caudale sup revised - rsc.org · sebastiano guerra, thibault dutronc, emmanuel terazzi, laure...

39
S1 A quantitative assessment of chemical perturbations in thermotropic cyanobiphenyls. __________________________________________________________________ Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet * Supporting Information (39 pages) Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Upload: ngodat

Post on 29-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S1

A quantitative assessment of chemical perturbations in thermotropic

cyanobiphenyls.

__________________________________________________________________

Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet*

Supporting Information (39 pages)

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.This journal is © the Owner Societies 2016

Page 2: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S2

Table S1 Elemental analyses for compounds TBDPSO-C10H20-LCi’,j , TBDMSO-C10H20-LCi’,j, and HO-C10H20-LCi’,j.

Compounds Formula MM

g·mol-1

%C

found

%H

found

%N

found

%C

calcd

%H

calcd

%N

calcd

TBDPSO-(0’,0) C46H51NO4Si·0.04CH2Cl2 713.38 77.53 7.24 1.86 77.51 7.22 1.96

TBDPSO-(3’,0) C47H53NO4Si·0.2CH2Cl2 741.00 76.49 7.48 1.70 76.51 7.26 1.89

TBDPSO-(2’,0) C47H53NO4Si·0.07CH2Cl2 729.96 77.44 7.47 1.77 77.45 7.34 1.92

TBDPSO-(0’,3) C47H53NO4Si·0.05CH2Cl2 728.26 77.57 7.43 1.77 77.60 7.35 1.92

TBDPSO-(2’,0) C48H55NO4Si·0.01CH2Cl2 738.89 78.01 7.55 1.74 78.01 7.55 1.90

TBDMSO-(0’,0) C36H47NO4Si·0.01CH2Cl2 586.70 73.74 8.19 2.28 73.74 8.19 2.39

TBDMSO-(3’,0) C37H49NO4Si 599.87 73.96 8.38 2.20 74.08 8.23 2.33

TBDMSO-(2’,0) C37H49NO4Si·0.03CH2Cl2 602.42 73.88 8.34 2.20 73.83 8.21 2.33

TBDMSO-(0’,3) C37H49NO4Si·0.04CH2Cl2 603.27 73.79 8.35 2.19 73.74 8.20 2.32

TBDMSO-(2’,0) C38H51NO4Si·0.02CH2Cl2 615.60 74.17 8.50 2.10 74.18 8.36 2.28

HO-(0’,0) C30H33NO4·0.17H2O 474.47 75.93 7.15 2.74 75.92 7.08 2.95

HO-(3’,0) C31H35NO4·0.90H2O 501.83 74.20 7.24 2.64 74.20 7.39 2.79

HO-(2’,0) C31H35NO4·0.27H2O 490.48 75.92 7.32 2.69 75.91 7.30 2.86

HO-(0’,3) C31H35NO4·0.50H2O 494.63 75.28 7.27 2.66 75.28 7.27 2.83

HO-(2’,0) C32H37NO4·0.28H2O 504.68 76.15 7.54 2.59 76.14 7.54 2.77

Page 3: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S3

Table S2 Thermogravimetric analysis for the decomposition of TBDPSO-C10H20-LCi’,j ,

TBDMSO-C10H20-LCi’,j, and HO-C10H20-LCi’,j.

Compounds T /°C (K) Weight loss /%

HO-C10H20-LC0’,0

220 (493)

315 (588)

40.8

56.1

HO-C10H20-LC3’,0

215 (488)

320 (593)

35.5

58.3

HO-C10H20-LC2’,0

200 (473)

310 (583)

41.1

54.3

HO-C10H20-LC0’,3

200 (473)

315 (588)

42.6

48.3

HO-C10H20-LC2’,2

190 (463)

315 (588)

45.8

47.1

TBDMSO-C10H20-LC0’,0 270 (543) 99.6

TBDMSO-C10H20-LC3’,0 270 (543) 99.0

TBDMSO-C10H20-LC2’,0 280 (553) 99.1

TBDMSO-C10H20-LC0’,3 235 (508) 93.1

TBDMSO-C10H20-LC2’,2 240 (513) 96.7

TBDPSO-C10H20-LC0’,0 270 (543) 95.8

TBDPSO-C10H20-LC3’,0 280 (553) 97.8

TBDPSO-C10H20-LC2’,0 280 (553) 90.2

TBDPSO-C10H20-LC0’,3 240 (513) 89.9

TBDPSO-C10H20-LC2’,2 290 (563) 94.5

Page 4: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S4

Table S3 Small-angle X-ray scaterring data collected in the smectic A mesophases for TBDMSO-C10H20-LCi’,j and TBDPSO-C10H20-LCi’,j.

Compounds T / K State 2 / deg dhkl / Å 00l I / a.u. a

TBDMSO-C10H20-LC0’,0 393 SmA 1.79

3.60

49.21

24.52

001

002

Vs

Vw

TBDMSO-C10H20-LC3’,0 373 SmA 1.79 49.32 001 s

TBDMSO-C10H20-LC2’,0 353 SmA 1.78 49.69 001 s

TBDMSO-C10H20-LC0’,3 373 SmA 1.94

3.88

45.64

22.78

001

002

s

Vw (sh)

TBDMSO-C10H20-LC2’,2 263 SmA 1.73 51.20 001 s

TBDPSO-C10H20-LC0’,0 323 SmA 1.62

3.25

54.52

27.17

001

002

Vh

Vw

TBDPSO-C10H20-LC3’,0 293 SmA 1.64 53.92 001 m

TBDPSO-C10H20-LC2’,0 273 SmA 1.58

3.13

56.03

28.26

001

002

m

Vw (sh)

TBDPSO-C10H20-LC0’,3 293 SmA 1.72

3.47

51.32

25.48

001

002

m

w

a w = weak, m = medium, s = strong, V = very, sh = shoulder.

Page 5: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S5

Table S4 Thermodynamic parameters (Htr and Str) and transition temperatures (Ttr) for the phase transitions H25C12-LCi’,j,16 HO-

C10H20-LCi’,j, TBDMSO-C10H20-LCi’,j and TBDPSO-C10H20-LCi’,j and associated cohesive free energies in the solid (CFEDsolid) and

liquid crystalline (CFEDliq-cryst) states (Scan rate = 0.5 Kmin-1).

Compounds Vmol a

/molcm-3

Hmelting b

/kJmol-1

Smelting b

/Jmol-1K-1

Tmelting

/K

CFEDsolid c

/Jcm-3

Hclearing b

/kJmol-1

Sclearing b

/Jmol-1K-1

Tclearing

/K

CFEDliq-cryst d

/Jcm-3

H25C12-LC0’,0 488.5 46.0(5) 123(1) 373 3.2(7) 3.66(7) 7.5(1) 491 1.5(2)

H25C12-LC3’,0 504.1 38.3(4) 104(1) 368 1.6(5) 1.57(3) 3.7(1) 426 0.24(8)

H25C12-LC2’,0 503.4 43.7(4) 123(2) 354 -1.5(6) 1.19(2) 2.9(1) 406 0.07(7)

H25C12-LC0’,3 503.5 52.8(5) 147(2) 359 -0.4(7) 0.70(2) 1.7(1) 422 0.10(4)

H25C12-LC2’,2 517.7 53.9(5) 148(2) 364 1.1(7) f f f f

HO-C10H20-LC0’,0 472.0 28.7(3) 73.8(7) 389 4.8(4) 1.12((2) 2.3(1) 484 0.41(6)

HO-C10H20-LC3’,0 489.2 e e e e 0.70(1) 1.6(1) 434 0.11(4)

HO-C10H20-LC2’,0 489.0 27.2(3) 74.2(7) 377 1.3(4) 1.20(2) 3.0(1) 408 0.00(7)

HO-C10H20-LC0’,3 488.7 26.1(3) 69.5(7) 376 2.5(4) 0.51(1) 1.20(1) 409 0.05(3)

HO-C10H20-LC2’,2 503.6 42.4(4) 112(1) 378 4.4(6) f f f f

TBDMSO-C10H20-LC0’,0 604.0 19.5(2) 58.2(6) 335 -2.3(2) 6.1(1) 13.4(3) 458 1.2(3)

TBDMSO-C10H20-LC3’,0 622.6 e e e e 3.28(7) 8.4(2) 390 -0.1(2)

Page 6: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S6

TBDMSO-C10H20-LC2’,0 622.1 17.7(2) 55.0(6) 321 -3.3(2) 3.19(6) 8.8(2) 363 -0.5(2)

TBDMSO-C10H20-LC0’,3 622.2 20.9(2) 62.3(6) 336 -2.3(2) 4.09(8) 10.2(2) 402 -0.0(2)

TBDMSO-C10H20-LC2’,2 637.4 32.3(3) 98(1) 328 -4.7(4) f f f f

TBDPSO-C10H20-LC0’,0 716.1 e

e

e e 11.9(2) 30.3(6) 391 -0.4(5)

TBDPSO-C10H20-LC3’,0 730.5 e

e

e e 1.50(3) 4.7(1) 319 -0.53(7)

TBDPSO-C10H20-LC2’,0 729.0 e e e e 0.420(8) 1.50(1) 285 -0.24(2)

TBDPSO-C10H20-LC0’,3 729.7 e

e

e e 0.57(1) 1.70(1) 332 -0.18(2)

TBDPSO-C10H20-LC2’,2 744.5 e

e

e e f f f f

a The specific molar volumes Vmol are deduced from the Connolly volume estimated for the optimized gas-phase structures Vmol = NAv·Vmolecule.28 b

Obtained by DSC at the transition temperatures (0.5 K/min). c ref ref refref

solid cohesion,m mol m mCFED T T TG V H T S with refmT = 358.3 K (eq. 6). d

ref ref refrefliq-cryst cohesion,c mol c cCFED T T TG V H T S with ref

clearingT = 401.3 K (eq. 7). e Glass transition. f Non-mesogenic.

Page 7: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S7

a) TBDPSO-C10H20-LCi’,j

b) TBDMSO-C10H20-LCi’,j

c) HO-C10H20-LCi’,j

Figure S1 Thermogravimetric traces recorded at 10 Kmin-1 for a) TBDPSO-C10H20-LCi’,j, b)

TBDMSO-C10H20-LCi’,j and c) HO-C10H20-LCi’,j

Page 8: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S8

Schlieren texturesNematic

Not textured, highly coloredNematic

Schlieren texturesNematic

Schlieren texturesMonotropic nematic

HO-C10H20-LC3’,0, 418 K HO-C10H20-LC2’,0, 411 K

HO-C10H20-LC0’,3, 410 K HO-C10H20-LC2’,2, 303 K

Figure S2 Polarized optical micrographs of HO-C10H20-LCi’,j compounds in their liquid

crystalline states.

Page 9: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S9

Unresolved focal conic fan texturesSmectic A

Bangle-like textures of thehomeotropic areas

Smectic A

Focal conic fan textures withhomeotropic areas

Smectic A

Focal conic fan textures withhomeotropic areas

Smectic A

TBDMSO-C10H20-LC0’,0, 432 K TBDMSO-C10H20-LC3’,0, 313 K

TBDMSO-C10H20-LC0’,3, 373 KTBDMSO-C10H20-LC2’,0, 363 K

Figure S3 Polarized optical micrographs of TPDMSO-C10H20-LCi’,j compounds in their liquid

crystalline states. The clearing temperature at 283 K for TPDMSO-C10H20-LC2’,2 is

below the temperature range accessible for our POM setup.

Page 10: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S10

Bangle-like textures of thehomeotropic areas

Smectic A

Bangle-like textures of thehomeotropic areas

Smectic A

Weak birefringence inhomeotropic areas

Smectic A

Unresolved focal conic fan texturesSmectic A

TBDPSO-C10H20-LC0’,0, 355 K TBDPMSO-C10H20-LC3’,0, 315 K

TBDPSO-C10H20-LC0’,3, 308 KTBDPSO-C10H20-LC2’,0, 304 K

Figure S4 Polarized optical micrographs of TPDPSO-C10H20-LCi’,j compounds in their liquid

crystalline states.

Page 11: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S11

Figure S5 VT-small-angle X-ray diffractograms recorded for HO-C10H20-LC0’,0.

Figure S6 Diffractograms of HO-C10H20-LC0’,0 within a) the nematic phase (N) at T = 423K,

and b) the crystalline state (Cr) at T = 363K. * corresponds to capillary noise.

Figure S7 VT-small-angle X-ray diffractograms recorded for HO-C10H20-LC3’,0.

Page 12: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S12

Figure S8 VT-small-angle X-ray diffractograms recorded for HO-C10H20-LC2’,0.

Figure S9 Diffractograms of HO-C10H20-LC2’,0 within a) the nematic phase (N) at T = 383K,

and b) the crystalline state (Cr) at T = 273K. * corresponds to capillary noise.

Page 13: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S13

Figure S10 VT-small-angle X-ray diffractograms recorded for HO-C10H20-LC0’,3.

Figure S11 Diffractograms of HO-C10H20-LC0’,3 within a) the nematic phase (N) at T = 383K,

and b) the crystalline state (Cr) at T = 273K. * correspond to capillary noise.

Page 14: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S14

Figure S12 VT-small-angle X-ray diffractograms recorded for HO-C10H20-LC2’,2.

Figure S13 Diffractograms of HO-C10H20-LC2’,2 within the crystalline state (Cr) at T = 273K. *

corresponds to capillary noise.

Page 15: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S15

Figure S14 VT-small-angle X-ray diffractograms recorded for TBDMSO-C10H20-LC0’,0.

da = 54.5178Å

db = 39.253Ådc = 9.7836Å

Figure S15 Diffractograms of TBDMSO-C10H20-LC0’,0 within a) the smectic A phase (SmA) at

T = 393K, and b) the crystalline state (Cr) at T = 273K. ◊ corresponds to primary

beam residue.

Page 16: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S16

Figure S16 VT-small-angle X-ray diffractograms recorded for TBDMSO-C10H20-LC3’,0.

Figure S17 Diffractograms of TBDMSO-C10H20-LC3’,0 within the smectic A phase (SmA)

at T = 373K.

Page 17: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S17

Figure S18 VT-small-angle X-ray diffractograms recorded for TBDMSO-C10H20-LC2’,0.

db = 37.2951Å

dc = 18.6731Å

de = 9.3241Ådd = 12.435Å

Figure S19 Diffractograms of TBDMSO-C10H20-LC2’,0 within a) the smectic A phase (SmA) at

T = 353K, and b) the crystalline state (Cr) at T = 273K.

Page 18: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S18

Figure S20 VT-small-angle X-ray diffractograms recorded for TBDMSO-C10H20-LC0’,3.

db = 25.9396Å

dc = 12.9361Å

de = 9.4151Ådd = 9.5483Å

Figure S21 Diffractograms of TBDMSO-C10H20-LC0’,3 within a) the smectic A phase (SmA) at

T = 373K, and b) the crystalline state (Cr) at T = 273K.

Page 19: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S19

 

2 4 6 8 10323

243

283

293 (after 24h)

293

2Deg

T K

 

Figure S22 VT-small-angle X-ray diffractograms recorded for TBDMSO-C10H20-LC2’,2.

da = 18.4177Å

db = 12.7405Å

dc = 12.3439Å

dd = 18.4177Å

de = 18.4177Å

Figure S23 Diffractograms of TBDMSO-C10H20-LC2’,2 within the crystalline state at T =273K.

* corresponds to capillary noise.

Page 20: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S20

 

Figure S24 VT-small-angle X-ray diffractograms recorded for TBDPSO-C10H20-LC0’,0.

Figure S25 Diffractograms of TBDPSO-C10H20-LC0’,0 within the smectic A phase (SmA)

at T = 323K.

Page 21: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S21

Figure S26 VT-small-angle X-ray diffractograms recorded for TBDPSO-C10H20-LC3’,0.

Figure S27 Diffractograms of TBDPSO-C10H20-LC3’,0 within the smectic A phase (SmA)

at T =293K.

Page 22: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S22

Figure S28 VT-small-angle X-ray diffractograms recorded for TBDPSO-C10H20-LC2’,0.

Figure S29 Diffractograms of TBDPSO-C10H20-LC2’,0 within the smectic A phase (SmA)

at T = 273K.

Page 23: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S23

Figure S30 VT-small-angle X-ray diffractograms recorded for TBDPSO-C10H20-LC0’,3.

Figure S31 Diffractograms of TBDPSO-C10H20-LC0’,3 within the smectic A phase (SmA)

at T = 293K.

Page 24: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S24

Figure S32 VT-small-angle X-ray diffractograms recorded for TBDPSO-C10H20-LC2’,2

200

300

400

500

600

800 820 840 860Vmolecule /Å3

T tr/K

clearing

melting

a) H25C12-LCi’,j

0 methyl 1 methyl 2 methyls

200

300

400

500

600

780 800 820 840Vmolecule /Å3

T tr/K

clearing

melting

b) HOC10C20-LCi’,j

0 methyl 1 methyl 2 methyls

200

300

400

500

600

980 1010 1040 1070Vmolecule /Å3

T tr/K

clearing

melting

c) TBDMSOC10H20-LCi’,j

0 methyl 1 methyl 2 methyls

200

300

400

500

600

1180 1210 1240Vmolecule /Å3

T tr/K

clearing

melting

d) TBDPSOC10C20-LCi’,j

0 methyl 1 methyl 2 methyls

clearing

meltingSlope

Slope= 14.06

clearing

meltingSlope

Slope= 5.26

clearing

meltingSlope

Slope= 1.91

clearing

meltingSlope

Slope= 2.45

Figure S33 Melting and clearing temperatures observed in H25C12-LCi’,j,16 HO-C10H20-LCi’,j,

TBDMSO-C10H20-LCi’,j and TBDPSO-C10H20-LCi’,j upon successive methylation

of the aromatic cyanobiphenyl cores. Vmolecule are the Connolly volumes28 computed

for the gas-phase optimized structures (see Table A1-1). The linear dotted lines are

guides for the eyes

Page 25: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S25

200

300

400

500

600

750 850 950 1050 1150 1250200

300

400

500

600

750 850 950 1050 1150 1250Vmolecule /Å3

T tr/K

clearing

melting

a) R-C10H20-LC0’,0

HO TBDMSOEt TBDPSO

Vmolecule /Å3

T tr/K clearing

melting

b) R-C10H20-LC3’,0

HO TBDMSOEt TBDPSO

200

300

400

500

600

750 850 950 1050 1150 1250200

300

400

500

600

750 850 950 1050 1150 1250Vmolecule /Å3

T tr/K clearing

melting

c) R-C10H20-LC2’,0

HO TBDMSOEt TBDPSO

Vmolecule /Å3

T tr/K clearing

melting

d) R-C10H20-LC0’,3

HO TBDMSOEt TBDPSO

200

300

400

500

600

750 850 950 1050 1150 1250Vmolecule /Å3

T tr/K

clearing

melting

e) R-C10H20-LC2’,2

HO TBDMSOEt TBDPSO

clearing

meltingSlope

Slope= 1.29

clearing

meltingSlope

Slope= 0.82

clearing

meltingSlope

Slope= 0.97

clearing

meltingSlope

Slope= 0.71

clearing

meltingSlope

Slope= 0.93

Figure S34 Melting and clearing temperatures observed in H25C12-LCi’,j,16 HO-C10H20-LCi’,j,

TBDMSO-C10H20-LCi’,j and TBDPSO-C10H20-LCi’,j upon successive substitution

of the flexible alkyl chains. Vmolecule are the Connolly volumes28 computed for the

gas-phase optimized structures (see Table A1-1). The linear dotted lines are guides

for the eyes

Page 26: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S26

-15

-10

-5

0

5

10

15

360 400 440 480T / K

Cp / kJK-1mol-1

a) HOC10H20-LC0’,0

exo

endo

-5

-3

-1

1

3

5

415 425 435 445T / K

Cp / kJK-1mol-1

b) HOC10H20-LC3’,0

exo

endo

-8

-6

-4

-2

0

2

4

360 380 400 420T / K

Cp / kJK-1mol-1

c) HOC10H20-LC0’,3

exo

endo

-12

-8

-4

0

4

8

12

320 340 360 380T / K

Cp / kJK-1mol-1

d) HOC10H20-LC2’,2

exo

endo

CrN

NI

NI

NI

NI

CrN

NI

NI

CrI

CrI (partial)

CrI (complete)

Figure S35 DSC thermographs of HOC10H20-LCi’,j (scan rates 10 K/min (full traces) and 0.5

K/min (dotted traces), heating cycle with downward peaks, cooling cycle with

upward peaks). G = glass, Cr = crystal, SmA = smectic A, N = nematic, I = isotropic

liquid.

Page 27: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S27

-12

-8

-4

0

4

8

12

310 360 410 460T / K

-15

-12

-9

-6

-3

0

3

360 380 400 420T / K

-8

-6

-4

-2

0

2

4

360 380 400 420T / K

-6

-4

-2

0

2

4

6

270 300 330 360T / K

Cp / kJK-1mol-1

a) TBDMSOC10H20-LC0’,0

Cp / kJK-1mol-1

b) TBDMSOC10H20-LC2’,0

Cp / kJK-1mol-1

c) TBDMSOC10H20-LC0’,3

Cp / kJK-1mol-1

d) TBDMSOC10H20-LC2’,2

exo

endo

exo

endo

CrSmA

SmAI

SmAI SmAI

SmAI

CrSmA

*

CrSmA

SmAI

SmAISmAI (monotropic)

GI

CrI

exo

endo

exo

endo

Figure S36 DSC thermographs of TBDMSOC10H20-LCi’,j (scan rates 10 K/min (full traces) and

0.5 K/min (dotted traces), heating cycle with downward peaks, cooling cycle with

upward peaks). G = glass, Cr = crystal, SmA = smectic A, N = nematic, I = isotropic

liquid and * = kinetically-delayed reorganization.

Page 28: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S28

-4

-3

-2

-1

0

1

2

3

300 310 320 330T / K

-3

-2

-1

0

1

2

3

270 280 290 300T / K

-3

-2

-1

0

1

2

3

300 310 320 330 340T / K

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

180 230 280 330T / K

Cp / kJK-1mol-1

a) TBDPSOC10H20-LC3’,0

Cp / kJK-1mol-1

b) TBDPSOC10H20-LC2’,0

exo

endo

Cp / kJK-1mol-1

c) TBDPSOC10H20-LC0’,3

Cp / kJK-1mol-1

d) TBDPSOC10H20-LC2’,2

exo

endo

SmAI

SmAI

SmAI

SmAI

SmAI

SmAI

GG’

GG’

G’I

G’I

exo

endo

exo

endo

Figure S37 DSC thermographs of TBDPSOC10H20-LCi’,j (scan rates 10 K/min (full traces) and

0.5 K/min (dotted traces), heating cycle with downward peaks, cooling cycle with

upward peaks). G = glass, Cr = crystal, SmA = smectic A, N = nematic, I = isotropic

liquid. = low-temperature artefact of the heat-flow detector.

Page 29: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S29

a) Melting processes (scan rate = 10 K·min-1)

y = 2.7401xR² = 0.9798

0

30

60

90

120

150

180

0 10 20 30 40 50 60

TBDMSO0’,3

Hm /kJmol-1

S m

/Jm

ol-1K

-1

TBDMSO2’,0

TBDMSO0’,0

HO0’,0

HO2’,2

HO0’,3

HO2’,0

Et0’,3

Et2’,2

Et3’,0

Et2’,0

Et0’,0

y = 2.478xR² = 0.9107

0

5

10

15

20

0 1 2 3 4 5 6 7

b) Clearing processes (scan rate = 10 K·min-1)

TBDMSO0’,3

Hc /kJmol-1

Sc

/Jm

ol-1K

-1

TBDMSO2’,0

TBDMSO0’,0

HO0’,0

HO0’,3

HO2’,0

Et0’,3

Et3’,0

Et2’,0

Et0’,0

TBDMSO3’,0TBDMSO2’,2

TBDPSO0’,0

TBDPSO0’,3

TBDPSO3’,0

HO3’,0

TBDPSO2’,0

y = 2.738xR² = 0.998

0

30

60

90

120

150

180

0 10 20 30 40 50 60

c) Phase transition processes (scan rate = 10 K·min-1)

Htr /kJmol-1

S t

r/Jm

ol-1K

-1

clearing

melting

Figure S38 ΔStr versus ΔHtr plots for a) the melting, b) the clearing and c) both phase transitions

occurring in R-C10H20-LCi’,j (R = HO, Et, TDMSO, TPDPSO) showing linear H/S

compensations (scan rates 10 K/min).

Page 30: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S30

y = 2.7578xR² = 0.9968

0

30

60

90

120

150

180

0 10 20 30 40 50 60

c) Phase transition processes (scan rate = 0.5 K·min-1)

Htr /kJmol-1

S t

r/Jm

ol-1K

-1

clearing

melting

y = 2.7792xR² = 0.9792

0

30

60

90

120

150

180

0 10 20 30 40 50 60

a) Melting processes (scan rate = 0.5 K·min-1)

TBDMSO0’,3

Hm /kJmol-1

S m

/Jm

ol-1K

-1

TBDMSO2’,0

TBDMSO0’,0

HO0’,0

HO2’,2

HO0’,3

HO2’,0

Et0’,3

Et2’,2

Et3’,0

Et2’,0

Et0’,0

TBDMSO2’,2

y = 2.4719xR² = 0.9886

0

10

20

30

40

0 2 4 6 8 10 12

b) Clearing processes (scan rate = 0.5 K·min-1)

TBDMSO0’,3

Hc /kJmol-1

S c

/Jm

ol-1K

-1

TBDMSO2’,0

TBDMSO0’,0

HO0’,0HO0’,3

HO2’,0

Et0’,3

Et3’,0

Et2’,0

Et0’,0TBDMSO3’,0

TBDPSO0’,0

TBDPSO0’,3

TBDPSO3’,0HO3’,0

TBDPSO2’,0

Figure S39 ΔStr versus ΔHtr plots for a) the melting, b) the clearing and c) both phase transitions

occurring in R-C10H20-LCi’,j (R = HO, Et, TDMSO, TPDPSO) showing linear H/S

compensations (scan rates 0.5 K/min).

Page 31: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S31

-5

-2

1

4

7

10

300 320 340 360 380 400

Tm / K

CFEDsolid/ J·cm-3 Mpa Slopes / J·cm-3K-1

0.24(2)

0.2(1)

0.070(4)

(2’,0) =

(0’,0) =

(0’,3) =(2’,2) =

(3’,0) =

*Clapeyron

a) Influence of head perturbation

-5

-2

1

4

7

10

300 320 340 360 380 400

b) Influence of tail perturbation

CFEDsolid/ J·cm-3 Mpa Slopes / J·cm-3K-1

0.14(2)

0.09(1)

0.118(8)= HOC10C20-LCi’,j= TBDMSOC10C20-LCi’,j

= H25C12-LCi’,j

= TBDPSOC10C20-LCi’,j 0.20

Clapeyron

Tm / K

Figure S40 Cohesive free energy densities (CFED, scan rate = 0.5 K min-1) versus transition

temperatures for the melting processes highlighting a) the influence of head

substitution and b) the influence of tail substitution. The full black traces correspond

to the solid-liquid crystal boundary fitted with Clapeyron equation (eq. 7). The

dotted colored traces show local linear correlations (eq. 8) for a) a given tail

substitution and b) a given head substitution.

Page 32: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S32

-2.5

-1.5

-0.5

0.5

1.5

2.5

270 320 370 420 470

Tc / K

CFEDliq-cryst/ J·cm-3 Mpa Slopes / J·cm-3K-1

0.017(2)

0.0051(6)

0.019(2)

-0.001(2)

(2’,0) =

(0’,0) =

(0’,3) =(2’,2) =

(3’,0) =

*

a) Influence of head perturbation

Clapeyron

-2.0

-1.0

0.0

1.0

2.0

270 320 370 420 470

Tc / K

CFEDliq-cryst/ J·cm-3 Mpa Slopes / J·cm-3K-1

0.014(8)

0.002(3)0.0028(3)

= HOC10C20-LCi’,j= TBDMSOC10C20-LCi’,j

= H25C12-LCi’,j

= TBDPSOC10C20-LCi’,j

0.0060(1)

b) Influence of tail perturbation

Clapeyron

Figure S41 Cohesive free energy densities (CFED, scan rate = 0.5 K min-1) versus transition

temperatures for the clearing processes highlighting a) the influence of head

substitution and b) the influence of tail substitution. The full black traces correspond

to the liquid crystal-liquid boundary fitted with Clapeyron equation (eq. 7). The

dotted colored traces show local linear correlations for a) a given tail substitution and

b) a given head substitution.

Page 33: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S33

Appendix 1 Molecular modeling and organization in the liquid crystalline phases for

substituted cyanobiphenyls RO-C10H20-LCi’,j.

The molecular structures of the mesogens TBDPSO-C10H20-LCi’,j, TBDMSO-C10H20-LCi’,j and

HO-C10H20-LCi’,j were optimized in the gas phase using the MM2 force field implemented in

Avogadro program (Fig. A1-1 and Table A1-1).A1-1 Whatever the size of the terminal moiety (H,

TBDMS, TBDPS) attached to the terminal hydroxyl group, the flexible alkyl chains are roughly

linear and adopt all trans configurations (Fig A1-1a). The polar aromatic cyanobiphenyl cores,

made up of three successive phenyl rings, form a pseudo-linear rigid segment, in which the

magnitude of the interplanar angles 1 and 2 vary (Fig. A1-1b). In line with the crystal structures

of H25C12-LCi’,j,A1-2 the interplanar angles between the two connected aromatic rings of the

biphenyl are close to orthogonal (1 = 85(3)°) for compounds having at least one methyl group

bound to the 2 or 2’ position, while relaxation to 1 = 55.4(7)° is characteristic for the less

constrained biphenyls (Table A1-1). The roughly constant interplanar angle 2 = 78(7)° between the

cyanobiphenyl unit and the benzoate substituent is not sensitive to the bound terminal groups (Fig.

A1-1b). Finally, the two incompatible rod-like linear segments in the mesogenic compounds (i.e.

flexible chain and rigid core) produce a slightly bent arrangement head-tail = 153.5(6)°, which is

reminiscent to that found in the crystal structures of H25C12-LCi’,j (head-tail = 168(8)°, Fig. A1-

1a).A1-2

L /Å

head-tail /º

2 /º

1 /º

a)

b)

Figure A1-1 Gas-phase optimized molecular structureA1-1 computed for HO-C10H20-LC0’,0 and

highlighting a) the bent arrangement (head-tail) of the aromatic (red dotted line) and

Page 34: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S34

alkyl (green dotted line) linear segments, and b) the interplanar angles 1 and 2

characterizing the substituted cyanobiphenyl unit.

Table A1-1 Gas-phase optimized molecular structures computed for HO-C10H20-LCi’,j,

TBDMSO-C10H20-LCi’,j and TBDPSO-C10H20-LCi’,j using the MM2 force field

implemented in Avogadro program.A1-1

Compounds L / Å head-tail / ° 1 / ° 2 / ° Vmolecule / Å3 a

HO-C10H20-LC0’,0 30.90 154.9 55.0 68.5 783.81

HO-C10H20-LC3’,0 30.92 153.0 55.9 72.1 812.32

HO-C10H20-LC2’,0 30.89 152.6 81.4 68.7 812.10

HO-C10H20-LC0’,3 30.92 152.7 56.7 69.5 811.50

HO-C10H20-LC2’,2 30.88 152.4 87.7 81.5 836.34

TBDMSO-C10H20-LC0’,0 35.22 152.9 54.8 73.2 979.76

TBDMSO-C10H20-LC3’,0 35.27 154.2 55.1 82.3 1009.85

TBDMSO-C10H20-LC2’,0 35.23 153.8 81.5 85.8 1009.04

TBDMSO-C10H20-LC0’,3 35.26 154.0 55.1 89.5 1009.27

TBDMSO-C10H20-LC2’,2 35.24 153.9 86.5 79.6 1033.95

TBDPSO-C10H20-LC0’,0 35.26 154.0 54.9 76.4 1161.52

TBDPSO-C10H20-LC3’,0 35.23 153.5 56.5 75.0 1184.86

TBDPSO-C10H20-LC2’,0 35.21 153.7 87.3 88.8 1182.45

TBDPSO-C10H20-LC0’,3 35.27 154.2 54.8 76.6 1183.65

TBDPSO-C10H20-LC2’,2 35.20 153.7 86.9 89.0 1207.65

a The molecular volumes are taken as the Connolly volumes.A1-3

The total length of the rod-like molecules increases from L = 30.90(2) Å for HO-C10H20-LCi’,j to L

= 35.24(2)Å for TBDMSO-C10H20-LCi’,j and L = 35.23(3)Å for TBDPSO-C10H20-LCi’,j (Table

A1-1). Compared with the periodicities d001 observed in the lamellar smectic A phases (Table A1-

2), the 1.29 ≤ d001/L ≤ 1.59 ratios calculated for the silylated cyanobiphenyls suggest the formation

of partially interdigitated bilayers (Fig. A1-2).A1-4

Page 35: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S35

Table A1-2 Molecular length L (computed gas-phase geometry) and interlayer periodicites

measured in the smectic A mesophases d001 for TBDMSO-C10H20-LCi’,j and TBDPSO-

C10H20-LCi’,j

Compounds L / Å d001 / Å d001/L Layering

TBDMSO-C10H20-LC0’,0 35.22 49.21 1.40 Interdigitated bilayer

TBDMSO-C10H20-LC3’,0 35.27 49.32 1.40 Interdigitated bilayer

TBDMSO-C10H20-LC2’,0 35.23 49.69 1.41 Interdigitated bilayer

TBDMSO-C10H20-LC0’,3 35.26 45.64 1.29 Interdigitated bilayer

TBDMSO-C10H20-LC2’,2 35.24 51.20 1.45 Interdigitated bilayer

TBDPSO-C10H20-LC0’,0 35.26 54.52 1.55 Interdigitated bilayer

TBDPSO-C10H20-LC3’,0 35.23 53.92 1.53 Interdigitated bilayer

TBDPSO-C10H20-LC2’,0 35.21 56.03 1.59 Interdigitated bilayer

TBDPSO-C10H20-LC0’,3 35.27 51.32 1.46 Interdigitated bilayer

d001/L < 1 d001/L = 1 1 < d001/L < 2 d001/L = 2

Interdigitatedmonolayer

monolayer Interdigitatedbilayer

bilayer

L

d001 d001

Figure A1-2 Schematic representation of the organization of the molecules in the smectic A

mesophases with respect to increasing d001/L ratios (see text). Code: orange rectangles =

aromatic substituted cyanobiphenyl cores, black zig-zag traces = flexible alkyl chains.

Page 36: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S36

A close scrutiny at Table A1-2 suggests that the weak, but significant increase of d001/L in going

from TBDMSO-C10H20-LCi’,j (average value = 1.39(6)) to TBDPSO-C10H20-LCi’,j (average value

= 1.53(5)) can be tentatively assigned to intermolecular aromatic stacking interactions operating

between bulky tert-butyldiphenyl silyl termini, which limit chain interdigitation (Fig. A1-3).

TBDMSOC10H20-LCi’,j TBDPSOC10H20-LCi’,j

d001/L = 1.37(7) d001/L = 1.53(5)

Figure A1-3 Schematic representation of the organization of the molecules in the smectic A

mesophases with respect to average d001/L ratios. Code: orange rectangles = aromatic

substituted cyanobiphenyl cores, black zig-zag lines = flexible alkyl chains, grey

lobes = silyl substituents.

Interestingly, the non-silylated compounds HO-C10H20-LCi’,j show only orientational order leading

to the formation of nematic mesophases. In this context, we suspect that efficient intermolecular

head-to-tail -CNHO- hydrogen bonds operating in HO-C10H20-LCi’,j prevent lateral cohesions

required for smectogenic behaviour (Fig. A1-4), but we were unable to grow X-ray quality

monocrystals for substantiating this hypothesis.

Page 37: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S37

-CNHO- interactions

Figure A1-4 Schematic representation of the organization of the molecules in the nematic

mesophases for HO-C10H20-LCi’,j Code: orange rectangles = aromatic substituted

cyanobiphenyl cores, black zig-zag lines = flexible alkyl chains, red disks = hydroxyl

groups.

References

A1-1 M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R.

Hutchison,. J. Cheminform., 2012, 4, 17. Avogadro 1.1.1 can be downloaded at

http://avogadro.cc/wiki/Main_Page.

A1-2 T. Dutronc, E. Terazzi, L. Guénée, K.-L. Buchwalder, S. Floquet, C. Piguet, Chem. Eur. J.,

2016, 22, 1385-1391.

A1-3 The molecular volumes are taken as the Connolly volumes, which are obtained from the

building of the Connolly surface around the molecular structures of complexes observed in

their crystal structure and by using a probe radius of 1.4 Å for modelling water solvent

molecule (M. L. Connolly, Science, 1983, 221, 709-713. M. L. Connolly, J. Appl. Cryst.,

1983, 16, 548-558).

A1-4 W. Haase, Z. X. Fan and H. J. Muller, J. Chem. Phys., 1988, 89, 3317-3322

Page 38: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S38

Appendix 2 Slow kinetic structural reorganizations operating in RO-C10H20-LCi’,j.

The DSC traces of the compounds HO-C10H20-LC2’,0 (Fig. 5a), TBDMSO-C10H20-LC2’,0 (Fig.

S36b) and TBDMSO-C10H20-LC2’,2 (Fig. S36d) displayed minor peaks, the enthalpies and onset

temperatures of which vary with the scan rates. A detailed time-dependent investigation of the DSC

traces and X-ray diffraction patterns suggested that these behaviours can be assigned to slow

structural reorganizations operating in the glassy state after the first heating/cooling cycle. Taking

TBDMSO-C10H20-LC2’,2 as a model, one observed that, during the first hetaing-cooling cycle (,

(Fig. A2-1), the crystalline phase melted to give an isotropic liquid at 59°C (332 K), which was

transformed, upon cooling, into a monotropic smectic A mesophase at 16°C (289 K).

*

Crystal

270 290 310 330 350 370 390T / K

Cr→I

(SmA)←ICp

exo

endo

*

*

353 K293 K

233 K

Isotropic liquid

Smectic A

Figure A2-1 Thermograph of compound TBDMSO-C10H20-LC2’,2 recorded at 0.5 Kmin-1 during

the first heating (red trace) and cooling (blue trace) cycle, and showing the X-ray

diffraction patterns recorded at specified temperatures during the heating (bottom

diffractograms) and cooling (top diffractogram) processes. * = capillary noise.

Page 39: Caudale sup revised - rsc.org · Sebastiano Guerra, Thibault Dutronc, Emmanuel Terazzi, Laure Guénée and Claude Piguet* Supporting Information (39 pages) 7KLV

S39

The record of a second heating/cooling cycle (Fig. A2-2) without delay showed two successive

weak endothermic processes, while the introduction of a 24 hours delay restored the cristalline

organization and the detection of a single Cr→I transition at 59°C (332 K, Fig. A2-3).

*

270 290 310 330 350 370 390T / K

b)

Cr→I

(SmA)←ICp

exo

endo

270 290 310 330 350 370 390T / K

Cr→I

(SmA)←ICp

exo

endo

a)

*

293 K

Crystal (poorly diffracting)

Crystal

293 K

Figure A2-2 Thermographs of compound TBDMSO-C10H20-LC2’,2 recorded at 0.5 Kmin-1

during the second heating (red trace)-cooling (blue trace) cycle and showing the X-

ray diffraction patterns recorded at 293 K during the heating processes. * = capillary

noise. a) Recorded 2 hours after the first heating/cooling cycle. Recorded 26 hours

after the first heating/cooling cycle.