadisonFormationatLaBargemodifiedafterRobertsetal., (2005)andadaptedto500m65furtherupliftatLaBarge inthe last5Ma.TheMadisonFormation ishighlighted ingrey.Fm.,Formation;Sh.,Shale;Gp.,66Group;Ss.,Sandstone;L.Cret.,LowerCretaceousrocks.67

68

Figure3Schematicofmodel1&2includingreactiontemperatureandaimedmineralprecipitates.69

MineralogyandparagenesisofLaBarge70

TheMississippianMadisonFormation inLaBargeFieldconsistsof limestone,thatwasdeposited in71

shallowwater, interlayeredwithdolomitethatformedduringshallowburial,andformeranhydrite72

nodules thatwere replacedby calcite (Figure 4). A similar successionhas beenobserved in other73

partsofWyoming,USA(Budai&Cummings,1987;Budai,1985;Budaietal.,1984;Buoniconti,2008;74

Katz,2008;Katzetal.,2007;Smithetal.,2004;Sonnenfeld,1996).The following summaryof the75

paragenetic sequence in LaBarge Field has been established by petrographic observations, stable76

isotope and fluid inclusion microthermometric analysis (Zwahlen et al., 2019). The carbon and77

Page 5: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

oxygen isotopic signaturesmeasured onwhole rock limestone and dolostone are consistentwith78

other measurements of the Mississippian Madison Formation in Wyoming (e.g. Budai and79

Cummings, 1987; Katz et al., 2006)(Figure 5). Calcite cements fill primary and secondary matrix80

macropores. Thereafter, quartz, fluorite and fracture filling calcite precipitated in sequence from81

hydrothermalfluidsthatcooledduringfluidcirculationandmineralprecipitation.Thisissupported82

by decreasing primary fluid inclusion homogenisation temperatures within single quartz crystals83

fromcoretorim(145-110°C),byprimaryfluidinclusionhomogenisationtemperaturesinfluorite84

of105-110°Candcarbonandoxygenisotopicvaluesofthefracturefillingcalcitephasethatshow85

equilibration with the host rock (Figure 4c & 5). After the fracture filling calcite precipitation,86

hydrocarbonsseepedintothesystemat84-76Maago(Robertsetal.,2005).Thelastprecipitating87

carbonate mineral phase is the calcite that replaces anhydrite, which has primary fluid inclusion88

homogenisation temperatures between 175-200 °C (Figure 4d & e). This is interpreted to have89

occurred during thermochemical sulphate reduction, also leading to precipitation of pyrite,90

elemental sulphurandsolidbitumen (Figure4d& f).There isnoprimaryanhydrite leftexcept for91

micro inclusions in the calcite nodules (Figure 4e). The distinctive, depleted carbon and oxygen92

isotopic values of these samples are in consistent with an isotopically light carbon source, which93

could either be hydrocarbonor carbondioxide, andwith the elevatedprecipitation temperatures94

(Figure5).95

Page 6: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

96

Figure4a)Mississippian limestoneandb)dolomitehost rock.c)Fracture fillingcalcited)Formeranhydritenodule that97was replaced by calcite with elemental sulphur precipitated between calcite crystals e) Remaining anhydrite98microinclusionsincalcitethatreplacedanhydritef)pyrite99

100

Page 7: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

101

Figure5Carbonandoxygenisotopicdatafromcarbonatesamples.Black,greyandwhitesymbolsrepresentsamplesfrom102drillcoreFC13-10,LR8-11andFC15-28respectively.Dataisfrom(Zwahlenetal.,2019).103

Modelinputdataandconstraints104

Thetwodifferenttitrationmodelsarebasedongas,mineralogicalandfluidcompositionaldatafrom105

fourboreholesatthecentreofthereservoir(Blondesetal.,2016;Huangetal.,2007;Zwahlenetal.,106

2019) (Figure 1). Therefore, the reservoir conditions are calculated for this part of the field. The107

reservoir temperature iscalculatedtobe133°Cbasedonanaveragemaximumdepthof the four108

drill cores, 4612m, and a geothermal gradient of 28.8 °C/km (Roberts et al., 2005). According to109

bottomholepressuresthegaspressureisonaverage450barforthefourboreholesandidenticalto110

hydrostaticpressure(Becker&Lynds,2012).111

Page 8: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

Themodelwasfurtherconstrainedbymineralogicaldatafromthreedrillcores(LR8-11,FC15-28and112

FC13-10,Figure1B&C).Themodelissetupfor1kgofwater.Basedonadensityof1kg/dm3anda113

porosity of 9% (Huang 2007) this water would fill a rock volume of 10111 cm3. The host rock is114

composedofdolomite(~60%)andlimestone,however,inthemodelweusedolomiteasasolehost-115

rock condition (10091 cm3) to avoid over-constraining the system (Zwahlen et al., 2019). The116

estimatedvolumeofcalcitethatreplacedanhydriteinthedrillcoresis0.2vol%whichequatesto20117

cm3 (Zwahlen et al., 2019). The pH in the carbonate reservoir is likely governed by calcite and118

dolomite.Theoriginalfluidat133°CwiththepHset inequilibriumwitheitherdolomiteorcalcite119

resultsinapHof5.5to5.7andthereforewechooseastartingpHof5.6.120

H2Sfugacitywasusedasaconstraintfortheoxygenfugacityofthemodel.TheH2Sfugacitycanbe121

calculatedbasedonthegascomposition,thetotalgaspressuresandthefugacitycoefficient:122

𝑓"#$(&)=P*𝑥"#$(&) ∗ φ"#$(&) (1)123

where fH2S(g) is thegas fugacity,P the totalpressure, xH2S(g) themole fractionofH2SandϕH2S(g) the124

fugacitycoefficient.ThefugacitycoefficientofH2Sinthegasmixturewascalculatedtobe0.33with125

thePeng-Robinsonequationofstatewhichhasbeen implemented into theThermosolvesoftware126

(Barnes,2007;Koretsky,2004;Peng&Robinson,1976;Richardetal.,2005).Thepartialpressureof127

H2Sis22barandresultsinafugacityof7.3bar.Thisvalueliesintherangeoffugacitiescalculated128

forcarbonatereservoirsintheAlbertaBasin(Richardetal.,2005).Ithasbeensuggestedthatthese129

fugacities are controlled by metastable equilibrium between hydrocarbons, organic sulphur130

compoundsandelementalsulfur(Richardetal.,2005).Allthesecompoundsarealsopresentinthe131

MadisonFormationintheLaBargeFieldandhenceitislikelythatametastableequilibriumbetween132

thesamecompoundscontrolstheH2Sfugacity.133

Thefluidcomposition inthereservoirhasbeenreportedforwellUnit22-19(Blondesetal.,2016)134

(Figure1).ThisfluidcompositionissimilartothefluidreportedfortheWhiskeyButtesFieldfurther135

Page 9: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

southalongtheMoxaArch(Figure1,Table1)(Blondesetal.,2016).Thesefluidsarecharacterized136

byahigherHCO3-andSO4

2-concentrationsbut lowerCa2+concentrationscomparedto fluids from137

wellspenetratingtheMadisonFormationawayfromtheMoxaArchareaintheGreaterGreenRiver138

Basin(Table1)(Blondesetal.,2016).Initialfluidconcentrationsweresettothosemeasuredinwell139

Unit19-22withtheexceptionforHCO3-,SO4

2-andMg2+.TheHCO3-concentrationisexcessivelyhigh140

duetotheequilibrationwiththeCO2inthereservoir.Thereforeweusedtheaverageconcentration141

from wells outside the Moxa Arch (Table 2) (Blondes et al., 2016). The initial Mg2+ and SO42-142

concentrations were set in equilibrium with dolomite and anhydrite, respectively (Table 2). The143

chlorineconcentrationactedasachargebalancethroughoutthereactionpath.144

145

Table1AveragefluidcompositionoftheMadisonFormationwater(Appendix1)indifferentlocationswithintheGreater146GreenRiverBasin(Figure1a).147

148

Table2Fluidcompositionatthebeginningandendofmodel1and2.149

Weconductedthemodellingwith thereactmoduleandtheV8R6themodynamicdatabasewithin150

Geochemist'sWorkbench®(GWB)software(Appendix3).Inmodel1,theburialrelatedTSRprocess151

Page 10: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

was simulated as a titration model where methionine (aq) was titrated into the fluid at 175 °C,152

initiallyinequilibriumwithdolomiteandanhydrite,until20cm3ofcalciteprecipitated(Table2).The153

resultingfluidwasthenreactedwith0.5molofCO2(g)at200°Cand1cm3ofanhydrite(Table2).154

The anhydritewas added at the onset of CO2 addition to simulate the reaction of any remaining155

sulphate.Formodel2, theTSR triggeredbyCO2model, the sameamountofmethionine (aq)and156

CO2 (g)were titrated simultaneously into the fluidat200 °C, initially inequilibriumwithdolomite157

andanhydrite(Table2).Wechose200°CasaCO2influxtemperatureinordertonotoverestimateit158

andtobeinagreementwithprimaryfluidinclusionhomogenisationtemperaturedata(Zwahlenet159

al., 2019). In all cases the Eh was kept fixed during the reaction path since it controlled by the160

sulphur species and buffered by the H2S(g) concentration (Kaszuba et al., 2011). We chose161

methionineas anorganic compoundbecause it includes sulphurwhich is in agreementwith solid162

bitumenanalysis (Kingetal.,2014).Partsof theorgano-sulfur in thesolidbitumenare likely from163

theoriginaloil.However in termsof sulphurmassbalance the sulphur inmethionineplaysavery164

minorrolecomparedtothevastamountofanhydritethatgetsconsumed.Methioninealsocontains165

nitrogen,whichresultsinanoverestimationofgaseousnitrogen;however,thedatabasedoesn'tlist166

anorganosulphurcompoundwithoutnitrogensuchascystine.Forthestable isotopefractionation167

modelling, we updated the GWB stable isotope database (Appendix 2). For the sulphate168

fractionationweusedequilibriumandkineticfractionationfactors(Kiyosu&Krouse,1990b;Ohmoto169

&Rye,1979).Wechooseaδ34Scompositionforanhydriteof15‰,inagreementwithMississippian170

sulphate and carbonate-associated sulphate measured in pre-TSR calcite in the LaBarge Field171

(Zwahlen et al., 2019). The sulphur isotopic composition of methionine was set to the average172

phosphoriaoilcompositionof1‰(Kingetal.,2014;Orr,1974).Themineralsweresegregatedfrom173

isotopicexchangewiththefluidunlesstheydissolvedorprecipitated.174

Modellingresults175

Page 11: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

Theoxygenfugacityofthemodels,constrainedbythecalculatedH2Sfugacity,resultedintheHm-Mt176

buffer (Figure6).This isclosetooxygenfugacitiescalculatedforothercarbonatereservoirsand is177

muchlargerthanhasbeenestimatedforclasticreservoirs(Figure6)(Helgesonetal.,1993;Richard178

etal.,2005).Itremainsunclearwhetherthedifferenceinoxygenfugacitiesbetweencarbonateand179

clasticreservoirsisaneffectofthermodynamicdatasetinconsistency(Richardetal.,2005).180

181

Figure 6 Oxygen fugacity calculated for the LaBarge reservoir (filled square) compared to other carbonate (triangles)182(Richardetal.,2005)andclastic(circles)reservoirs(Helgesonetal.,1993).ThecurvescorrespondtotheO2(g)fugacities183setbythehematite-magnetite(HM-MT)andthepyrrhotite-pyrite-magnetite(PO-PY-MT)buffers.184

In bothmodels (model 1& 2) the fluid evolved to higher dissolved carbon dioxide and hydrogen185

sulphide and lower calcium concentrations (Table 2). The two models show distinctly different186

mineralogicalresults(Figure7).Intheburial-relatedTSRmodel(model1)anhydritedissolvedwhile187

20 cm3 calcite and elemental sulphur precipitated as a result ofmethionine titration (Figure 7a).188

Pyrite and dolomite remained saturated throughout the model, although pyrite precipitation is189

limitedby the lowamount of iron in the fluid. In the secondpart of thismodel (model 1) calcite190

precipitatedasaconsequenceofCO2influx(Figure7b).WealsotestedtheCO2influxwithoutthe1191

Page 12: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

cm3 of anhydrite. This resulted in an equally saturated volume of calcite, however, less calcite192

precipitatedduetothelimitingamountofCa2+inthefluid.Theporosityremainedalmostunchanged193

andincreasedbyonly0.1%throughoutthemodel.194

195

Figure7Mineralogical resultsof the two titrationmodels:a)model1part1withmethionine titration including runsat196165°C,175°Cand185°Cb)model1part2withCO2influxandc)model2withsimultaneousmethioninetitrationandCO2197influx.198

IntheCO2-triggeredTSRmodel(model2)anhydritealsodissolved,alongwithcalciteprecipitation.199

However,withthesameamountofmethionine,morethan1cm3anhydriteremainedundissolvedat200

the end of the reaction path and less than 19 cm3 of calcite precipitated (Figure 7c). A further201

difference to model 1 is that elemental sulphur did not become saturated (Figure 7c). Since202

elementalsulphurprecipitatedinmodel1butnotinmodel2weexploredtheeffectoftemperature203

on the saturation of elemental sulphur and ran the methionine titration of model 1 at different204

Page 13: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

temperatures(Figure7a).Theresultsshowedthatelementalsulphursaturatedat165°Cwhereasat205

185°Ccalcitewastheonlyprecipitatingmineral(Figure7a).206

Additionally we investigated the isotopic fractionation of sulphur during the reaction paths, with207

pre-definedδ34Sisotopicvaluesforthedifferentphases,andcomparedittoexistingmineralandgas208

stable isotopedata (Kingetal., 2014;Zwahlenetal., 2019) (Figure8). Therewasno fractionation209

expectedforaqueoussulphateincorporationintocalcite,thereforewecancomparethemeasured210

carbonate associated sulphate (CAS) isotopic composition to the modelled aqueous sulphate211

isotopic composition (Burdett et al., 1989). The modelled extent of the sulphate fractionation212

depends on whether equilibrium or kinetic fractionation factors are used (Figure 8a) (Kiyosu &213

Krouse, 1990a; Ohmoto & Rye, 1979). The modelled sulphate fractionation with the kinetic214

fractionation factor overlaps completely with the extent of fractionation observed in carbonate215

associatedsulphatesmeasuredinanhydrite-replacivecalcite(15.3to22.7‰)(Zwahlenetal.,2019)216

(Figure 8a). Therefore the kinetic fractionation factor is used for the following fractionation217

calculation.Thefractionationbetweenaqueousandgaseoushydrogensulphide isnegligibleabove218

150 °C which enables us to compare the measured gaseous isotopic H2S composition to the219

modelled aqueous isotopic H2S composition (Czarnacki & Hałas, 2012; Eldridge et al., 2016). The220

modelledδ34Svalueoftheaqueoushydrogensulphideincreasedduringthereactionpathtocloseto221

10‰,which is themeasured composition for the gaseous H2S in the reservoir (King et al., 2014)222

(Figure8b).Hencetheremodelledaqueoushydrogensulphideisotopiccompositionisinagreement223

withthereservoirsvalue.224

Page 14: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

225

Figure 8 a) Kinetic and equilibrium fractionation of sulphate in model 1 in comparison with measurements from the226reservoir carbonate associated sulphate (15.3 to 22.7‰, grey area) (Zwahlen et al., 2019) and b) Isotopic evolution of227aqueoussulphideinmodel1bycontrastwithgaseoushydrogensulphidedatafromthereservoir(dottedline)(Kingetal.,2282014).229

Discussion230

Intermsofmineralogy,thetwomodelsdiffermainlyinthesaturationofelementalsulphurandthe231

amount of calcite that is precipitated. Model 1 predicts the mineralogy observed in the cores,232

specifically calcite, elemental sulphur and pyrite. Elemental sulphur doesn't saturate when the233

modelisrunabove175°C.ThisindicatesthatTSRlikelyoccurredat≤175°C.Theloweramountof234

dissolvedanhydriteandprecipitatedcalciteinmodel2couldberelatedtothedecreasingsolubility235

of anhydrite with increasing temperature. Both models suggest that calcite precipitates as a236

consequenceofCO2influx,notanhydriteaspreviouslysuggested(Kaszubaetal.,2011).Alltogether237

model1representsthemineralogicaldatabetterthanmodel2.Thisindicatesthattheinititationof238

TSRwasmostlikelyrelatedtotemperature,andoccurredat≤175°C.Thisisinagreementwiththe239

lowest primary fluid inclusion homogenisation temperatures measured in calcite that replaced240

anhydrite(Zwahlenetal.,2019).ThemodelledTSRprocessismoreefficientattemperaturesaround241

175°Ccomparedto200°Cduetothehigheranhydritesolubilityatlowertemperatures.Thismight242

explainwhyTSRhasnotbeenobservedathightemperature(≥200°C) intheLaBargeFieldandin243

otherstudyareas(Biehletal.,2016;Bildsteinetal.,2001;Caietal.,2001;Claypool&Mancini,1989;244

Hao et al., 2015; Heydari&Moore, 1989; Jenden et al., 2015; Jiang et al., 2015; Liu et al., 2013;245

Page 15: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

Machel, 2001; Riciputi et al., 1994;Worden et al., 1995;Worden& Smalgeoley, 1996) and could246

indicatethatthereisanuppertemperaturelimitforTSR.247

Model1 isfurthervalidatedbyconsiderationofthefractionationofthesulphurspeciespresentin248

thereservoir.Themodelledfractionationofaqueoussulphateandhydrogensulphide isconsistent249

with mineral and gas data from the reservoir when a kinetic fractionation factor is used. The250

fractionationbetweentheCASsulphateisotopeshasbeenpreviouslyrelatedtofractionationduring251

the reduction step (Meshoulam et al., 2016; Zwahlen et al., 2019). Therefore the modelled252

fractionation during the reduction step in agreementwith the extent of fractionation of the CAS253

samplesalsoconfirms that reduction rather thandiffusion is the rate limitingstep (Meshoulamet254

al.,2016).255

Inbothmodelsthecalciumconcentrationinthefluidlimitedtheextentofcalciteprecipitation.The256

lowcalciumconcentrationinthemodelledfluidisinagreementwiththereportedconcentrationsof257

the fluid from the LaBarge Field (Table 1). The high sulphate concentration in the reported fluid258

analysis suggests that calcium sulphate was not the limiting factor for TSR and that the calcium259

concentration is low due to calcite precipitation. The aqueous hydrogen sulphide concentration260

predictedbythemodelsisextremelyhighbutmightbemuchlowerinrealityduetosorptiononto261

organicmatterorprecipitationofmoremetalsulphides(Kingetal.,2014).262

The insights regarding the initiation andmineralogical consequencesof the TSRprocess basedon263

reactionpathmodellingintheLaBargeFieldcouldhelptopredicttheoccurrenceofTSRelsewhereif264

fluid and mineral data are available. For geologic co-sequestration, these models show that265

anhydritedoesnotprecipitateasaconsequenceofCO2additionintoareducingcarbonatesystem.266

This disagrees with previous predictions (Kaszuba et al., 2011) and indicates that the H2S267

concentration issolelydiminishedbysorptionandsulphideprecipitation.Theseresultshavetobe268

takenintoaccountwhenco-sequestrationstoragesecurityisevaluatedduetothereactivecharacter269

Page 16: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

of H2S. However the insignificant porosity change is consistent with previous modelling results270

(Kaszubaetal.,2011),whichisimportantforpressurepredictionsofco-sequestrationscenarios.271

Conclusion272

Based on two simple reaction path models we explored the effect of burial related TSR and273

compared it to TSR triggered by hot CO2 influx.Model 1, which assumed burial related TSR and274

subsequentCO2 influx, correctlypredicts themineralogyobserved in the core.On theotherhand275

model2 fails tosaturateelementalsulphur.ThereforeTSRatLaBargewas likely inducedbyburial276

andtheCO2influxhadnoinfluenceonTSR.FurtherbothreactionpathmodelssuggestthattheCO2277

influxleadstocalciteprecipitationinsteadofanhydriteaspreviouslythought(Kaszubaetal.,2011).278

This modelling approach is further validated by the agreement between sulphate and sulphide279

fractionationandthemeasurementsofthecorrespondingphasesinthereservoir.Theoutputofthe280

modeladdsadditionalconstraintsonthefluidhistoryof thereservoirandcanhelppredictingTSR281

elsewhere. In terms of geologic co-sequestration themodelledmineralogical consequences differ282

from previous predictions but are consistent with little porosity changes observed in previous283

modelsandhavetobetakenintoaccountwhenassessingdifferentco-sequestrationscenarios.284

However,morefluidanalysisfromwellsintheLaBargeFieldcouldimprovethevalidityofthemodel.285

Additionally kinetic rate laws could be included into to the model to compare the rates of the286

differentoccurringprocessessuchasdissolutionandprecipitationtotherateofsulphatereduction.287

Future research could also look at the complex fractionation processes of carbon and oxygen288

isotopes.289

Acknowledgment290

WethanktheUniversityofManchesterforfundingthisproject.291

Allis,R.,Chidsey,T.,Gwynn,W.,Morgan,C.,White,S.,Adams,M.,&Moore,J.(2001).NaturalCO2292

Page 17: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

reservoirs on the Colorado Plateau and southern Rocky Mountains: Candidates for CO2293

sequestration.ProceedingsoftheFirstNationalConferenceonCarbonSequestration,14–17.294

Barnes,C.S.(2007).ThermoSolver:anintegratededucationalthermodynamicssoftwareprogram.295

Becker, T. P., & Lynds, R. (2012). A geologic deconstruction of one of theworld’s largest natural296

accumulationsofCO2,Moxaarch, southwesternWyoming.AAPGBulletin,96(9),1643–1664.297

https://doi.org/10.1306/01251211089298

Bickle, M., Kampman, N., & Wigley, M. (2013). Natural analogues. In DePaolo, D.J., et Al., Eds.,299

GeochemistryofGeologicCO2Sequestration:ReviewsinMineralogyandGeochemistry,77(1),300

15–71.301

Biehl,B.C.,Reuning, L., Schoenherr, J., Lüders,V.,&Kukla,P.A. (2016). Impactsofhydrothermal302

dolomitizationandthermochemicalsulfatereductiononsecondaryporositycreationindeeply303

buried carbonates: A case study from the Lower Saxony Basin, northwest Germany. AAPG304

Bulletin,100(4),597–621.305

Bildstein,O.,Worden,R.H.,&Brosse, E. (2001).Assessmentof anhydritedissolution as the rate-306

limitingstepduringthermochemicalsulfatereduction.ChemicalGeology,176(1–4),173–189.307

https://doi.org/http://dx.doi.org/10.1016/S0009-2541(00)00398-3308

Blondes,M.S.,Gans,K.D.,Rowan,E.L.,Thordsen,J.J.,Reidy,M.E.,Engle,M.A.,etal.(2016).US309

Geological Survey National Produced Waters Geochemical Database v2. 2 (PROVISIONAL)310

Documentation.USGeologicalSurvey.311

DeBruin,R.H.(1991).Wyoming’scarbondioxideresources.OpenFileReport,91–6,1–19.312

DeBruin, R.H. (2001). Carbondioxide inWyoming, informationpamphlet 8:WyomingGeological313

Survey.Laramie,Wyoming,1–11.314

Budai,C.,&Cummings,M. (1987).Adepositionalmodelof theAntelopeCoal Field,PowderRiver315

Page 18: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

Basin, Wyoming. Journal of Sedimentary Petrology, 57(1), 30–38.316

https://doi.org/10.1306/212F8A94-2B24-11D7-8648000102C1865D317

Budai, J. (1985). Evidence for rapid fluidmigrationduringdeformation,MadisonGroup,Wyoming318

andUtahOverthrustBelt.RockyMountainCarbonateReservoirs—ACoreWorkshop[Golden,319

CO, August 10-11, 1985], 377–407. Retrieved from320

http://archives.datapages.com/data/sepm_sp/cw7/Evidence_of_Rapid_Fluid_Migration_durin321

g.pdf322

Budai, J., Lohmann, K. C., & Owen, R.M. (1984). Burial dedolomite in theMississippianMadison323

Limestone,WyomingandUtahthrustbelt.JournalofSedimentaryPetrology,54(1),276–288.324

https://doi.org/10.1306/212F83FF-2B24-11D7-8648000102C1865D325

Buoniconti,M.R.(2008).TheevolutionofthecarbonateshelfmarginsandfilloftheAntlerForeland326

BasinbyprogradingMississippiancarbonates,NorthernUSRockies.OpenAccessDissertations.327

Retrievedfromhttp://scholarlyrepository.miami.edu/oa_dissertations/330328

Burdett,J.W.,Arthur,M.A.,&Richardson,M.(1989).ANeogeneseawatersulfurisotopeagecurve329

fromcalcareouspelagicmicrofossils.EarthandPlanetaryScienceLetters,94(3),189–198.330

Cai,C.,Hu,W.,&Worden,R.H.(2001).ThermochemicalsulphatereductioninCambro–Ordovician331

carbonates in Central Tarim. Marine and Petroleum Geology, 18(6), 729–741.332

https://doi.org/http://dx.doi.org/10.1016/S0264-8172(01)00028-9333

Claypool, G. E., & Mancini, E. A. (1989). Geochemical relationships of petroleum in Mesozoic334

reservoirstocarbonatesourcerocksofJurassicSmackoverFormation,southwesternAlabama.335

AAPGBulletin,73(7),904–924.336

Czarnacki,M.,&Hałas,S.(2012).AbinitiocalculationsofsulfurisotopefractionationfactorforH2S337

in aqua–gas system. Chemical Geology, 318–319, 1–5.338

Page 19: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

https://doi.org/10.1016/j.chemgeo.2012.05.007339

Eldridge,D. L.,Guo,W.,& Farquhar, J. (2016). Theoretical estimates of equilibrium sulfur isotope340

effectsinaqueoussulfursystems:Highlightingtheroleofisomersinthesulfiteandsulfoxylate341

systems. Geochimica et Cosmochimica Acta, 195, 171–200.342

https://doi.org/10.1016/j.gca.2016.09.021343

Hao, F., Zhang, X.,Wang, C., Li, P., Guo, T., Zou, H., et al. (2015). The fate of CO2 derived from344

thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and345

permeability, Sichuan Basin, China. Earth-Science Reviews, 141(0), 154–177.346

https://doi.org/http://dx.doi.org/10.1016/j.earscirev.2014.12.001347

Helgeson,H. C., Knox, A.M.,Owens, C. E.,& Shock, E. L. (1993). Petroleum, oil fieldwaters, and348

authigenicmineralassemblagesAretheyinmetastableequilibriuminhydrocarbonreservoirs.349

GeochimicaetCosmochimicaActa,57(14),3295–3339.350

Heydari, E., & Moore, C. H. (1989). Burial diagenesis and thermochemical sulfate reduction,351

SmackoverFormation,southeasternMississippisaltbasin.Geology,17(12),1080–1084.352

Huang,N.S.,Aho,G.E.,Baker,B.H.,Matthews,T.R.,&Pottorf,R. J. (2007). Integrated reservoir353

modeling tomaximize the value of a large sour-gas fieldwith high concentrations of inerts:354

InternationalPetroleumTechnologyConferencePaper11202.IPTCconferenceinDubai,UAE.355

Jenden,P.D.,Titley,P.A.,&Worden,R.H.(2015).Enrichmentofnitrogenand13Cofmethanein356

natural gases from the Khuff Formation, Saudi Arabia, caused by thermochemical sulfate357

reduction. Organic Geochemistry, 82, 54–68.358

https://doi.org/10.1016/j.orggeochem.2015.02.008359

Jiang,L.,Cai,C.,Worden,R.H.,Li,K.,Xiang,L.,Chu,X.,etal.(2015).Rareearthelementandyttrium360

(REY)geochemistryincarbonatereservoirsduringdeepburialdiagenesis:ImplicationsforREY361

Page 20: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

mobilityduringthermochemicalsulfatereduction.ChemicalGeology,415,87–101.362

Johnson,E.A.(2005).GeologicassessmentofundiscoveredoilandgasresourcesinthePhosphoria363

TotalPetroleumSystem,southwesternWyomingprovince,Wyoming,Colorado,andUtah.US364

GeologicalSurveySouthwesternWyomingProvinceAssessmentTeam,Eds.,PetroleumSystems365

and Geologic Assessment of Oil and Gas in the SouthwesternWyoming Province,Wyoming,366

Colorado,andUtah:USGeologicalSurveyDigitalDataSeriesDDS-69-D.367

Kampman, N., Bickle, M., Wigley, M., & Dubacq, B. (2014). Fluid flow and CO 2–fluid–mineral368

interactionsduringCO2-storageinsedimentarybasins.ChemicalGeology,369,22–50.369

Kaszuba, J. P., Navarre-Sitchler, A., Thyne, G., Chopping, C., &Meuzelaar, T. (2011). Supercritical370

carbondioxideandsulfur intheMadisonLimestone:AnaturalanaloginsouthwestWyoming371

for geologic carbon–sulfur co-sequestration. Earth and Planetary Science Letters, 309(1–2),372

131–140.https://doi.org/http://dx.doi.org/10.1016/j.epsl.2011.06.033373

Katz,D.A.(2008).EarlyandLateDiageneticProcessesofMississippianCarbonates,NorthernU.S.374

Rockies. Open Access Dissertations, Paper 154. Retrieved from375

http://scholarlyrepository.miami.edu/oa_dissertations/154/376

Katz, D. A., Eberli, G. P., Swart, P. K., & Smith, L. B. (2006). Tectonic-hydrothermal brecciation377

associatedwith calcite precipitation and permeability destruction inMississippian carbonate378

reservoirs, Montana and Wyoming. AAPG Bulletin, 90(11), 1803–1841.379

https://doi.org/10.1306/03200605072380

Katz,D.A.,Buoniconti,M.R.,Montañez,I.P.,Swart,P.K.,Eberli,G.P.,&Smith,L.B.(2007).Timing381

and local perturbations to the carbon pool in the lower Mississippian Madison Limestone,382

Montana and Wyoming. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3), 231–383

253.384

Page 21: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

King,H. E.,Walters,C.C.,Horn,W.C., Zimmer,M.,Heines,M.M., Lamberti,W.A., et al. (2014).385

Sulfur isotope analysis of bitumen and pyrite associated with thermal sulfate reduction in386

reservoir carbonates at the Big Piney–La Barge production complex. Geochimica et387

CosmochimicaActa,134,210–220.388

Kiyosu,Y.,&Krouse,H.R.(1990a).Theroleoforganicacidintheabiogenicreductionofsulfateand389

the sulfur isotope effect. Geochemical Journal, 24(1), 21–27.390

https://doi.org/10.2343/geochemj.24.21391

Kiyosu,Y.,&Krouse,R.H.(1990b).Theroleoforganicandacidtheinthesulfurabiogenic isotope392

reduction effect. Geochemical Journal, 24, 21–27. Retrieved from393

http://jlc.jst.go.jp/DN/JALC/00004729259?from=Google394

Koretsky,M.D.(2004).Engineeringandchemicalthermodynamics(Vol.2).WileyHoboken,NJ.395

Liu, Q. Y., Worden, R. H., Jin, Z. J., Liu, W. H., Li, J., Gao, B., et al. (2013). TSR versus non-TSR396

processesandtheir impactongasgeochemistryandcarbonstable isotopes inCarboniferous,397

Permian and Lower Triassic marine carbonate gas reservoirs in the Eastern Sichuan Basin,398

China.GeochimicaetCosmochimicaActa,100,96–115.399

Machel,H.G.(2001).Bacterialandthermochemicalsulfatereductionindiageneticsettings—oldand400

newinsights.SedimentaryGeology,140(1),143–175.401

Meshoulam,A.,Ellis,G.S.,SaidAhmad,W.,Deev,A.,Sessions,A.L.,Tang,Y.,etal.(2016).Studyof402

thermochemicalsulfatereductionmechanismusingcompoundspecificsulfurisotopeanalysis.403

Geochimica et Cosmochimica Acta, 188, 73–92.404

https://doi.org/http://dx.doi.org/10.1016/j.gca.2016.05.026405

Obidi, O. (2014). Timescales for the development of thermodynamic equilibrium in hydrocarbon406

reservoirs.ImperialCollegeLondon.407

Page 22: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

Ohmoto,H.,&Rye,R.O.(1979). Isotopesofsulfurandcarbon.GeochemistryofHydrothermalOre408

Deposits(Barnes,HL,ed.).JohnWiley&SonsInc.,NewYork.409

Orr, W. L. (1974). Changes in sulfur content and isotopic ratios of sulfur during petroleum410

maturation--studyofBigHornbasinPaleozoicoils.AAPGBulletin,58(11),2295–2318.411

Peng,D.-Y.,&Robinson,D.B.(1976).Anewtwo-constantequationofstate.Industrial&Engineering412

ChemistryFundamentals,15(1),59–64.413

Richard, L., Neuville, N., Sterpenich, J., Perfetti, E., & Lacharpagne, J. C. (2005). Thermodynamic414

analysis of organic/inorganic reactions involving sulfur: Implications for the sequestration of415

H2Sincarbonatereservoirs.Oil&GasScienceandTechnology,60(2),275–285.416

Riciputi, L. E. E. R., Macheu, H. G., & Colp, D. R. (1994). An ion microprobe study of diagenetic417

carbonates in thedevoniannisku formationofAlberta,Canada.GeochimicaetCosmochimica418

Acta, (1), 115–127. Retrieved from419

http://www.sciencedirect.com/science/article/pii/0016703796831334420

Roberts,L.N.R.,Lewan,M.D.,&Finn,T.M.(2005).Burialhistory,thermalmaturity,andoilandgas421

generation history of petroleum systems in the southwesternWyoming province,Wyoming,422

Colorado and Utah. US Geological Survey Southwest Wyoming Province Assessment Team:423

Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming424

Province,Wyoming,Colorado,andUtah:USGeologicalSurveyDigitalDataSeriesDDS-69-D.425

Smith, L. B., Eberli, G. P., & Sonnenfeld, M. (2004). Sequence-stratigraphic and paleogeographic426

distribution of reservoir-quality dolomite, Madison Formation, Wyoming and Montana.427

IntegrationofOutcropandModernAnalogs inReservoirModeling,AAPGMemoir80,80,67–428

92.https://doi.org/10.1306/61EED030-173E-11D7-8645000102C1865D429

Sonnenfeld,M.(1996).AnIntegratedSequenceStratigraphicApproachtoReservoirCharacterization430

Page 23: Carmen Zwahlen, Roy Wogelius, Cathy Hollis, Greg Hollandltu.diva-portal.org/smash/get/diva2:1356992/FULLTEXT01.pdf · 2019-10-02 · 1 Reaction path modelling illustrating the fluid

of the Lower Mississippian Madison Limestone, Emphasizing Elk Basin Field, Bighorn Basin,431

Wyoming and Montana. Colorado School of Mines. Retrieved from432

https://books.google.co.uk/books?id=g4TatwAACAAJ433

Stilwell,D.P.(1989).CO2resourcesoftheMoxaArchandtheMadisonReservoir,105–115.434

Williams,R.H.,&Paulo, S. (2002).MajorRoles for Fossil Fuels in anEnvironmentallyConstrained435

World. Sustainability in Energy Production and Utilization in Brazil: The next Twenty Years,436

2002(February), 18–20. Retrieved from437

http://www.feagri.unicamp.br/energia/energia2002/jdownloads/pdf/papers/paper_Williams.p438

df439

Worden, R. H., & Smalgeoley, P. C. (1996). H 2 S-producing reactions in deep carbonate gas440

reservoirs:KhuffFormation,AbuDhabi.ChemicalGeology,133(1),157–171.441

Worden, R. H., Smalley, P. C., & Oxtoby, N. H. (1995). Gas souring by thermochemical sulfate442

reductionat140C.AAPGBulletin,79(6),854–863.443

Zwahlen, C., Hollis, C., Lawson, M., Becker, S. P., Boyce, A., Zhou, Z., & Holland, G. (2019).444

ConstrainingtheFluidHistoryofaCO2-H2SReservoir:InsightsFromStableIsotopes,REE,and445

Fluid Inclusion Microthermometry. Geochemistry, Geophysics, Geosystems, 20(0).446

https://doi.org/10.1029/2018GC007900447

448

449