cermics.enpc.frcermics.enpc.fr/~cascavik/thesis_slides.pdf · 2018-12-17 · 3/52 the scope of the...

80
1/52 Hybrid discretization methods for Signorini contact and Bingham flow problems Karol Cascavita 1 Alexandre Ern 1 and Xavier Chateau 2 1 ENPC (CERMICS) & Inria 2 ENPC (Navier) December 18th, 2018 K. Cascavita HHO for Signorini and Bingham December 18th, 2018 1 / 52

Upload: others

Post on 11-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

1/52

Hybrid discretization methodsfor Signorini contact and Bingham flow problems

Karol Cascavita1

Alexandre Ern 1 and Xavier Chateau2

1 ENPC (CERMICS) & Inria 2 ENPC (Navier)

December 18th, 2018

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 1 / 52

Page 2: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

2/52

Motivations

Variational inequalities involving non smooth solutions

Contact problems

Deformable bodies into contact

Tribology, indentation hardenesstests, bearings, tires

Viscoplastic materials

Non-Newtonian fluids with solid orliquid-like behavior

Civil engineering, materialprocessing, petroleum drilling,food and cosmetics

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 2 / 52

Page 3: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

3/52

The scope of the thesis

Contact problems: Signorini’s unilateral contactContact with a rigid frictionless foundationContact surface not known a prioriNonlinearity on the boundary

u ≤ 0, σn(u) = n · ∇u ≤ 0, uσn(u) = 0

Viscoplasticity: Bingham modelRequire a finite yield stress to flow (solid or fluid-like behavior)Solid/liquid boundary not known a prioriNonlinearity in the domain: constitutive equation σ = 2µ∇su +

√2σ0

∇su

|∇su|`2yielded region (|σ|`2 >

√2σ0)

∇su = 0 unyielded region (|σ|`2 ≤√

2σ0)

σ not uniquely defined in the unyielded region

Finite Elements methods are the usual discretization techniqueUnilateral contact problems [Chouly & Hild 2013]Bingham [Bercovier & Engelman 1980], [Saramito & Roquet 2001-2003]

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 3 / 52

Page 4: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

4/52

From tetrahedral to polyhedral methods

Polyhedral meshes are a very active research topic

Local refinement and coarsening by agglomeration

Low-order schemes (k = 0)

Mimetic Finite Differences [Brezzi, Lipnikov & Shashkov 2005]Hybrid Finite Volumes [Eymard, Gallouet & Herbin 2010]Compatible Discrete Operator (CDO) schemes [Bonelle & Ern 2014]Unified approach [Droniou et al. 2010]

Higher-order schemes (k ≥ 1)

Discontinuous Galerkin methods [Arnold 1982], [Cockburn & Shu 1991]Virtual Element Method [Brezzi & Marini et al 2016]

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 4 / 52

Page 5: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

5/52

Hybrid High-Order methods

Face-based discretization

Main example for this thesis [Di Pietro & Ern 2014]

k = 0: closely related to HFVk ≥ 1: close links to HDG [Cockburn, Gopalakrishnan & Lazarov 2009]

HHO primal formulation 6= HDG mixed formulation

Face-DOFs and Cell-DOFs

Attractive features

Static condensation of cell-DOFsLocal conservationCompact stencil (3D)Dimension independent construction

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 5 / 52

Page 6: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

6/52

Main contributions: Signorini’s contact problem

Contact unilateral conditions

u ≤ 0, σn(u) ≤ 0, uσn(u) = 0

Reformulation [Curnier & Alart 88]:

σn(u) = [σn(u)− γu]R−

Numerical parameter γ > 0 and [x ]R− := min(x , 0).Treated in the consistency term of Nitsche’s method [Chouly & Hild 2013]

Contributions: Nitsche-HHO method

Poisson problemSignorini’s unilateral contact problemNitsche-HHO module in diskpp library[Cascavita, Chouly & Ern 2019]

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 6 / 52

Page 7: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

7/52

Main contributions: Bingham problem

Formulation of HHO within an augmented Lagrangian algorithm

Local mesh adaptation to track yield surface

Bingham module in diskpp library

Validation on several 2D tests cases

(Cascavita, Bleyer, Chateau & Ern, ’18 J Sci Comput)

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 7 / 52

Page 8: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

8/52

1 Nitsche-HHODiffusionSignorini’s unilateral condition

2 HHO for Bingham flowsAntiplanar configurationFull vector setting

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 8 / 52

Page 9: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

9/52

Outline

1 Nitsche-HHODiffusionSignorini’s unilateral condition

2 HHO for Bingham flowsAntiplanar configurationFull vector setting

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 9 / 52

Page 10: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

10/52

Outline for section 1

1 Nitsche-HHODiffusionSignorini’s unilateral condition

2 HHO for Bingham flowsAntiplanar configurationFull vector setting

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 10 / 52

Page 11: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

11/52

Global discrete problem

Model problem: −∆u = f on Ω; u = g on ΓMesh notations

Th Fh = Fbh ∪ F i

h

Ω

Γ

T1

T3

T2

T1

T3

T2

Global space Ukh interface DOFs are single valued

Ukh := Pk(Th)× Pk(Fh)

ukh = (uTh , uFh) ∈ Uk

h

Discrete global bilinear form: ah(uh, vh) =∑T∈Th

aT (uT , vT )

Simple cellwise assembly

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 11 / 52

Page 12: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

11/52

Global discrete problem

Model problem: −∆u = f on Ω; u = g on ΓMesh notations

Th Fh = Fbh ∪ F i

h

Ω

Γ

T1

T3

T2

T1

T3

T2

Global space Ukh interface DOFs are single valued

Ukh := Pk(Th)× Pk(Fh)

ukh = (uTh , uFh) ∈ Uk

h

Discrete global bilinear form: ah(uh, vh) =∑T∈Th

aT (uT , vT )

Simple cellwise assembly

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 11 / 52

Page 13: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

11/52

Global discrete problem

Model problem: −∆u = f on Ω; u = g on ΓMesh notations

Th Fh = Fbh ∪ F i

h

Ω

Γ

T1

T3

T2

T1

T3

T2

Global space Ukh interface DOFs are single valued

Ukh := Pk(Th)× Pk(Fh)

UkT := Pk(T )× Pk(F∂T )

ukh = (uTh , uFh) ∈ Uk

h

ukT = (uT , u∂T ) ∈ UkT

Discrete global bilinear form: ah(uh, vh) =∑T∈Th

aT (uT , vT )

Simple cellwise assemblyK. Cascavita HHO for Signorini and Bingham December 18th, 2018 11 / 52

Page 14: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

12/52

Local operators

T

F∂T = F1,F2,F3,F4

F4F2

F1

F3

Rk+1T : computed from local Neumann problems (mean value condition)

(∇Rk+1T (uT ),∇z)T = −(uT ,∆z)T + (u∂T ,nT · ∇z)∂T ∀z ∈ Pk+1(T )

The local contributions

aT (uT , vT ) := (∇Rk+1T (uT ),∇Rk+1

T (vT ))T

Stability norm: |vT |2UkT

:= ‖∇vT‖2T + ‖h− 1

2 (v∂T − vT )‖2∂T

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 12 / 52

Page 15: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

12/52

Local operators

T

F∂T

vT = (vT , v∂T )

Rk+1T : computed from local Neumann problems (mean value condition)

(∇Rk+1T (uT ),∇z)T = −(uT ,∆z)T + (u∂T ,nT · ∇z)∂T ∀z ∈ Pk+1(T )

The local contributions

aT (uT , vT ) := (∇Rk+1T (uT ),∇Rk+1

T (vT ))T

Stability norm: |vT |2UkT

:= ‖∇vT‖2T + ‖h− 1

2 (v∂T − vT )‖2∂T

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 12 / 52

Page 16: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

12/52

Local operators

T

F∂T

vT = (vT , v∂T )

T

vF4 vF2

vF1

vF3

vT

∈ UkT = Pk(T )× Pk(F∂T ) (ex. k = 0)

Rk+1T : computed from local Neumann problems (mean value condition)

(∇Rk+1T (uT ),∇z)T = −(uT ,∆z)T + (u∂T ,nT · ∇z)∂T ∀z ∈ Pk+1(T )

The local contributions

aT (uT , vT ) := (∇Rk+1T (uT ),∇Rk+1

T (vT ))T

Stability norm: |vT |2UkT

:= ‖∇vT‖2T + ‖h− 1

2 (v∂T − vT )‖2∂T

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 12 / 52

Page 17: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

12/52

Local operators

T

F∂T

vT = (vT , v∂T )

T

vF4 vF2

vF1

vF3

vT

∈ UkT = Pk(T )× Pk(F∂T ) (ex. k = 0) Pk+1(T )

Local reconstructionoperator

Rk+1T

T

Rk+1T : computed from local Neumann problems (mean value condition)

(∇Rk+1T (uT ),∇z)T = −(uT ,∆z)T + (u∂T ,nT · ∇z)∂T ∀z ∈ Pk+1(T )

The local contributions

aT (uT , vT ) := (∇Rk+1T (uT ),∇Rk+1

T (vT ))T

Stability norm: |vT |2UkT

:= ‖∇vT‖2T + ‖h− 1

2 (v∂T − vT )‖2∂T

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 12 / 52

Page 18: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

12/52

Local operators

T

F∂T

vT = (vT , v∂T )

T

vF4 vF2

vF1

vF3

vT

∈ UkT = Pk(T )× Pk(F∂T ) (ex. k = 0) Pk+1(T )

Local reconstructionoperator

Rk+1T

T

Rk+1T : computed from local Neumann problems (mean value condition)

(∇Rk+1T (uT ),∇z)T = −(uT ,∆z)T + (u∂T ,nT · ∇z)∂T ∀z ∈ Pk+1(T )

The local contributions

aT (uT , vT ) := (∇Rk+1T (uT ),∇Rk+1

T (vT ))T

Stability norm: |vT |2UkT

:= ‖∇vT‖2T + ‖h− 1

2 (v∂T − vT )‖2∂T

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 12 / 52

Page 19: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

12/52

Local operators

T

F∂T

vT = (vT , v∂T )

T

vF4 vF2

vF1

vF3

vT

∈ UkT = Pk(T )× Pk(F∂T ) (ex. k = 0) Pk+1(T )

Local reconstructionoperator

Rk+1T

T

Rk+1T : computed from local Neumann problems (mean value condition)

(∇Rk+1T (uT ),∇z)T = −(uT ,∆z)T + (u∂T ,nT · ∇z)∂T ∀z ∈ Pk+1(T )

The local contributions

aT (uT , vT ) := (∇Rk+1T (uT ),∇Rk+1

T (vT ))T

but ∇Rk+1T (uT ) = 0 ; uT = uF = cst

Stability norm: |vT |2UkT

:= ‖∇vT‖2T + ‖h− 1

2 (v∂T − vT )‖2∂T

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 12 / 52

Page 20: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

12/52

Local operators

T

F∂T

vT = (vT , v∂T )

T

vF4 vF2

vF1

vF3

vT

∈ UkT = Pk(T )× Pk(F∂T ) (ex. k = 0) Pk+1(T )

Local reconstructionoperator

Rk+1T

T

Rk+1T : computed from local Neumann problems (mean value condition)

(∇Rk+1T (uT ),∇z)T = −(uT ,∆z)T + (u∂T ,nT · ∇z)∂T ∀z ∈ Pk+1(T )

The local contributions

aT (uT , vT ) := (∇Rk+1T (uT ),∇Rk+1

T (vT ))T + (h−1T Sk

∂T (uT ),Sk∂T (vT ))∂T

Sk∂T (uT ) := (u∂T − uT )∂T︸ ︷︷ ︸

HDG−like term

− (πk∂TR

k+1T (uT )− πk

TRk+1T (uT ))∂T︸ ︷︷ ︸

HHO−higher−order term

Stability norm: |vT |2UkT

:= ‖∇vT‖2T + ‖h− 1

2 (v∂T − vT )‖2∂T

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 12 / 52

Page 21: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

13/52

Imposing weakly Dirichlet boundary conditions

Nitsche-FEM:

aγ,h(uh, vh) =∑T∈Th

(∇uh,∇vh)T︸ ︷︷ ︸Galerkin

−∑F∈Fb

h

(σn(uh), vh︸ ︷︷ ︸consistency

)F

+(uh, γvh − σn(vh)︸ ︷︷ ︸

penalty & symmetry

)F

Nitsche-HHO

aγ,h(uh, vh) =∑T∈Th

aT (uT , vT )︸ ︷︷ ︸Galerkin

−∑F∈Fb

h

(σHHO

n (uT ),︸ ︷︷ ︸consistency

)F

+(, γ − σHHO

n (vT )︸ ︷︷ ︸penalty & symmetry

)F

Numerical parameter γ = γ0h−1 and γ0 > 0

Normal stress σHHOn

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 13 / 52

Page 22: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

13/52

Imposing weakly Dirichlet boundary conditions

Nitsche-FEM:

aγ,h(uh, vh) =∑T∈Th

(∇uh,∇vh)T︸ ︷︷ ︸Galerkin

−∑F∈Fb

h

(σn(uh), vh︸ ︷︷ ︸consistency

)F

+(uh, γvh − σn(vh)︸ ︷︷ ︸

penalty & symmetry

)F

Nitsche-HHO

aγ,h(uh, vh) =∑T∈Th

aT (uT , vT )︸ ︷︷ ︸Galerkin

−∑F∈Fb

h

(σHHO

n (uT ), v?︸ ︷︷ ︸consistency

)F

+(u?, γv? − σHHO

n (vT )︸ ︷︷ ︸penalty & symmetry

)F

Numerical parameter γ = γ0h−1 and γ0 > 0

Normal stress σHHOn

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 13 / 52

Page 23: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

13/52

Imposing weakly Dirichlet boundary conditions

Nitsche-FEM:

aγ,h(uh, vh) =∑T∈Th

(∇uh,∇vh)T︸ ︷︷ ︸Galerkin

−∑F∈Fb

h

(σn(uh), vh︸ ︷︷ ︸consistency

)F

+(uh, γvh − σn(vh)︸ ︷︷ ︸

penalty & symmetry

)F

Nitsche-HHO with Face-based trace

aγ,h(uh, vh) =∑T∈Th

aT (uT , vT )︸ ︷︷ ︸Galerkin

−∑F∈Fb

h

(σHHO

n (uT ), vF︸ ︷︷ ︸consistency

)F

+(uF , γvF − σHHO

n (vT )︸ ︷︷ ︸penalty & symmetry

)F

Numerical parameter γ = γ0h−1 and γ0 > 0

Normal stress σHHOn (vT ) = σn(Rk+1

T (uT ))

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 13 / 52

Page 24: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

13/52

Imposing weakly Dirichlet boundary conditions

Nitsche-FEM:

aγ,h(uh, vh) =∑T∈Th

(∇uh,∇vh)T︸ ︷︷ ︸Galerkin

−∑F∈Fb

h

(σn(uh), vh︸ ︷︷ ︸consistency

)F

+(uh, γvh − σn(vh)︸ ︷︷ ︸

penalty & symmetry

)F

Nitsche-HHO with Cell-based trace

aγ,h(uh, vh) =∑T∈Th

aT (uT , vT )︸ ︷︷ ︸Galerkin

−∑F∈Fb

h

(σHHO

n (uT ), vT︸ ︷︷ ︸consistency

)F

+(uT , γvT − σHHO

n (vT )︸ ︷︷ ︸penalty & symmetry

)F

Numerical parameter γ = γ0h−1 and γ0 > 0

Normal stress σHHOn needs to be modified

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 13 / 52

Page 25: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

14/52

Error estimate

RHSˆγ,h(vh) :=

∑T∈Th

(f , vT )T −∑F∈Fb

h

(g , σHHO

n (vT )− γv)F

Global problem Find uh ∈ Uk

h such that

aγ,h(uh, vh) = ˆγ,h(vh) ∀vh ∈ Uk

h

Consistency error: For any test function vh ∈ Ukh

Eh(vh) := ˆγ,h(vh)− aγ,h(I kh (u), vh)

with local projection operator I kT (u) = (πkT (u), πk

∂T (u|∂T )) ∈ UkT

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 14 / 52

Page 26: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

15/52

Error estimate

Key property: Pk+1T := Rk+1

T I kT is the local elliptic projector

Approximation property: letting δ := u − Pk+1T (u), we have

‖δ‖T + h12

T‖δ‖∂T + hT‖∇δ‖T + h32

T‖σn(δ)‖∂T . hk+2T |u|Hk+2(T )

Bound on consistency error

|Eh(vh)| .(∑T∈Th

‖∇δ‖2T + hT‖σn(δ)‖2

∂T

) 12 ‖vh‖Uk

h

=: ‖δ‖†‖vh‖Ukh

This leads to the optimal energy-error estimate(∑T∈Th

‖∇(u − Rk+1T (uT ))‖2

T

) 12

. O(hk+1)

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 15 / 52

Page 27: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

16/52

Bound on consistency error

ComputationEh(vh) = ˆ

γ,h(vh)− aγ,h(I kh (u), vh)

Re-arranging yields Eh(vh) = T1 + T2 − stab

IBP on (−∆u, vT )T + def. of ∇Rk+1T (vT ) =⇒ |T1| . ‖δ‖†‖vh‖Uk

h

Crucially T2 = 0: this is the property lost in the nonlinear casestab . ‖δ‖†‖vh‖Uk

has in the usual HHO analysis

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 16 / 52

Page 28: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

16/52

Bound on consistency error

ComputationEh(vh) = ˆ

γ,h(vh)︸ ︷︷ ︸rhs

−∑

T∈Th

(∇Rk+1T I kT (u),∇Rk+1

T (vT ))T

︸ ︷︷ ︸Galerkin

+∑

F∈Fbh

(σn(Rk+1

T I kT (u)), vF)F︸ ︷︷ ︸

consistency

+(πkF (u), σHHO

n (vT )− γvF)F︸ ︷︷ ︸

penalty & symmetry

− stab

Re-arranging yields Eh(vh) = T1 + T2 − stab

IBP on (−∆u, vT )T + def. of ∇Rk+1T (vT ) =⇒ |T1| . ‖δ‖†‖vh‖Uk

h

Crucially T2 = 0: this is the property lost in the nonlinear casestab . ‖δ‖†‖vh‖Uk

has in the usual HHO analysis

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 16 / 52

Page 29: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

16/52

Bound on consistency error

ComputationEh(vh) = ˆ

γ,h(vh)︸ ︷︷ ︸rhs

−∑

T∈Th

(∇Pk+1T (u),∇Rk+1

T (vT ))T

︸ ︷︷ ︸Galerkin

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

+(πkF (u), σHHO

n (vT )− γvF)F︸ ︷︷ ︸

penalty & symmetry

− stab

Re-arranging yields Eh(vh) = T1 + T2 − stab

IBP on (−∆u, vT )T + def. of ∇Rk+1T (vT ) =⇒ |T1| . ‖δ‖†‖vh‖Uk

h

Crucially T2 = 0: this is the property lost in the nonlinear casestab . ‖δ‖†‖vh‖Uk

has in the usual HHO analysis

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 16 / 52

Page 30: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

16/52

Bound on consistency error

ComputationEh(vh) =

∑T∈T

h

(−∆u, vT )T −∑

F∈Fbh

(u, σHHO

n (vT )− γvF)F︸ ︷︷ ︸

rhs

−∑

T∈Th

(∇Pk+1T (u),∇Rk+1

T (vT ))T

︸ ︷︷ ︸Galerkin

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

+∑

F∈Fbh

(πkF (u), σHHO

n (vT )− γvF)F︸ ︷︷ ︸

penalty & symmetry

− stab

Re-arranging yields Eh(vh) = T1 + T2 − stab

IBP on (−∆u, vT )T + def. of ∇Rk+1T (vT ) =⇒ |T1| . ‖δ‖†‖vh‖Uk

h

Crucially T2 = 0: this is the property lost in the nonlinear casestab . ‖δ‖†‖vh‖Uk

has in the usual HHO analysis

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 16 / 52

Page 31: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

16/52

Bound on consistency error

ComputationEh(vh) =

∑T∈T

h

(−∆u, vT )T −∑

F∈Fbh

(u, σHHO

n (vT )− γvF)F︸ ︷︷ ︸

rhs

−∑

T∈Th

(∇Pk+1T (u),∇Rk+1

T (vT ))T

︸ ︷︷ ︸Galerkin

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

+∑

F∈Fbh

(πkF (u), σHHO

n (vT )− γvF)F︸ ︷︷ ︸

penalty & symmetry

− stab

Re-arranging yields Eh(vh) = T1 + T2 − stab

IBP on (−∆u, vT )T + def. of ∇Rk+1T (vT ) =⇒ |T1| . ‖δ‖†‖vh‖Uk

h

Crucially T2 = 0: this is the property lost in the nonlinear casestab . ‖δ‖†‖vh‖Uk

has in the usual HHO analysis

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 16 / 52

Page 32: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

16/52

Bound on consistency error

ComputationEh(vh) =

∑T∈T

h

(u − πk

F (u), σHHOn (vT )− γvF

)F︸ ︷︷ ︸

penalty & symmetry

+∑

T∈Th

(−∆u, vT )T

−∑

T∈Th

(∇Pk+1T (u),∇Rk+1

T (vT ))T

︸ ︷︷ ︸Galerkin

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

− stab

Re-arranging yields Eh(vh) = T1 + T2 − stab

IBP on (−∆u, vT )T + def. of ∇Rk+1T (vT ) =⇒ |T1| . ‖δ‖†‖vh‖Uk

h

Crucially T2 = 0: this is the property lost in the nonlinear casestab . ‖δ‖†‖vh‖Uk

has in the usual HHO analysis

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 16 / 52

Page 33: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

16/52

Bound on consistency error

ComputationEh(vh) =

∑T∈T

h

(u − πk

F (u), σHHOn (vT )− γvF

)F︸ ︷︷ ︸

penalty & symmetry

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT )∂T

−∑

T∈Th

(∇Pk+1T (u),∇Rk+1

T (vT ))T

︸ ︷︷ ︸Galerkin

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

Re-arranging yields Eh(vh) = T1 + T2 − stab

IBP on (−∆u, vT )T + def. of ∇Rk+1T (vT ) =⇒ |T1| . ‖δ‖†‖vh‖Uk

h

Crucially T2 = 0: this is the property lost in the nonlinear casestab . ‖δ‖†‖vh‖Uk

has in the usual HHO analysis

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 16 / 52

Page 34: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

16/52

Bound on consistency error

ComputationEh(vh) =

∑T∈T

h

(u − πk

F (u), σHHOn (vT )− γvF

)F︸ ︷︷ ︸

penalty & symmetry

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT )∂T

−∑

T∈Th

(∇Pk+1T (u),∇vT )T + (σn(Pk+1

T (u)), v∂T − vT )∂T

︸ ︷︷ ︸Galerkin: def ∇Rk+1

T (vT )

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

Re-arranging yields Eh(vh) = T1 + T2 − stab

IBP on (−∆u, vT )T + def. of ∇Rk+1T (vT ) =⇒ |T1| . ‖δ‖†‖vh‖Uk

h

Crucially T2 = 0: this is the property lost in the nonlinear casestab . ‖δ‖†‖vh‖Uk

has in the usual HHO analysis

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 16 / 52

Page 35: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

16/52

Bound on consistency error

ComputationEh(vh) =

∑T∈T

h

(u − πk

F (u), σHHOn (vT )− γvF

)F︸ ︷︷ ︸

penalty & symmetry

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT − v∂T )∂T −∑

F∈Fbh

(σn(u), vF )F

−∑

T∈Th

(∇Pk+1T (u),∇vT )T + (σn(Pk+1

T (u)), v∂T − vT )∂T

︸ ︷︷ ︸Galerkin: def ∇Rk+1

T (vT )

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

Re-arranging yields Eh(vh) = T1 + T2 − stab

IBP on (−∆u, vT )T + def. of ∇Rk+1T (vT ) =⇒ |T1| . ‖δ‖†‖vh‖Uk

h

Crucially T2 = 0: this is the property lost in the nonlinear casestab . ‖δ‖†‖vh‖Uk

has in the usual HHO analysis

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 16 / 52

Page 36: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

16/52

Bound on consistency error

ComputationEh(vh) =

∑T∈T

h

(u − πk

F (u), σHHOn (vT )− γvF

)F︸ ︷︷ ︸

penalty & symmetry

+∑

T∈Th

(∇δ,∇vT )T − (σn(δ), vT − v∂T )∂T −∑

F∈Fbh

(σn(δT ), vF )F

Re-arranging yields Eh(vh) = T1 + T2 − stab

IBP on (−∆u, vT )T + def. of ∇Rk+1T (vT ) =⇒ |T1| . ‖δ‖†‖vh‖Uk

h

Crucially T2 = 0: this is the property lost in the nonlinear casestab . ‖δ‖†‖vh‖Uk

has in the usual HHO analysis

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 16 / 52

Page 37: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

17/52

Problems with face-based traces

Unfortunaly we cannot prove optimal estimates for Signorini’s problem

We can do so with cell traces!

Cell-based unknowns now in Pk+1(T )

Still locally eliminated by static condensation

Similar ideas in [Burman & Ern, 2018] for CutHHO

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 17 / 52

Page 38: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

18/52

Analysis for Cell-based traces

New reconstruction

to bound T1 as above, we need to modify the reconstructionwe modify the contribution of boundary faces

(∇Rk+1T (uT ),∇z)T = −(uT ,∆z)T + (u∂T , nT · ∇z)∂T

Pk+1T\Γ := Rk+1

T\Γ IkT\Γ is no longer the local elliptic projection ... but optimal

approximation properties are preserved!

Approximation property: letting δ∗ := u − Pk+1T\Γ(u), we still have

‖δ∗‖T + h12

T‖δ∗‖∂T + hT‖∇δ∗‖T + h32

T‖σn(δ∗)‖∂T . hk+2T |u|Hk+2(T )

This leads to the optimal energy-error estimate(∑T∈Th

‖∇(u − Rk+1T\Γ(uT ))‖2

T

) 12

. O(hk+1)

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 18 / 52

Page 39: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

18/52

Analysis for Cell-based traces

New reconstruction

to bound T1 as above, we need to modify the reconstructionwe modify the contribution of boundary faces

(∇Rk+1T\Γ(uT ),∇z)T = −(uT ,∆z)T + (u∂T , nT · ∇z)∂T\Γ

Pk+1T\Γ := Rk+1

T\Γ IkT\Γ is no longer the local elliptic projection ... but optimal

approximation properties are preserved!

Approximation property: letting δ∗ := u − Pk+1T\Γ(u), we still have

‖δ∗‖T + h12

T‖δ∗‖∂T + hT‖∇δ∗‖T + h32

T‖σn(δ∗)‖∂T . hk+2T |u|Hk+2(T )

This leads to the optimal energy-error estimate(∑T∈Th

‖∇(u − Rk+1T\Γ(uT ))‖2

T

) 12

. O(hk+1)

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 18 / 52

Page 40: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

19/52

Consistency error

. . . still defined as Eh(vh) := ˆγ,h(vh)− aγ,h(I kh (u), vh)

Face-based trace method

Eh(vh) =∑

T∈Th

(u − πk

F (u), σHHOn (vT )− γvF

)F

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT − v∂T )∂T −∑

F∈Fbh

(σn(u), vF )F

−∑

T∈Th

(∇Pk+1T (u),∇vT )T + (σn(Pk+1

T (u)), v∂T − vT )∂T

︸ ︷︷ ︸Galerkin: def ∇Rk+1

T (vT )

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

Cell-based trace method

Eh(vh) =∑

T∈Th

(u − πk+1

T (u), σHHOn (vT )− γvT

)F

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT )∂T

−∑

T∈Th

(∇Pk+1T (u),∇vT )T + (σn(Pk+1

T (u)), v∂T − vT )∂T

︸ ︷︷ ︸Galerkin: def ∇Rk+1

T (vT )

+∑

F∈Fbh

(σn(Pk+1

T\Γ(u)), vT)F︸ ︷︷ ︸

consistency

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 19 / 52

Page 41: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

19/52

Consistency error

. . . still defined as Eh(vh) := ˆγ,h(vh)− aγ,h(I kh (u), vh)

Face-based trace method

Eh(vh) =∑

T∈Th

(u − πk

F (u), σHHOn (vT )− γvF

)F

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT − v∂T )∂T −∑

F∈Fbh

(σn(u), vF )F

−∑

T∈Th

(∇Pk+1T (u),∇vT )T + (σn(Pk+1

T (u)), v∂T − vT )∂T

︸ ︷︷ ︸Galerkin: def ∇Rk+1

T (vT )

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

Cell-based trace method

Eh(vh) =∑

T∈Th

(u − πk+1

T (u), σHHOn (vT )− γvT

)F

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT )∂T\Γ −∑

F∈Fbh

(σn(u), vT )F

−∑

T∈Th

(∇Pk+1T (u),∇vT )T + (σn(Pk+1

T (u)), v∂T − vT )∂T

︸ ︷︷ ︸Galerkin: def ∇Rk+1

T (vT )

+∑

F∈Fbh

(σn(Pk+1

T\Γ(u)), vT)F︸ ︷︷ ︸

consistency

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 19 / 52

Page 42: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

19/52

Consistency error

. . . still defined as Eh(vh) := ˆγ,h(vh)− aγ,h(I kh (u), vh)

Face-based trace method

Eh(vh) =∑

T∈Th

(u − πk

F (u), σHHOn (vT )− γvF

)F

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT − v∂T )∂T −∑

F∈Fbh

(σn(u), vF )F

−∑

T∈Th

(∇Pk+1T (u),∇vT )T + (σn(Pk+1

T (u)), v∂T − vT )∂T

︸ ︷︷ ︸Galerkin: def ∇Rk+1

T (vT )

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

Cell-based trace method

Eh(vh) =∑

T∈Th

(u − πk+1

T (u), σHHOn (vT )− γvT

)F

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT − v∂T )∂T\Γ −∑

F∈Fbh

(σn(u), vT )F

−∑

T∈Th

(∇Pk+1T (u),∇vT )T + (σn(Pk+1

T (u)), v∂T − vT )∂T

︸ ︷︷ ︸Galerkin: def ∇Rk+1

T (vT )

+∑

F∈Fbh

(σn(Pk+1

T\Γ(u)), vT)F︸ ︷︷ ︸

consistency

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 19 / 52

Page 43: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

19/52

Consistency error

. . . still defined as Eh(vh) := ˆγ,h(vh)− aγ,h(I kh (u), vh)

Face-based trace method

Eh(vh) =∑

T∈Th

(u − πk

F (u), σHHOn (vT )− γvF

)F

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT − v∂T )∂T −∑

F∈Fbh

(σn(u), vF )F

−∑

T∈Th

(∇Pk+1T (u),∇vT )T + (σn(Pk+1

T (u)), v∂T − vT )∂T

︸ ︷︷ ︸Galerkin: def ∇Rk+1

T (vT )

+∑

F∈Fbh

(σn(Pk+1

T (u)), vF)F︸ ︷︷ ︸

consistency

Cell-based trace method

Eh(vh) =∑

T∈Th

(u − πk+1

T (u), σHHOn (vT )− γvT

)F

+∑

T∈Th

(∇u,∇vT )T − (σn(u), vT − v∂T )∂T\Γ −∑

F∈Fbh

(σn(u), vT )F

−∑

T∈Th

(∇Pk+1T\Γ(u),∇vT )T + (σn(Pk+1

T\Γ(u)), v∂T − vT )∂T\Γ

︸ ︷︷ ︸Galerkin: def ∇Rk+1

T\Γ(vT )

+∑

F∈Fbh

(σn(Pk+1

T\Γ(u)), vT)F︸ ︷︷ ︸

consistency

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 19 / 52

Page 44: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

20/52

Diffusion: test case

Analytical solution u in the unit square

u = cos(πx) cos(πy)

Energy error vs h:0.1 0.2 0.4 0.6

10-6

10-4

10-2

100

Err

or

Hexagons

k = 0 k = 1 k = 2 k = 3

0.785

2.087

3.235

4.198

0.025 0.05 0.1 0.2

h

10-8

10-6

10-4

10-2

100

Err

or

Face-based traces

1.122

2.003

2.911

3.873

0.025 0.05 0.1 0.2

h

10-8

10-6

10-4

10-2

100

Err

or

Cell-based traces

2.889

3.876

1.984

1.101

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 20 / 52

Page 45: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

21/52

Outline for section 2

1 Nitsche-HHODiffusionSignorini’s unilateral condition

2 HHO for Bingham flowsAntiplanar configurationFull vector setting

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 21 / 52

Page 46: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

22/52

Signorini’s unilateral contact problem

Model problem

−∆u = f in Ω

u = g on ΓD

Contact conditions

u ≤0 on ΓS

σn(u) ≤0 on ΓS

uσn(u) =0 on ΓS

Reformulation of Curnier & Alart:

σn(u) = [σn(u)− γu]R− on ΓS

ΩΓD

ΓS

ΓD

ΓD

u=0σn≤0

u<0σn=0

No contactContact

Γ = ΓD ∪ ΓS

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 22 / 52

Page 47: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

23/52

Nitsche for Signorini’s problem

Nitsche-FEM [Chouly & Hild 2013]

aγ,h(uh; vh) :=∑T∈Th

(∇uh,∇vh)T −∑

F∈Fb,Sh

1

γ

(σn(uh), σn(vh)

)︸ ︷︷ ︸

symmetry

+∑

F∈Fb,Sh

1

γ

([σn(uh)− γuh)]R− , σn(uh)︸ ︷︷ ︸

penalty

− γvh)F︸ ︷︷ ︸

consistency

Nitsche-HHO [Cascavita et al. 2019]

aγ,h(uh; vh) :=∑T∈Th

aT (uT , vT )︸ ︷︷ ︸Galerkin

−∑

F∈Fb,Sh

1

γ

(σHHO

n (uT ), σHHO

n (vT )︸ ︷︷ ︸symmetry

)F

+∑

F∈Fb,Sh

1

γ

([σHHO

n (uT )− γuT (F )

]R− , σ

HHO

n (vT )︸ ︷︷ ︸coercivity

− γvT︸︷︷︸consistency

)F

Optimal energy-error estimate: u ∈ Hk+1(Ω)∑T∈Th

‖∇(u − Rk+1T\

(uT ))‖2T .

∑T∈Th

h2(k+1)T |u|2Hk+2(T )

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 23 / 52

Page 48: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

24/52

Signorini: Manufactured solution test case

Analytical solution u

u(r , θ) = −r 112 sin

(11

), with θ ∈ [−π, 0]

-1

-0.5-2

-1

0

1

1

2

3

0.5

4

0 0-0.5 -1

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-

= 0

0

u

n(u)

Contact:

u

n(u) =

0

0

No contact:

-1-2

y

1 -0.5

0u

2

x

0

4

0-1

-1

0

1

2

3

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 24 / 52

Page 49: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

25/52

Signorini: Results

Meshes:

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy error vs h: 0.1 0.2 0.4 0.610

-6

10-4

10-2

100

Err

or

Hexagons

k = 0 k = 1 k = 2 k = 3

0.785

2.087

3.235

4.198

0.05 0.1 0.2

h

10-6

10-4

10-2

100

Err

or

Triangles

2.960

1.921

3.945

0.908

0.025 0.05 0.1 0.2

h

10-8

10-6

10-4

10-2

100

Err

or

Square

1.922

2.957

3.969

0.939

0.1 0.2 0.4 0.6

h

10-6

10-4

10-2

100

Err

or

Hexagons

k = 0

k = 1

k = 2

k = 3

0.785

2.087

3.235

4.198

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 25 / 52

Page 50: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

26/52

Outline

1 Nitsche-HHODiffusionSignorini’s unilateral condition

2 HHO for Bingham flowsAntiplanar configurationFull vector setting

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 26 / 52

Page 51: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

27/52

Model problem

Conservation laws: Total stress tensor σtot and velocity field u

div σtot + f = 0 in Ω

div u = 0 in Ω

Constitutive equation (liquid / solid) σ = 2µ∇su +√

2σ0∇su

|∇su|`2

yielded (|σ|`2 >√

2σ0)

∇su = 0 unyielded (|σ|`2 ≤√

2σ0)

Viscosity µ > 0, yield stress limit σ0 > 0, σ = σtot − (1/3)tr(σtot)Id .

Require a finite yield stress to flow (liquid or solid-like behavior)

Liquid/Solid boundary not known a priori

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 27 / 52

Page 52: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

27/52

Model problem

Conservation laws: Total stress tensor σtot and velocity field u

div σtot + f = 0 in Ω

div u = 0 in Ω

Constitutive equation (liquid / solid)σ = 2µ∇su︸ ︷︷ ︸

viscous term

+√

2σ0∇su

|∇su|`2︸ ︷︷ ︸plastic term

yielded (|σ|`2 >√

2σ0)

∇su = 0 unyielded (|σ|`2 ≤√

2σ0)

Viscosity µ > 0, yield stress limit σ0 > 0, σ = σtot − (1/3)tr(σtot)Id .

Require a finite yield stress to flow (liquid or solid-like behavior)

Liquid/Solid boundary not known a priori

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 27 / 52

Page 53: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

28/52

State of the art

Mathematical formulation:

Regularization of constitutive law:

Artificial parameter [Bercovier & Engelman 1980, Papanastasiou 1987]The yield surface is not well captured

Augmented Lagrangian algorithm (ALG):

[Hestenes 1969, Powell 1969], for Bingham [Fortin & Glowinski 1983]Favorite method for viscoplastic flows [Saramito & Wachs 2017]

Recent improvements:

Adaptive augmentation [Bartels & Milicevic 2017],Accelerated version [Treskatis, Moyers-Gonzalez & Price 2016]Lagrangian & conic programming [Bleyer, Maillard, de Buhan & Coussot 2015]Damped Newton algorithm [Saramito 2016]

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 28 / 52

Page 54: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

29/52

Augmented Lagrangian formulation

Continuous velocity field

u = arg minv∈V0(Ω)

∫Ω

H(∇sv)dΩ− (f, v)Ω

with the subspace of velocities with zero divergence

V0(Ω) := v ∈ H10(Ω) | ∇ · v = 0

and dissipation energy density

H(g) = µ|g|2`2 +√

2σ0|g|`2

Augmented Lagrangian: L : V0(Ω)× L2(Ω;Rd×d

s )× L2(Ω;Rd×d

s )→ R

L(u,γ,σ) :=

∫Ω

H(γ)dΩ− (f,u)Ω + (σ,∇su− γ)Ω + α‖∇su− γ‖2Ω

Auxiliary variable γ interpreted as strain rateLagrange multiplier σ turns out to be the stressAugmentation parameter α > 0

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 29 / 52

Page 55: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

30/52

Continuous ALG

Compute γn+1 ∈ L2(Ω;Rd×ds ) such that:

γn+1 :=

1

2(α + µ)

(|θn|`2 −

√2σ0

) θn

|θn|`2

unyielded region

0 yielded region

where θn := σn + 2α∇sun

Seek (un+1, pn+1) ∈ H10(Ω)× L2

0(Ω) s.t.

2α(∇sun+1,∇sv)Ω − (pn+1,∇·v)Ω = (f , v)Ω − (σn − 2αγn+1,∇sv)Ω

(q,∇·un+1)Ω = 0

Update the Lagrange multiplier σn+1 ∈ L2(Ω;Rd×ds ):

σn+1 := σn + 2α(∇sun+1 − γn+1)

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 30 / 52

Page 56: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

31/52

Outline for section 1

1 Nitsche-HHODiffusionSignorini’s unilateral condition

2 HHO for Bingham flowsAntiplanar configurationFull vector setting

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 31 / 52

Page 57: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

32/52

Antiplanar flows

Constitutive equation: σ = µ∇u + σ0∇u|∇u|`2

yielded

∇u = 0 unyielded

Continuous velocity field

u = arg minv∈H1

0 (Ω)

∫Ω

H(∇v)dΩ− (f , v)Ω

f

ez

ey

ex

u(x) = (0, 0, u(x))T

Augmented Lagrangian L : H10 (Ω)× L

2(Ω)× L2(Ω)→ R

L(u,γ,σ) :=

∫Ω

H(γ)dΩ− (f , u)Ω + (σ,∇u − γ)Ω +α

2‖∇u − γ‖2

Ω

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 32 / 52

Page 58: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

33/52

Lowest-order HHO

Cell velocities (scalar) are locally eliminated

Global linear system for face velocities

γ and σ vector locally evaluated

Velocity u γ − σ(ALG)

Local gradient reconstruction operator (HFV) GT : UT → P0(T ;Rd)

GT (vT ) =∑

F∈F∂T

|F |d−1

|T |d(vF − vT )nT ,F

Discrete bilinear form

aT (uT , vT ) = (GT (uT ),GT (vT ))T + (h−1T S∂T (uT ),S∂T (vT ))∂T

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 33 / 52

Page 59: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

34/52

Lowest-order HHO with ALG

Continuous velocity field

u = arg minv∈H1

0 (Ω)

∫Ω

H(∇v)dΩ− (f , v)Ω

Discrete velocity field

uh = arg minvh∈Uh,0

∑T∈Th

∫T

H(GT (vT ))− (f , vT )T +α

2‖h−

12

T S∂T (vT )‖2∂T

Augmented Lagrangian: L : H1

0 (Ω)× L2(Ω)× L

2(Ω)→ R

L(v ,γ,σ) :=

∫Ω

H(γ)dΩ− (f , v)Ω + (σ,∇v − γ)Ω +α

2‖∇v − γ‖2

Ω

Discrete Augmented Lagrangian: Lh : Uh,0 × R2|Th| × R2|Th| → R

Lh(vh,γTh ,σTh) :=∑T∈Th

∫T

H(γT )− (f , vT )T +α

2‖h−

12

T S∂T (vT )‖2∂T

+ (σT ,GT (vT )− γT )T +α

2‖GT (vT )− γT‖2

T

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 34 / 52

Page 60: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

35/52

Discrete iterative algorithm

1 Find γn+1Th ∈ R2|Th| with θn

T := σnT + αGT (unT ), locally

γn+1T :=

1

(α + µ)(|θn

T |`2 − σ0)θnT

|θnT |`2

yielded

0 unyielded

2 Solve global problem: Seek un+1h ∈ Uh,0 solving

ah(uh, vh) =∑T∈Th

(f , vT )T − (σn

T − αγn+1T ,GT (vT ))T

3 Update Lagrange multiplier σn+1

Th ∈ R2|Th| locally

σn+1T = σn

T + α(GT (un+1T )− γn+1

T )

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 35 / 52

Page 61: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

36/52

Mesh adaptation

General idea: SOLVE → FLAG + MARK → REFINE

Flagging cells criterion: Use |θnT |`2 ≶ σ0 for solid/liquid status

TFLAG MARK

X

REFINE

T

Yield surface

Yielded region

(liquid)

Unyielded region

(solid)

T

T

T

T

Control on local refinement variations (limit number of hanging nodes)

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 36 / 52

Page 62: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

37/52

Numerical Results

Test cases

Test case 1: Circular cross section, known solution

Test case 2: Eccentric annulus cross section, unknown solution

Bi = 2σ0/fR (R characteristic length, f flow driving force)

test case 1 test case 2(one-eigth of domain) (one-half of domain)

(Bi = 0.3, 0.9) (Bi = 0.2)

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 37 / 52

Page 63: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

38/52

Refinement

Stress norm |σ|`2 : colormap for [σ0, σ0 + δ], δ = 0.005

Known analytical solution: yield surface

Bi Initial mesh 5th Adaptive level Zoom

0.3

0.9

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 38 / 52

Page 64: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

38/52

Refinement

Stress norm |σ|`2 : colormap for [σ0, σ0 + δ], δ = 0.005

Known analytical solution: yield surface

Bi Initial mesh 5th Adaptive level Zoom

0.3

0.9

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 38 / 52

Page 65: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

39/52

Eccentric annulus cross section

Bi = 0.2 and σ0 = 0.1

Stress norm |σ|`2 : colormap [σ0,σ0 + δ], δ = 0.005

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 39 / 52

Page 66: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

39/52

Eccentric annulus cross section

Bi = 0.2 and σ0 = 0.1

Stress norm |σ|`2 : colormap [σ0,σ0 + δ], δ = 0.005

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 39 / 52

Page 67: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

39/52

Eccentric annulus cross section

Bi = 0.2 and σ0 = 0.1

Stress norm |σ|`2 : colormap [σ0,σ0 + δ], δ = 0.005

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 39 / 52

Page 68: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

40/52

Capture of yield surfaces

Top: uniform triangulation, h = 7.5e-3 and 93 KDOF

Bottom: adaptive mesh T6, hmin = 7.8e-4 and 113 KDOF

-1 -0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 40 / 52

Page 69: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

41/52

Outline for section 2

1 Nitsche-HHODiffusionSignorini’s unilateral condition

2 HHO for Bingham flowsAntiplanar configurationFull vector setting

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 41 / 52

Page 70: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

42/52

Extension to vector flows

Difficulties:

Incompressibility condition ∇ · u = 0

HHO method with pressure [Di Pietro, Ern, Linke & Schieweck 2016]

Symmetric gradient: Korn’s inequality

Reconstruction with k = 0:

Korn’s inequality not granted a prioriExperiments show squares still work (not triangles)ALG variables treated in the mesh cells using affine cell unknowns

Reconstruction with k ≥ 1:

Korn’s inequality granted [Di Pietro & Ern]ALG variables evaluated at Gauss points

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 42 / 52

Page 71: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

43/52

HHO methods with ALG

Cell velocities (vector) are locally eliminated

Cell pressures (scalar)

Global linear system for face velocities & constant pressures

γ and σ tensors handled by ALG

Example in the lowest-order case

Velocity u Pressure p γ − σ

(ALG)

Uh := P1h(Th;Rd)× P0(Fh;Rd) Ph := P0

h(Th;R) Σh = P(Th;Rd×ds )

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 43 / 52

Page 72: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

44/52

HHO methods with ALG

Extension to higher-order

Local symmetric gradient operator E kT (vT ) : Uk

T → Pk(T ;Rd×ds )

(E kT (vT ), z)T = −(vT ,∇ · z)T + (v∂T , znT )∂T ∀z ∈ Pk(T ;Rd×d

s )

Global contributions:

Viscous term

ah(uh, vh) =∑T∈Th

2µ(E kT (uT ),E k

T (vT ))T + stab term

Divergence term (incompressibility)

bh(vh, qh) =∑T∈Th

(tr(E kT (vT )), qT )T

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 44 / 52

Page 73: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

45/52

Augmented Lagrangian formulation

Explicitly enforce homogeneous Dirichlet BCs leads to Ukh,0

Discrete velocity field

uh = arg minvh∈U

kh,0

∑T∈Th

QT ((Ek

T (vT ))2)− (f , vT )T + β‖h−12

T Sk∂T (vT )‖2

∂T

,

β = µ improves convergence

Augmented Lagrangian: Lh : Ukh,0 × Σk

h × Σkh → R

Lh(uh, γh, σh) :=∑T∈Th

QT (γT ) + β‖h−

12

T Sk∂T (uT )‖∂T − (f,uT )T

+ QT (σT : EkT (uT )− γT ) + αQT ((Ek

T (uT )− γT )2)

.

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 45 / 52

Page 74: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

46/52

Lid driven cavity

Benchmark for the vector case [Syrakos et al 2013]

Velocity field for Bi = 2 (left).

Velocity profile along the axis x = 1/2 (right).

Excellent agreement with reference solutions

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

y

-0.5 0 0.5 1

ux/V

Bi = 50

Bi = 2

Syrakos et al. (2013)

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 46 / 52

Page 75: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

47/52

Capture of yield surfaces

Stress norm |σ|`2 : colormap for [σ0, σ0 + δ], δ = 0.005Quadrangular meshes (similar results in hexagonal meshes)

Coarse mesh Fine mesh h = 1/256

Bi = 2

Bi = 50

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 47 / 52

Page 76: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

48/52

Vane-in-cup geometry problem

No-slip condition u = 0

R Re i

u = x

Physical parameters:

Angular velocity ω = 1,The radius Ri = 4 for the innerboundary,The radius Re = 6 outerboundary.

Adimensional setting:

Reference length R = Re

Reference velocity V = ωRi

Bingham numberBi = σ0R

µV= σ0(Re−Ri )

µωRi= σ0

2

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 48 / 52

Page 77: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

49/52

Vane-in-cup geometry problem

Unknown analytical solution

Comparison with [Ovarlez et al. 2011] (Herschel-Bulkley material)

Velocity field for Bi = 1 (center) and for Bi = 10 (right)

that of Yan and James (1997) is that the blade thickness is zero in this last study.It is particularly striking and counterintuitive that Rc is largest at the angular position

(θ = 30˚) where shear at Ri is smallest (similar observation was made by Potanin (2010)).As in Sec. IIIA3, this points out the importance of the extensional flow in this geometry, withθ-dependent normal stress differences which have to be taken into account in the yield criterion,and which thus impact the yield surface. It thus seems that the link between the yield stressτy and the torque T measured at yield with a vane-in-cup geometry is still an open question,although the classical formula probably provides a sufficiently accurate determination of τy inpractice.

Figure 9: Two-dimensional plot of the limit between rigid motion and shear (circles) and betweenshear and rest (triangles) for a yield stress fluid (concentrated emulsion) sheared in the six-bladedvane-in-cup geometry at 0.1 rpm (left) and 1 rpm (right). The grey rectangles correspond tothe blades.

The same 2D map as above is plotted for Ω = 1 rpm in Fig. 9; the same phenomena areobserved, with enhanced departure from cylindrical symmetry, consistent with the observationthat Rl decreases when Ω increases. This result was also unexpected, as simulations find uniformflows for shear-thinning material of index n ≤ 0.5 [Barnes and Carnali (1990); Savarmand et

al. (2007)]; we would have expected the same phenomenology in a Herschel-Bulkley material ofindex n = 0.5 (and thus Rl to tend to Ri when increasing Ω). This observation also shows thata Couette analogy can hardly be defined for studying the flow properties of such materials ina vane-in-cup geometry because the equivalent Couette geometry radius Ri,eq would probablydepend also on Ω (as recently shown by Zhu et al. (2010)).

Let us finally note that this departure from cylindrical symmetry has important impact onthe migration of particles in a yield stress fluid (see below).

C Concentrated suspension

In this section, we investigate the behavior of a concentrated suspension of noncolloidal particlesin a yield stress fluid (at a 40% volume fraction).

A detailed study of their velocity profiles would a priori present here limited interest: suchmaterials present the same nonlinear macroscopic behavior as the interstitial yield stress fluid,and their rheological properties (yield stress, consistency) depend moderately on the particlevolume fraction [Mahaut et al. (2008a); Chateau et al. (2008)].

On the other hand, noncolloidal particles in suspensions are known to be prone to shear-induced migration, which leads to volume fraction heterogeneities. This phenomenon is well

16

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 49 / 52

Page 78: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

50/52

Wrap up: Signorini’s contact problem

Conclusions

Optimal error estimates for Nitsche-HHO

Trace type Diffusion SignoriniFace-based X ×Cell-based X X

Optimal numerical convergence rates.

Perspectives

Extension to vector deformations

Tresca and Coulomb friction laws.

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 50 / 52

Page 79: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

51/52

Wrap up: Bingham problem

Conclusions

Polyhedral meshes for local refinement to track yield surface

Agreement with analytical solutions, literature and experiments

Perspectives

Development

A posteriori error estimate to further drive mesh adaptationExploit hp-refinement within HHO methods

Applications

Extension to 3D vector flowsHerschel-Bulkley or visco-elasto-plasticity models.Simulation of an air bubble immersed in a non-Newtonian fluid, surface-tension

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 51 / 52

Page 80: cermics.enpc.frcermics.enpc.fr/~cascavik/THESIS_Slides.pdf · 2018-12-17 · 3/52 The scope of the thesis Contact problems: Signorini’s unilateral contact Contact with a rigid frictionless

52/52

Thank you for your attention

K. Cascavita HHO for Signorini and Bingham December 18th, 2018 52 / 52