cascode mos circuit

10
Sheet 1 of 10 Cascode CMOS Circuit The cascode is a combination of a common-source device with a common-gate load. This has the effect of increasing the output impedance but minimises the Miller effect making it an ideal configuration for use at high frequencies. The circuit of the cascode amplifier is shown in Figure 1. Vout M2 I Vin M1 VDD VBIAS Rload Cgd1 Figure 1 Basic Cascode Amplifier Lets assume that FET M2 has a short between the drain and source terminals, the remaining circuit will be a common-source amplifier with a gain of: 1 load load 1 LOAD 1 go go gm1 Av speaking strictly g gm or .R gm Av + = =

Upload: aydin-mhysa-abet

Post on 23-Sep-2015

235 views

Category:

Documents


0 download

DESCRIPTION

Cascode

TRANSCRIPT

  • Sheet 1 of 10

    Cascode CMOS Circuit The cascode is a combination of a common-source device with a common-gate load. This has the effect of increasing the output impedance but minimises the Miller effect making it an ideal configuration for use at high frequencies. The circuit of the cascode amplifier is shown in Figure 1.

    Vout

    M2

    I

    Vin M1

    VDD

    VBIAS

    Rload

    Cgd1

    Figure 1 Basic Cascode Amplifier Lets assume that FET M2 has a short between the drain and source terminals, the remaining circuit will be a common-source amplifier with a gain of:

    1loadload

    1LOAD1 gogo

    gm1 Avspeakingstrictly ggm or .Rgm Av +==

  • Sheet 2 of 10

    Now miller effect occurs when there is a large impedance applied to the drain of the common-source M1 in this case its RLOAD but it could also be an active load with an even higher resistance. This has the effect of applying a gate shunt capacitance which, has a value of the M1 gate-drain capacitance multiplied by the voltage gain of the amplifier:- ( )( )LOAD1gd1shunt-gate .Rgm1C C += Thus with a particular source impedance connected to the input of the amplifier the 3-dB break point will be:-

    ( )( )[ ]LOAD1gd1gs3 .Rgm1CC.Rs21 ++= dBf

    If there is a load capacitor attached to the load then a second higher frequency pole will be introduced:

    ( )LOADLOADLOAD

    M2M1D3

    LOADLOAD

    LOAD3

    .C.2R1

    .C2..I

    then active is Go If .C2

    Go

    +=

    =

    dB

    dB

    f

    f

    The M1 device is a voltage controlled source and the small gate voltage (Vgs) creates a large current (Ids) through the RLOAD creating an output voltage (Vo) much greater than the input (Vgs) ie it has voltage gain. So if you could place a low impedance current buffer between M1 and the RLOAD you could greatly reduce the Miller effect and this is exactly what M2 biased into saturation does. The resistance looking into a source is pretty low:-

    ==

    ====

    6-1E R 0.01 100uA, @ device typical a For

    I g1

    VgsgVgs

    IV R

    IN

    M2DM11MIN

    ININ

    A practical cascode amplifier is shown in Figure 2. The device M2 acts as a low impedance current buffer, isolating the amplifying M1 with the load M3. Therefore, the gain of the cascode amplifier is approximately:-

    3D1

    1N1

    13

    1

    3

    1

    ..IL.W2.K- Av

    gogogm Avspeakingstrictly

    gogm Av

    =

    +==

  • Sheet 3 of 10

    Vout

    M2

    I

    Vin M1

    VDD

    VBIAS2

    M3

    VBIAS3

    Figure 2 Cascode amplifier with active load

    3D3OUT I

    1 rds R = To be able to fully characterise the amplifier we need expressions in order to calculate output voltage swing and frequency response.

    ( )

    LK.W Where

    VT1VDD1

    VT2VBIAS21VT3-VBIAS3VDD

    2. V

    VDS- VDDV

    2

    M2

    M3OUTMIN

    3SATOUTMAX

    =

    +=

    =

  • Sheet 4 of 10

    Example Determine the gain, output resistance, gate bias voltages, Vmax and Vmin of the cascode amplifier of Figure 2. Assume W=L=1um, KN=110uA/V2, KP=50uA/V2, = 0.05; VT = 0.7V, ID=100uA. The first step is to calculate the required bias voltages for each device. First set the correct current to 100uA, so we need to determine the correct vgs to apply to the N-type FET.

    0.95V 0.7 - 1.65 V- V V

    1.65V 110E100E 0.7

    KI V Vgs

    TGSSAT

    6-

    -6

    N

    REFT

    ===

    =+=+=

    So we set the amplifying device M1 to vgs = 1.65V and the second device to Vgs+VSAT =

    2.6V.

    And set the correct Vgs to apply to the P-type FET active source.

    terminal) gate to4.3V 0.7-5(apply 0.72V 50E

    100E 0.7 KI V Vgs 6-

    -6

    P

    REFT ==++=+=

    So we set the bias to M3 at 4.3V. Calculation of gain

    16.5dB 6.63 .0.05.100E1E

    .1E2.110E- ..IL.W2.K- Av

    gogogm Avspeakingstrictly

    gogm Av

    6-6

    6-6-

    3D1

    1N1

    13

    1

    3

    1

    ====

    +==

    Output Resistance

    === 200K .0.05100E

    1 I1 rds R 6-

    3D3OUT

  • Sheet 5 of 10

    Output Voltage Swing

    5V 0.02-5 V

    0.02V 0.7-0.72 V- V VDS

    VDS- VDDV

    OUTMAX

    T3GS33SAT

    3SATOUTMAX

    =

    ===

    =

    ( )

    ( ) 0.116V1)(0.838)0.227.(0.6 7.05

    17.035.2

    10.7-9.35

    1.1110E2.

    1.150E

    V

    LK.W Where

    VT1VDD1

    VT2VBIAS21VT3-VBIAS3VDD

    2.

    V

    2

    6-

    6-

    OUTMIN

    2

    M2

    M3OUTMIN

    ==

    +=

    =

    +=

    The ADS simulation of the example cascode is shown in Figure 4. The gain plot as a result of the simulation is shown in Figure 3.

    DC.IDS.i 95.59uA

    DC.VSAT_N 699.3mV

    DC.vout 1.397 V

    20 40 60 80 0 100

    16.973

    16.974

    16.975

    16.976

    16.977

    16.972

    16.978

    freq, MHz

    dB(AC.vout)

    Figure 3 Resulting Gain plot from the ADS simulation of the example Cascode Amplifier

  • Sheet 6 of 10

    1.65 V

    699 mVVSAT_N

    2.35 V

    1.40 Vvout

    3.90 V

    5 V

    5 V

    5 V

    MOSFET_PMOSMOSFET2

    Width=W umLength=L umModel=MOSFETM2

    -95.6 uA

    95.6 uA

    3.61 pA0 A

    V_ACSRC4

    Freq=freqVac=1 VVdc=VGS1

    0 A

    ACAC1

    Stop=100 MHzStart=0.1 MHz

    AC

    VARVAR2

    L=1VGS1=1.65VDD=5VGS3=3.9VGS2=2.35W=1

    EqnVar

    LEVEL1_ModelMOSFETM1

    Tox=24.7e-4Mjsw=0.38Cjsw=380e-12Mj=0.5Cj=770e-12Cgbo=700E-12Cgdo=220e-12Cgso=220e-12Lambda=0.05Phi=0.7Gamma=0.4Kp=110e-6Vto=0.7NMOS=yes

    DCDC1

    DC

    MOSFET_NMOSMOSFET1

    Width=W umLength=L umModel=MOSFETM1

    95.6 uA

    -95.6 uA

    0 A -719 fA

    MOSFET_NMOSMOSFET3

    Width=W umLength=L umModel=MOSFETM1

    95.6 uA

    -95.6 uA

    0 A -718 fA

    V_DCVGS2Vdc=VGS3

    0 A

    V_DCVGS3Vdc=VGS2

    0 A

    LEVEL1_ModelMOSFETM2

    Tox=24.7e-4Mjsw=0.35Cjsw=350e-12Mj=0.5Cj=560e-12Cgbo=700E-12Cgdo=220e-12Cgso=220e-12Lambda=0.05Phi=0.8Gamma=0.57Kp=50e-6Vto=0.7PMOS=yes

    I_ProbeIDS

    95.6 uAV_DCVDDVdc=VDD

    -95.6 uA

    Figure 4 ADS simulation setup for the example Cascode Amplifier A more practical circuit is shown in Figure 5. This circuit now includes the correct bias current mirrors and associated bias setting resistor. The left hand bias arm includes FETs configured as diodes such that the voltage across each source-drain is VSAT+VT. One advantage of doing

  • Sheet 7 of 10

    this is that the voltage drop across the resistor is smaller and therefore requires a smaller bias resistor, in this case about 1K which can easily be formed from a Polysilicate printed resistor.

    3.52 VVbias2

    3.63 VVbias3

    1.63 VVT_VSAT

    3.63 VVout

    5 V

    5 V

    5 V 5 V 5 V

    5 V

    5 V

    0 V

    1.62 VVbias1

    DC DC1

    DC

    LEVEL1_ModelMOSFETM1

    Tox=24.7e-4Mjsw=0.38Cjsw=380e-12Mj=0.5Cj=770e-12Cgbo=700E-12Cgdo=220e-12Cgso=220e-12Lambda=0.04Phi=0.7Gamma=0.4Kp=110e-6Vto=0.7NMOS=yes

    RR1R=1130 Ohm

    100 uA

    VAR VAR2

    L=1 VDD=5 W=1

    Eqn Var

    LEVEL1_Model MOSFETM2

    Tox=24.7e-4 Mjsw=0.35 Cjsw=350e-12 Mj=0.5 Cj=560e-12 Cgbo=700E-12 Cgdo=220e-12 Cgso=220e-12 Lambda=0.04 Phi=0.8 Gamma=0.57 Kp=50e-6 Vto=0.7 PMOS=yes

    V_DC VDD Vdc=VDD

    -200 uA

    I_ProbeIDS

    100 uA

    MOSFET_NMOS MOSFET5

    Width=W um Length=L um Model=MOSFETM1

    100 uA

    -100 uA

    0 A-5.18 pA

    MOSFET_PMOS MOSFET4

    Width=W um Length=L um Model=MOSFETM2

    -100 uA

    100 uA

    1.38 pA 0 A

    MOSFET_PMOS MOSFET2

    Width=W um Length=L um Model=MOSFETM2

    -100 uA

    100 uA

    1.38 pA0 A

    AC AC1

    Stop=100 MHz Start=0.1 MHz

    AC

    DC_BlockDC_Block1

    0 A

    MOSFET_NMOS MOSFET1

    Width=W um Length=L um Model=MOSFETM1

    100 uA

    -100 uA

    0 A -1.65 pA

    MOSFET_NMOS MOSFET3

    Width=W um Length=L um Model=MOSFETM1

    100 uA

    -100 uA

    0 A -5.30 pA

    MOSFET_NMOS MOSFET6

    Width=W um Length=L um Model=MOSFETM1

    100 uA

    -100 uA

    0 A-1.64 pA

    V_AC SRC4

    Freq=freq Vac=1 V Vdc=

    0 A

    Figure 5 Practical Cascode Amplifier design with added bias The resulting plot and table of bias voltages is shown in Figure 6.

  • Sheet 8 of 10

    DC.IDS.i 99.97uA

    DC.Vbias1 1.624 V

    DC.Vbias23.518 V

    DC.Vbias33.631 V

    DC.Vout 3.631 V

    DC.VT_VSAT1.625 V

    10 20 30 40 50 60 70 80 90 0 100

    16.2774

    16.2776

    16.2778

    16.2780

    16.2782

    16.2772

    16.2784

    freq, MHz

    dB(AC.Vout)

    Figure 6 Resulting plot from the simulation of the circuit shown in Figure 5. Note that VT+VSAT = 1.625V and closely agrees with the 1.65V calculated earlier. We can obtain more gain from the cascode by adding a further active load as shown in Figure 7. The gain of the stage will now be:-

    32dB 44 .0.05.100E1E

    .1E2.110E- ..IL.W2.K- Av

    ..IL.W2.K- gainnew the Then

    ..IL.W2.K- Av As

    gogm Av

    then load the cascode weIf gogo

    gm Avspeakingstrictly gogm Av

    6-6

    6-6-

    3D1

    1N1

    3D1

    1N1

    3D1

    1N1

    2

    3

    1

    13

    1

    3

    1

    ===

    ==

    +==

  • Sheet 9 of 10

    Vbias2

    Vout

    Vbias3

    Vbias4

    VT_VSAT

    Vbias1

    VARVAR2

    L=1VDD=7.5W=1

    EqnVar

    RR1R=9700 Ohm

    MOSFET_PMOSMOSFET2

    Width=W umLength=L umModel=MOSFETM2

    MOSFET_PMOSMOSFET4

    Width=W umLength=L umModel=MOSFETM2

    V_DCVDDVdc=VDD

    I_ProbeIDS

    MOSFET_PMOSMOSFET8

    Width=W umLength=L umModel=MOSFETM2

    MOSFET_PMOSMOSFET7

    Width=W umLength=L umModel=MOSFETM2

    LEVEL1_ModelMOSFETM1

    Tox=24.7e-4Mjsw=0.38Cjsw=380e-12Mj=0.5Cj=770e-12Cgbo=700E-12Cgdo=220e-12Cgso=220e-12Lambda=0.04Phi=0.7Gamma=0.4Kp=110e-6Vto=0.7NMOS=yes

    DCDC1

    DC

    LEVEL1_ModelMOSFETM2

    Tox=24.7e-4Mjsw=0.35Cjsw=350e-12Mj=0.5Cj=560e-12Cgbo=700E-12Cgdo=220e-12Cgso=220e-12Lambda=0.04Phi=0.8Gamma=0.57Kp=50e-6Vto=0.7PMOS=yes

    MOSFET_NMOSMOSFET5

    Width=W umLength=L umModel=MOSFETM1

    ACAC1

    Stop=100 MHzStart=0.1 MHz

    AC

    DC_BlockDC_Block1

    MOSFET_NMOSMOSFET1

    Width=W umLength=L umModel=MOSFETM1

    MOSFET_NMOSMOSFET3

    Width=W umLength=L umModel=MOSFETM1

    MOSFET_NMOSMOSFET6

    Width=W umLength=L umModel=MOSFETM1

    V_ACSRC4

    Freq=freqVac=1 VVdc=

    Figure 7 Addition of another active load to increase the gain of the cascode amplifier. Note however that the additional VT+VSAT has meant that to include the bias resistor the supply has been increased to 7.5V.

  • Sheet 10 of 10

    DC.IDS.i 101.1uA

    DC.Vbias1 1.628 V

    DC.Vbias23.528 V

    DC.Vbias34.508 V

    DC.Vout4.498 V

    DC.VT_VSAT 1.642 V

    10 20 30 40 50 60 70 80 90 0 100

    32.80

    32.81

    32.82

    32.83

    32.84

    32.79

    32.85

    freq, MHz

    dB(AC.Vout)

    Figure 8 Increased gain cascode of Figure 7, the gain of 32dB agrees with the calculation performed earlier ie AV ~ (gm.Ro)2. Note one of the problems using cascode stages in that for each device we use the voltage drop across each device will be VT+VSAT. This equates to approximately 1.65V per device and with 4 devices this will cause a total voltage drop of 6.6V so we cant use our 5V rail !!!. In the example the voltage supply has been increased to 7.5V to allow for the additional device. This problem of increased voltage rail can be improved by using the folded cascode configuration, where the cascode is split between the active amp and active load and linked by another current load. Also we can greatly reduce VSAT by increasing the W/L ratio. The folded cascode is very popular in the design of low voltage Op-Amps and is subject to another tutorial.

    Cascode CMOS CircuitExampleCalculation of gainOutput ResistanceOutput Voltage Swing